Skip to Content

Molinaroli College of Engineering and Computing

Faculty and Staff

Andreas Heyden

Title: Director of Graduate Studies, Chemical Engineering
Professor
Department: Chemical Engineering
Molinaroli College of Engineering and Computing
Email: heyden@cec.sc.edu
Website: Research Group
Phone: 803-777-5025
Fax: 803-777-0973
Office: Swearingen Engineering Center
Room 2C17
301 Main Street
Columbia, SC 29208
Professor Andreas Heyden

CV of Dr. Heyden

Education

Ph.D., Hamburg University of Technology, 2005

Diplom, Hamburg University of Technology, 2000

Research

Our primary research interests are in the areas of nanomaterial science and heterogeneous catalysis. Our goal is to use computer simulations to obtain a deeper - molecular - understanding of key issues in these areas, such as the self-assembly process in catalyst synthesis, the structure of small metal clusters on high-surface-area supports, and the structure-performance relationship of single-site heterogeneous catalysts. The goal of our research is to elucidate the physical effects that must be considered for the design and production of highly selective heterogeneous catalysts with a long lifetime. Due to the high selectivity and activity of designed catalytic materials, chemical processes can make better use of the world's limited resources and become more environmentally benign.

Despite significant advances in computer algorithms and the increasing availability of computational resources, molecular modeling and simulation of large, complex systems at the atomic level remains a challenge and is currently limited to relatively simple, well-defined materials. To enable simulations of complex systems that accurately reflect experimental observations, continued advances in modeling potential energy surfaces and statistical mechanical sampling are necessary. While studying systems relevant for catalysis, we develop new theoretical and computational tools for the investigation of these complex chemical systems. Our tool development efforts are at the interface between engineering, chemistry, and physics, and are rooted in classical, statistical, and quantum mechanics with a special focus on novel multiscale methods.

Selected Publications

  • M. Faheem, A. Heyden, "Hybrid Quantum Mechanics/Molecular Mechanics Solvation Scheme for Computing Free Energies of Reactions at Metal-Water Interfaces", J. Chem. Theory Comput. 10, 3354 - 3368, 2014.
  • S. Suthirakun, S. C. Ammal, A. B. Munoz-Garcia, G. Xiao, F. Chen, H.-C. zur Loye, E. A. Carter, A. Heyden, "Theoretical Investigation of H2 Oxidation on the Sr2Fe1.5Mo0.5O6 (001) Perovskite Surface under Anodic Solid Oxide Fuel Cell Conditions", J. Am. Chem. Soc. 136, 8374 - 8386, 2014.
  • S. Behtash, J. Lu, M. Faheem, A. Heyden, "Solvent Effects on the Hydrodeoxygenation of Propanoic Acid over Pd (111) Model Surfaces", Green Chemistry 16 (2), 605 - 616, 2014.
  • S. Aranifard, S. C. Ammal, A. Heyden, "On the Importance of Platinum-Ceria Interfaces for the Water-Gas Shift Reaction," J. Catal. 309, 314 - 324, 2014.
  • S. C. Ammal, A. Heyden, "Origin of the Unique Activity of Pt/TiO2 Catalysts for the Water-Gas Shift Reaction", J. Catal. 306, 78 - 90, 2013.

Challenge the conventional. Create the exceptional. No Limits.

©