Background

- Meningiomas account for ~1/3 of all primary CNS tumors
- Estimated 29,000 new cases in the US annually
- Increasing grade (I-III) has a correlation with worsening prognosis
- Surgical resection is considered the gold standard for treatment in symptomatic individuals regardless of grade
- Radiotherapy is commonly utilized with surgery (II & III)
- The basis of this study was to assess patient outcomes by comparing symptoms preoperatively and their resolution postoperatively. Additionally, weather therapy/treatments should be considered by grade.

Methods

- Meningioma patients between 1/1/2007 and 12/31/2016 N=197
- Spinal meningioma & incomplete records excluded
- Stratification by Grade N=178

Grade I
- N=135

Grade II
- N=36

Grade III
- N=7

Symptoms Pre-Op vs. Post-Op

The most common symptoms across all grades were headache, seizure, gait disturbance and limb weakness. Grade I patients experienced statistically significant symptom improvement postoperatively for all noted symptoms. Headaches decreased 25% (p<0.0001), seizures 17.6% (p=0.0002), gait disturbances 10% (p=.03), and limb weakness 17% (p=0.0019). Interestingly, besides improvement in post-operative headache (18%), Grade II patients had worsening post-operative symptoms: seizures (13%), gait disturbances (7%), and limb weakness (4%). Grade III patients experienced symptom improvement in headaches (15%), seizures (29%) and limb weakness (43%) but saw no change in gait disturbances (remained 29%). These data suggest careful consideration regarding surgical resection for symptomatic meningioma patients, most specifically those with grade II lesions as surgery presented as a major morbidity for these patients. Further expansion on these data could help formulate prognostic stratification for meningioma resections to assists physicians in determining the best therapy for optimal patient outcomes.

Demographics Stratified by Grade

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Grade I</th>
<th>Grade II</th>
<th>Grade III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>20%</td>
<td>25%</td>
<td>1%</td>
</tr>
<tr>
<td>White</td>
<td>80%</td>
<td>75%</td>
<td>85%</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>48%</td>
<td>50%</td>
<td>57%</td>
</tr>
<tr>
<td>Female</td>
<td>52%</td>
<td>50%</td>
<td>43%</td>
</tr>
<tr>
<td>Mean BMi</td>
<td>30.0</td>
<td>27.7</td>
<td>24.6</td>
</tr>
</tbody>
</table>

Figure 1. A large, aggressive, hypervascular meningioma of the anterior falx

Figure 2. Methods. Demographic (age, race, gender, BMI) and clinicopathologic data were collected to include treatments, recurrences, imaging, and outcomes to date.

Acknowledgments

Special thanks you to my faculty advisor Dr. Christine Schammel for her guidance and expertise. Also thank you to my research partners Santiago Teran and Noah Schammel. The successes of this project were made possible through their commitment and efforts.

References: