USC International Accelerator Program

QED Diagnostic Math Evaluation for (Non-Software) Engineering Students

The problems below cover some of the basic topics covered in a typical 3 sequence course in calculus and an introductory differential equations course. A student preparing for a Master's degree in Engineering at University of South Carolina should have minimum difficulty with the 20 questions below. The correct answers are provided with a diagnostics legend that explains possible outcomes based on your score.

Evaluate:

1.
$$\lim_{x \to 0} \frac{\sin x}{x}$$

$$2. \lim_{x \to \infty} \frac{3x}{2x-1}$$

$$3. \int \frac{x+1}{x(x^2+1)} dx$$

4.
$$\int \ln x \, dx$$

5.
$$\int \sqrt{1-x^2} \, dx$$

6. Find the radius and interval of convergence for the series
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$$

- 7. Find Taylor series expansion for f(x) = sinx (with center at 0)
- 8. Find the Maclaurin series and radius of convergence for $f(x) = \sin(x^2)$.
- 9. Find the derivative y' if $y = x \arctan(2x)$.
- 10. Find y' if $y = (x^2 + x^3)^4$.
- 11. Solve the differential equation: $xy' + 2y = \frac{\cos x}{x}$; $y(\pi) = 0$, x > 0.
- 12. Solve: $y' = \frac{2x}{y+x^2y}$; y(0) = -2.
- 13. Solve: y'' 2y' 3y = 0; y(0) = 2, y'(0) = 2.
- 14. Find the general solution for the differential equation: $y'' + 4y = e^{3x}$.
- 15. Find the general solution for the differential equation: $y'' 3y' = \sin 2x$.
- 16. Find three positive numbers wh<mark>ose sum is 100 and who</mark>se product is a maximum.
- 17. Find the local maximum and minimum values of the function $f(x, y) = y^3 + 3x^2y 6x^2 6y^2 + 2$.
- 18. If $\mathbf{F}(x,y) = 2x\cos y \mathbf{i} x^2 \sin y \mathbf{j}$, find f such that $\nabla \mathbf{f} = \mathbf{F}$.
- 19. Find the equation of the plane though the point (0,0,0) orthogonal to the vector $\mathbf{v} = \mathbf{i} 2\mathbf{j} + 5\mathbf{k}$.
- 20. Find the volume of the region bounded by the paraboloid $z = x^2 + y^2$ and below the triangle enclosed by the lines y = x, x = 0, and x + y = 2 in the xy plane.

USC International Accelerator Program

Answers:

1. 1

2.
$$\frac{3}{2}$$

3. $\ln|x| + arctanx + C$

4. $x \ln x - x + C$

$$5. \ \frac{1}{2} \left(arcsinx + x\sqrt{1-x^2} \right) + C$$

6. Radius = 1; Interval [2, 4)

7.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

8.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+2}}{(2n+1)!} = x^2 - \frac{x^6}{3!} + \frac{x^{10}}{5!} - \frac{x^{14}}{7!} + \dots; R = 1$$

9. $y' = arctan2x + \frac{2x}{1+4x^2}$

10.
$$y' = 4(x^2 + x^3)^3(2x + 3x^2)$$

$$11. \ y(x) = \frac{\sin x}{x^2}$$

12.
$$y(x) = -(2(\ln(1+x^2)+2))^{\frac{1}{2}}$$

13. $y(x) = e^{-x} + e^{3x}$

13.
$$y(x) = e^{-x} + e^{3x}$$

14.
$$y(x) = C_1 Sin2x + C_2 Cos2x + \left(\frac{1}{13}\right) e^{3x}$$

15.
$$y(x) = C_1 + C_2 e^{3x} - \left(\frac{1}{13}\right) Sin2x + \left(\frac{3}{26}\right) Cos2x$$

$$16.\,\frac{100}{3},\frac{100}{3},\frac{100}{3}$$

17. Local maximum f(0,0) = 2; local minimum f(0,4) = -30

$$18. f(x,y) = x^2 cos y$$

19.
$$x - 2y + 5z = 0$$

20.
$$\frac{4}{3}$$
 cubic units

Score	Comment -
Between 16 and 20 correct	You have demonstrated the minimum proficiency necessary to satisfy the prerequisites for select USC Engineering programs.
Less than 16 correct	C V C C C C C C C C C C C C C C C C C C
	You have not demonstrated the minimum proficiency necessary to satisfy the prerequisites required for select USC Engineering programs. You must not check the box on the application in the

ite Matalle dothicie Dresylaration