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Abstract: Damage progression tests were performed in the NASA Glenn Spiral Bevel 
Gear Fatigue Rig. Six gear sets with varying levels of tooth damage were tested, and 
vibration-based gear condition indicators, amount of debris generated, and oil 
temperatures were measured. The damage state was documented with photographs taken 
at inspection intervals throughout the test and was quantified with a numerical continuous 
damage factor. Condition indicator performance was first assessed with traditional 
methods, and then data-mining methods in the form of a clustering analysis were applied 
to the operational data and condition indicator data. This analysis was then fed into a 
decision tree model to predict the gear damage state. Results indicate gear health state 
can be determined with minimum knowledge of the dataset.  
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Background: Power train health is a critical part of a rotorcraft health management 
system since no other air vehicle relies on the propulsion system for propulsion, lift, and 
maneuverability through a transmission with critical single-load paths. Many rotorcraft 
are equipped with health and usage monitoring systems (HUMS) that monitor vibration 
signatures, referred to as condition indicators (CI), to detect transmission dynamic 
mechanical component health and also monitor operating conditions to track component 
usage.  
 
Many factors can affect a condition indicator’s ability to respond to tooth damage 
through vibration response. The response of the CI to a specific fault can depend on its 
method of calculation, operational conditions, and type of failure mode. The fault type 
(gear or pinion), mode, class, degree, magnitude, how it initiates and progresses, how it 
changes the signature response at the mesh, and how it interacts with the rig and gear 
design all affect the measured vibration response. Assessing whether a change in any 
particular condition indicator response is due solely to a change in damage level, a 
change in operating condition, or some combination of both can be a challenge.  
 
The objective of this paper is to assess the relationships between gear condition indicator 
response, operational conditions, and gear health state by applying data-mining 
techniques to data collected in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig 
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during initiation and progression of damage to the gear and pinion teeth. Six gear sets, 
with varying types and amounts of damage, were used for this analysis. Relationships 
were defined, and patterns were extracted from gear condition indicators, pinion 
condition indicators, operational parameters, and a damage factor. The operational 
parameters included amount of generated debris and oil temperatures.  
 
The data-mining analysis stepped through the process from data reduction, assessment of 
the condition indicators with traditional methods, and application of a clustering analysis 
to decision tree modeling. Results evaluated the effectiveness and influence of each CI 
with respect to operational conditions and fault mode.  
 
Test Rig and Instrumentation Description: Tests were performed in the Spiral Bevel 
Gear Fatigue Test Rig at NASA Glenn Research Center. A detailed description of this 
test facility is provided in References [1] and [2]. The Spiral Bevel Gear Fatigue Test Rig 
is illustrated with a cross sectional view in Figure 1. The facility operates as a closed-loop 
torque regenerative system, where the drive motor only needs enough power to overcome 
the losses within the system. The load is locked into the loop via a split shaft and a thrust 
piston that forces a floating helical gear axially into mesh. The 100-hp drive motor 
supplies the test rig with rotation and overcomes loop losses via v-belts to the axially 
stationary helical gear.  
 
Two sets of spiral bevel gears, referenced as left and right when facing the gearboxes, are 
installed in the gearbox. The concave side of the pinion is always in contact with the 
convex side of the gear on both the left and right side. However, the pinion drives the 
gear in the normal speed reducer mode on the left side while the pinion acts as a speed 
increaser on the right side. 
 
 

 
Figure 1: Spiral Bevel Gear Fatigue Test Rig. 
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Both gear sets are lubricated with oil jets pumped from an oil reservoir using qualified 
helicopter transmission oil. The oil drains from the gearbox, flows through an inductance 
type in-line oil debris sensor, then flows past a magnetic chip detector. A strainer and a 3-
µm filter capture any debris before returning to the gearbox.  
 

Facility operational parameters, torque, speed, and gearbox oil temperatures were 

collected every minute with a facility data acquisition (DAQ) system. A commercially 

available non-contact rotary transformer shaft-mounted torque sensor was used to 

measure torque during testing. Oil inlet, outlet, and fling-off temperatures were measured 

with thermocouples. The fling-off temperature is measured inside the gearbox where the 

oil is flung off of the gears at the out-of-mesh position.  
 
