Skip to Content

School of the Earth, Ocean and Environment

Faculty and Staff Directory

William Strosnider

Title:
Belle W. Baruch Institute for Marine and Coastal Sciences
Department: School of the Earth, Ocean & Environment
College of Arts and Sciences
Email: bill@baruch.sc.edu
Phone: 843-904-9031
Office:

BMFL 103


Baruch Marine Field Lab
P.O. Box 1630
Georgetown, SC 29442 USA

Resources: Curriculum Vitae (pdf)
Bill Strosnider

Education

2010 - Ph.D., Environmental Engineering, University of Oklahoma
2005 - M.S., Environmental Studies, College of Charleston
2003 - B.S., Mechanical Engineering, University of Dayton

 Research Interests

I'm an ecological engineer orientated towards applied biogeochemistry. My focus has been characterizing water quality issues and advancing sustainable solutions to restore ecosystems and safeguard human health, often in international contexts. This has generally entailed creating settings for naturally occurring biogeochemical processes to proceed optimally (e.g., floating treatment wetlands, bioreactors, stormwater wetlands). As the director of the Baruch Marine Field Laboratory, I am particularly interested in improving coastal water management.

Specific fields of inquiry include:

  • Treatment wetlands
  • Wetland biogeochemistry
  • Water management with living systems
  • Aquatic pollutant dynamics
  • Mine water remediation
  • Ecosystem restoration
  • Appropriate technologies for developing regions
  • Coastal best management practices

 
Publications 
(*graduate student, undergraduate student, +postdoctoral author)

Spellman Jr. CD*, PM Smyntek+, CA Cravotta III, TL Tasker+, WHJ Strosnider (2022) Pollutant co-attenuation via in-stream interactions between mine drainage and municipal wastewater. Water Research 214:118173. https://doi.org/10.1016/j.watres.2022.118173

Smyntek PM, N Lamagna, CA Cravotta III, WHJ Strosnider (2022) Mine drainage precipitates attenuate and conceal phosphate pollution in stream water. Science of the Total Environment 815:152672. https://doi.org/10.1016/j.scitotenv.2021.152672

Hitchcock DR, NL Bell*, WHJ Strosnider, MC Smith (2022) Spatiotemporal water quality variability in a highly loaded surface flow wastewater treatment wetland. Journal of Environmental Quality 51:101-111. https://doi.org/10.1002/jeq2.20309

White SA, WHJ Strosnider, MEM Chase*, MA Schlautman (2021) Removal and reuse of phosphorus from plant nursery runoff with reclaimed iron oxides. Ecological Engineering 160:106153. https://doi.org/10.1016/j.ecoleng.2021.106153

Sun J, Y Takahashi, WHJ Strosnider, T Kogure, B Wang, P Wu, L Zhu, Z Dong (2021) Identification and quantification of contributions to karst groundwater using a triple stable isotope labeling and mass balance model. Chemosphere 263:127946. https://doi.org/10.1016/j.chemosphere.2020.127946

Spellman C*, T Tasker+, JE Goodwill, WHJ Strosnider (2020) Potential implications of mine drainage and wastewater co-treatment on solids handling: a review. Journal of Environmental Engineering 146(11):0310010. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001814

Spellman C*, T Tasker+, WHJ Strosnider, J Goodwill (2020) Abatement of circumneutral mine drainage by co-treatment with secondary municipal wastewater. Journal of Environmental Management 271: 110982. https://doi.org/10.1016/j.jenvman.2020.110982

Sun J, WHJ Strosnider, RW Nairn, JA LaBar (2020) Water quality impacts of in-stream mine tailings on a headwaters tributary of the Rio Pilcomayo, Potosí, Bolivia. Applied Geochemistry 113:104464. https://doi.org/10.1016/j.apgeochem.2019.104464

Strosnider WHJ, J Hugo, NL Shepherd*, BK Holzbauer-Schweitzer*, C Wolkersdorfer, RW Nairn. (2020) A snapshot of coal mine drainage discharge limits for conductivity, sulfate, and manganese across the developed world. Mine Water and the Environment 39: 165-172. https://doi.org/10.1007/s10230-020-00669-8

Goodwill JE, JA LaBar+, D Slovikosky, WHJ Strosnider (2019) Preliminary assessment of ferrate treatment of metals in acid mine drainage. Journal of Environmental Quality 48(5): 1549-1556. https://doi.org/10.2134/jeq2019.02.0079

Sun J, T Kogure, WHJ Strosnider, P Wu, X Cao (2019) Tracing and quantifying contributions of end members to karst water at a coalfield in southwest China. Chemosphere 234: 777-788. http://dx.doi.org/10.1016/j.chemosphere.2019.06.066

Smyntek P+, JA Chastel, RAM Peer, E Anthony, J McCloskey, E Bach, RC Wagner, JZ Bandstra, WHJ Strosnider (2018) Assessment of sulfate and iron reduction rates during start-up for passive anaerobic co-treatment of acid mine drainage and sewage. Geochemistry: Exploration, Environment, Analysis 18(1): 76-84. https://doi.org/10.1144/geochem2017-001

Strosnider WHJ, SE Schultz, KA Johnson Strosnider*, RW Nairn (2017) Effects on the underlying water column by extensive floating treatment wetlands. Journal of Environmental Quality 46: 201-209. https://doi.org/10.2134/jeq2016.07.0257

Sun J*, T Kobayashi, WHJ Strosnider, P Wu (2017) Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters. Journal of Hydrology 551: 245-252. https://doi.org/10.1016/j.jhydrol.2017.06.006

Garrido AE*, WHJ Strosnider, R Taylor Wilson, J Condori, RW Nairn (2017) Metal-contaminated potato crops and potential human health risk in Bolivian mining highlands. Environmental Geochemistry and Health 39(3): 681-700. https://doi.org/10.1007/s10653-017-9943-4

Smyntek PM+, RC Wagner, L Krometis, S Carvajal, T Wynn-Thompson, WHJ Strosnider (2017) Passive biological treatment of mine discharges to reduce conductivity: potential designs, challenges, and research needs. Journal of Environmental Quality 46: 1-9. https://doi.org/10.2134/jeq2016.06.0216

Strosnider WHJ, S Carvajal, F Llanos-López, RW Nairn, RAM Peer, BK Winfrey (2015) Análisis del co-tratamiento pasivo de aguas residuales municipales y drenaje acido de minas en Cerro Rico de Potosí, Bolivia.  Avances en Ciencias e Ingeniería 6(2): 23-37. http://www.redalyc.org/articulo.oa?id=323639772003

Farag S*, R Das*, WHJ Strosnider, R Taylor Wilson (2015) Possible health effects of living in proximity to mining sites near Potosí, Bolivia. Journal of Occupational and Environmental Medicine 57(5): 543-551. http://dx.doi.org/10.1097/JOM.0000000000000401

Peer RAM, JA LaBar*, BK Winfrey*, RW Nairn, FS Llanos López, WHJ Strosnider (2015) Removal of less commonly addressed metals via passive co-treatment. Journal of Environmental Quality 44(2): 704-710. https://doi.org/10.2134/jeq2014.08.0338

Kruse NA, WHJ Strosnider (2015) Carbon dioxide dynamics and sequestration in mine water and waste: A review. Mine Water and the Environment 34: 3-9. https://doi.org/10.1007/s10230-014-0320-6

Winfrey BK*, RW Nairn, DR Tilley, WHJ Strosnider (2015) Energy and carbon footprint analysis of the construction of passive and active treatment systems for net alkaline mine drainage. Mine Water and the Environment 34: 31-41. http://dx.doi.org/10.1007/s10230-014-0304-6

Strosnider WHJ, FS Llanos López, CE Marcillo, RR Callapa, RW Nairn (2014) Contaminantes adicionales de drenaje acido de mina de Cerro Rico de Potosí impactan la cabecera del Rio Pilcomayo. Avances en Ciencias e Ingeniería 5(3): 1-17. http://www.redalyc.org/articulo.oa?id=323632128001

Faldetta KF*, DA Reighard*, KL Dickinson*, CQ Wang*, DR George, LR Benavides, WHJ Strosnider (2014) Assessing domestic water quality in Belén municipality, Iquitos, Peru. Journal of Water, Sanitation and Hygiene for Development. 4(3):391-399. http://dx.doi.org/10.2166/washdev.2014.051

Santamaria B*, WHJ Strosnider, MR Apaza Q, RW Nairn (2014) Evaluating locally available organic substrates for vertical flow passive treatment cells at Cerro Rico de Potosí, Bolivia. Environmental Earth Sciences 72:731-741. http://dx.doi.org/10.1007/s12665-013-2997-4

Sun J*, C Tang*, P Wu, WHJ Strosnider (2014) Hydrogen and oxygen isotopic composition of karst waters with and without acid mine drainage: Impacts at a SW China coalfield. Science of the Total Environment 487: 123-129. http://dx.doi.org/10.1016/j.scitotenv.2014.04.008

Strosnider WHJ, FS Llanos López, JA LaBar*, KJ Palmer, RW Nairn (2014) Unabated acid mine drainage from Cerro Rico de Potosí, Bolivia: uncommon constituents of concern impact the Rio Pilcomayo headwaters. Environmental Earth Sciences 71: 3223-3234. http://dx.doi.org/10.1007/s12665-013-2734-z

Sun J*, C Tang, P Wu, WHJ Strosnider, Z Han (2013) Hydrogeochemical characteristics of streams with and without acid mine drainage impacts: A paired catchment study in karst geology, SW China. Journal of Hydrology 504: 115-124. http://dx.doi.org/10.1016/j.jhydrol.2013.09.029

Strosnider WHJ, BK Winfrey*, RAM Peer, RW Nairn (2013) Passive co-treatment of acid mine drainage and sewage: Anaerobic incubation reveals a regeneration technique and further treatment possibilities. Ecological Engineering 61: 268-273. https://doi.org/10.1016/j.ecoleng.2013.09.037

Strosnider WHJ, RW Nairn, RAM Peer, BK Winfrey* (2013) Passive co-treatment of Zn-rich acid mine drainage and raw municipal wastewater. Journal of Geochemical Exploration 125: 110-116. http://dx.doi.org/10.1016/j.gexplo.2012.11.015

Strosnider WH, BK Winfrey*, RW Nairn (2011) Alkalinity generation in a novel multi-stage high-strength acid mine drainage and municipal wastewater passive co-treatment system. Mine Water and the Environment 30(1): 47-53. http://dx.doi.org/10.1007/s10230-010-0124-2

Strosnider WHJ, FS Llanos López, RW Nairn (2011) Acid mine drainage at Cerro Rico de Potosí II: severe degradation of the Upper Rio Pilcomayo watershed. Environmental Earth Sciences 64: 911-923. http://dx.doi.org/10.1007/s12665-010-0899-2

Strosnider WHJ, FS Llanos López, RW Nairn (2011) Acid mine drainage at Cerro Rico de Potosí I: unabated high-strength discharges reflect a five century legacy of mining. Environmental Earth Sciences 64: 899-910. http://dx.doi.org/10.1007/s12665-011-0996-x

Strosnider WHJ, BK Winfrey*, RW Nairn (2011) Novel passive co-treatment of acid mine drainage and municipal wastewater. Journal of Environmental Quality 40(1): 206-213. http://dx.doi.org/10.2134/jeq2010.0176

Strosnider WH, BK Winfrey*, RW Nairn (2011) Biochemical oxygen demand and nutrient processing in a novel multi-stage raw municipal wastewater and acid mine drainage passive co-treatment system. Water Research 45: 1079-1086. https://doi.org/10.1016/j.watres.2010.10.026

Strosnider WH, RW Nairn (2010) Effective passive treatment of high strength acid mine drainage and raw municipal wastewater in Potosí, Bolivia using simple incubations and limestone. Journal of Geochemical Exploration 105: 34-42. https://doi.org/10.1016/j.gexplo.2010.02.007

Winfrey BK*, WH Strosnider, RW Nairn, KA Strevett (2010) Highly effective reduction of fecal indicator bacteria counts in an ecologically-engineered acid mine drainage and municipal wastewater passive co-treatment system. Ecological Engineering 36(12): 1620-1626. http://dx.doi.org/10.1016/j.ecoleng.2010.06.025


Challenge the conventional. Create the exceptional. No Limits.

©