Skip to Content

College of Engineering and Computing

Faculty and Staff

David Matolak

Title: Professor, Electrical Engineering
Department: Electrical Engineering
College of Engineering and Computing
Email: matolak@cec.sc.edu
Phone: 803-777-8334
Fax: 803-777-8045
Office:

Swearingen
Room 3A28
301 Main Street
Columbia, SC 29208

Dr. David Matolak

Background

David W. Matolak received the B.S. degree from The Pennsylvania State University, M.S. degree from The University of Massachusetts, and Ph.D. degree from The University of Virginia, all in electrical engineering. He has over 25 years’ experience in communication system research, development, and deployment, with industry, government institutions, and academia, including AT&T Bell Labs, L3 Communication Systems, MITRE, and Lockheed Martin. He has over 250 publications and eight patents. He was a professor at Ohio University (1999-2012), and since 2012 has been a professor at the University of South Carolina. He has organized multiple IEEE workshops and special sessions, and was Associate Editor for IEEE Transactions on Wireless Communications and IEEE Transactions on Wireless Communications. His research interests are radio channel modeling and communication techniques for non-stationary fading channels. Prof. Matolak is also a member of standards groups in RTCA and ITU, and a member of Eta Kappa Nu, Sigma Xi, Tau Beta Pi, URSI, ASEE, and AIAA. He is also an IEEE Fellow.

Research Interests

  • Wireless Channel Characterization: statistically non-stationary, multi-band & multi-resolution models; current applications include air-ground channel modeling, vehicle-to-vehicle channel modeling, "micro-channel" modeling for wireless networks on chips
  • Ad Hoc Communication Networks: multiple access, duplexing, & multiplexing schemes for dynamic range/rate/latency/lifetime; performance for non-stationary topologies; ad hoc network metrics
  • Modulation/Detection PHY/MAC: Spread Spectrum modulations, efficient detection schemes, & reactive-bandwidth spectral overlay; Narrowband Modulation variable-bandwidth spectral overlay, co-channel interference suppression & rapid performance estimation; robust UAS transmission schemes (e.g., FBMC); V2V channel/MAC modeling
  • Random Process Modeling: modeling of communication signals and their statistics
  • Electromagnetics Modeling: wave propagation and antennas for communications applications; FDTD & ray tracing

Education

  • Ph.D., Electrical Engineering, University of Virginia, Charlottesville, VA, 1995.
  • M.S., Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 1987.
  • B.S., Electrical Engineering, Pennsylvania State University, State College, PA, 1983.

