Skip to Content

College of Engineering and Computing

Vascular Biomechanics and Failure Lab

Description: Dr. Lessner’s research focuses on biomechanical stress-induced remodeling and failure mechanics of arteries in both normal aging and in multiple pathological conditions, including atherosclerotic plaque rupture, aortic aneurysm, hypertension, and peripheral arterial disease. Research in the Lessner lab aims to understand both biomechanical and biological factors leading to pathological blood vessel failure. We collaborate with several faculty in Mechanical Engineering to identify material parameters of normal and diseased arterial tissue, and to perform computational simulations of vascular remodeling and arterial failure. Dr. Lessner is currently co-investigator on a project that seeks to develop a novel, non-surgical approach to treat calcified vessels in peripheral arterial disease using EDTA-loaded nanoparticles. She also has expertise in analyzing clinical imaging data, focusing in particular on analysis of vascular calcification in computed tomographic angiograms(CTAs). She currently collaborates with several faculty in the Dept. of Surgery on studies aimed to improve risk stratification in patients with peripheral arterial disease.
Area: Biomechanics; Digital image correlation; Aneurysm; Peripheral arterial disease; Plaque rupture
Phone: 803-216-3819
Director: Lessner, Susan

Challenge the conventional. Create the exceptional. No Limits.