Refereed Journals/Magazines: Published/Accepted for Publication

  • F. Erden, O. Ozdemir, I. Guvenc, D. W. Matolak, “EMR: A New Metric to Assess the Resilience of Directional mmWave Channels to Blockages,” to appear, International Telecommunications Union (ITU) Journal of Evolving and Future Technologies, accepted August 2021.
  • D. W. Matolak, H. Jamal, “Multicarrier Spectral Shaping for Non-White Interference Channels: Application to L-band Aviation Channels,” to appear, IEEE Trans. Vehicular Tech., accepted August 2021.
  • N. Hosseini, D. W. Matolak, “Noncoherent Multiuser Chirp Spread Spectrum: Performance with Doppler and Asynchronism,” IEEE Trans. Comm., vol. 69, no. 7, pp. 4558-4568, July 2021.
  • N. Hosseini, D. W. Matolak, “Nonlinear Quasi-Synchronous Multi-User Chirp Spread Spectrum Signaling,” IEEE Trans. Comm., vol. 69, no. 5, pp. 3079-3090, May 2021.
  • A. Sahin, N. Hosseini, H. Jamal, S. S. M. Hoque, D. W. Matolak, “DFT-spread-OFDM Based Chirp Transmission,” IEEE Communications Letters, vol. 25, no. 3, pp. 902-906, March 2021.
  • N. Hosseini, M. Khatun, K. Du, O. Ozdemir, D. W. Matolak, H. Mehrpouyan, I. Guvenc, “Attenuation of Several Common Building Materials: Millimeter-Wave Frequency Bands 28, 73, and 91 GHz,” IEEE Antennas & Propagation Magazine, January 2021.
  • N. Hassan, M. Kaske, C. Schneider, G. Sommerkorn, R. Thoma, D. W. Matolak, “Measurement Based Determination of Parameters for Non-stationary TDL Models with Reduced Number of Taps,” IET Microwaves, Antennas, and Propagation Journal, vol. 14, no. 14, pp. 1719-1732, November 2020.
  • M. Walter, D. Shutin, M. Schmidhammer, D. W. Matolak, A. Zajic, “Geometric Analysis of the Doppler Frequency for General Non-Stationary 3D Mobile-to-Mobile Channels based on Prolate Spheroidal Coordinates,” IEEE Trans. Vehicular Tech., vol. 69, no. 10, pp. 10419-10434, July 2020.
  • W. Khawaja, O. Ozdemir, F. Erden, I. Guvenc, D. W. Matolak, “Ultra-Wideband Air-to-Ground Propagation Channel Characterization in an Open Area,” IEEE Trans. Aerospace and Electronic Systems, June 2020.
  • X. Cheng, Y. Li, C-X Wang, X. Yin, D. W. Matolak, “A 3D Geometry-based Stochastic Model for Unmanned Aerial Vehicle MIMO Ricean Fading Channels,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8674-8687, May 2020.
  • M. Walter, D. Shutin, D. W. Matolak, N. Schneckenberger, T. Wiedemann, A. Dammann, “Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves,” IEEE Trans. Wireless Comm., vol. 18, no. 8, pp. 3767-3780, August 2019.
  • N. Schneckenberger, T. Jost, M. Walter, G. del Gado, D. W. Matolak, U. C. Fiebig, “Wideband Air-Ground Channel Model for a Regional Airport Environment,” IEEE Trans. Vehicular Tech., vol. 68, no. 7, pp. 6243-6256, July 2019.
  • Z. Cui, C. Briso, K. Guan, D. W. Matolak, C. Calvo-Ramirez, B. Ai, Z. Zhong, “Low Altitude UAV Air-to-Ground Propagation Channel Analysis and Modeling in Suburban Environment at 3.9 GHz,” IET Journal on Microwaves, Antennas, and Propagation, vol. 13, no. 9, pp. 1503-1508, July 2019.
  • W. Khawaja, I. Guvenc, D. W. Matolak, U.-C. Fiebig, N. Schneckenberger, “A Survey of Air-to-Ground Channel Modeling for Unmanned Aerial Vehicles,” IEEE Communications Surveys and Tutorials, vol. 21, no. 3, May 2019.
  • M. G. Doone, S. L. Cotton, D. W. Matolak, C. Oestges, S. F. Heaney, W. G. Scanlon, “Pedestrian-to-Vehicle Communications in an Urban Environment: Channel Measurements and Modeling,” IEEE Trans. Antennas & Propagation, vol. 67, no. 3, pp. 1790-1803, March 2019.
  • P. Bithas, A. Kanatas, D. W. Matolak, “Exploiting Stationarity for Antenna Selection in V2V Communications,” IEEE Trans. Vehicular Tech., vol. 68, no. 2, pp. 1607-1615, February 2019.
  • K. Guan, D. He, B. Ai, D. W. Matolak, Q. Wang, Z. Zhong, T. Kuerner, “5-GHz Obstructed Vehicle-to-Vehicle Channel Characterization for Internet of Intelligent Vehicles,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 100-110, February 2019.
  • H. Jamal, D. W. Matolak, “Dual-Polarization FBMC for Improved Performance in Wireless Communication Systems,” IEEE Trans. Vehicular Tech., vol. 68, no. 1, pp. 349-358, January 2019.

Book Chapters

  • W. Khawaja, I. Guvenc, D. W. Matolak, “A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles,” in UAV Communications for 5G and Beyond, Wiley Press, 2020.
  • M. Ezuma, F. Erden, C. K. Anjinappa, O. Ozdemir, I. Guvenc, D. W. Matolak, “UAV Detection and Identification,” in UAV Communications for 5G and Beyond, Wiley Press, 2020.
  • D. W. Matolak, “Wireless Channel Characterization for the 5 GHz Band Airport Surface Area,” in Aeronautical Mobile Airport Communication Systems; AeroMACS, B. Kamali, IEEE Press, 2018.

Courses Taught

Undergraduate:
  • Wireless communication- ELCT 562
    • F2021, F2014, F2015, F2016, S2018, S2019
  • Electrical and Electronic Engineering- ELCT 101
    • F2020
  • Electrical Science- ELCT 102
    • S2013
  • Fundamentals of Communication Systems- ELCT 332
    • F2013, F2014, F2018
  • Introduction of Signal Processing- ELCT 321
    • S2016, F2017, S2020, S2021
Graduate:
  • Wireless Communications- ELCT 562
    • F2021, F2014, F2015, F2016, S2018, S2019
  • Radio Propagation & Wireless Channel Modeling- ELCT 732
    • S2014, S2017, F2019
  • Information Theory- ELCT 891
    • S2015

Challenge the conventional. Create the exceptional. No Limits.

©