Vibration, oil debris, torque, and speed data were also collected once every minute with 
the NASA Glenn research DAQ system, the Mechanical Diagnostic System Software 
(MDSS). The NASA MDSS system acquires, digitizes, and processes the tachometer 
pulses and accelerometer data. Torque and oil debris sensor data were also recorded 
every minute with this system. A new experiment is set up when a new gear set is 
installed on the left side of the test rig. 
 
Oil debris data were collected from an inductance-type oil debris sensor and a magnetic 
chip detector. The inductance-type oil debris sensor was used to measure the ferrous 
debris generated during fatigue damage to the gear teeth. The MDSS records the number 
of particles and their approximate size based on user-defined particle size ranges or bins. 
Based on the bin configuration, the average particle size for each bin is used to calculate 
the cumulative mass by assuming the average particle size as the diameter that is 
spherical in shape and multiplying it by the density of steel. Detailed analysis of the oil 
debris data generated during testing can be found in Reference [3]. 
 
Vibration data were measured with accelerometers installed on the right and left sides of 
the test rig pinion support housings, radially and vertically with respect to the pinion, as 
shown in Figure 2. Facing the gearboxes, the left gear set (pinion and gear) and right gear 
set (pinion and gear) accelerometers were referenced as such in the MDSS system. Speed  
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Figure 2: Location of MDSS Accelerometers.  
was measured with optical tachometers mounted on the left pinion shaft and left gear 
shaft to produce a separate once-per-revolution tachometer pulse for the pinion and gears. 
Additional details on the vibration data collected during these tests can be found in 
Reference [4]. 
 
Gear Design and Test Procedures: The gears tested were designed to represent a 
rotorcraft drive system gear mesh. To minimize scuffing and force a failure on the left 
side gear set, several gear sets were super-finished, a process applied to the gears that 
improves gear surface and extends gear life, and installed on the right side of the gearbox 
[5]. Surface roughness was improved by a factor of 4 on average after applying this 
process. The gear set on the right side was unchanged and undamaged during the six gear 
tests. 

 
The gear sets were designed to an estimated service life to ensure rapid fatigue failures, 
within rig operating conditions, to limit overall test time. The design code used for these 
gear sets estimated the fatigue life to be between 100 to 200 hr at operating conditions. 
Gear sets were ran at a gear speed of 3500 rpm. A speed sweep was performed that 
determined the run speed was free of rig resonances. At the start of each test, a break-in 
was performed for a minimum of 1 hr at 4000 in-lb gear torque/3500 rpm gear speed. For 
some tests, the gear torque was increased to 8000 in-lb for the remainder of the test. For 
some tests, the rig ran a minimum of 1 hr at 4000 in-lb gear torque, a minimum of 1 hr at 
6000 in-lb gear torque, then at 8000 in-lb gear torque for the remainder of the test.  
 
Gear Set Failure Modes: The planned failure mode to be investigated was surface or 
contact fatigue that occurs when small pieces of material break off from the gear surface 
because of “exceeding the endurance limit of the material,” producing pits on the 
contacting surfaces due to “surface and subsurface stressors [6].” The failure mode for 
these tests, defined by American Gear Manufacturers Association (AGMA) standards, 
was defined by AGMA class (contact fatigue), general mode (macro pitting), and degree 
(progressive) in which pits are observed in different shapes and sizes greater than 0.04 in 
diameter [7]. Gear sets were tested until progressive macropitting was observed on a 
significant area of two or more gear or pinion tooth surfaces. An unanticipated failure 
mode, scuffing, was also observed on some teeth during testing. Scuffing is a failure 
mode that causes transfer of metal from one tooth surface to another without any 
substantial debris generation. 

 
Summary of Gears Tested: A summary of the failure modes observed on the gear teeth 
between inspections, are shown for each test in Table 1. Each is shaded based on levels of 
damage; the damage scale is shown with Table 1. The test number is shown in the first 
row of each test inspection table. Comparable failure modes are paired together for 
further analysis. For example, for tests L4545R5050 and L1515R5050, the left pinion 
was damaged at the end of the test. Columns are labeled as inspection number, 
timeframe, run-time between inspection intervals in minutes and in hours. Components 
are identified by gear left (GL) and pinion left (PL). Photographs of damaged teeth, taken 
during inspection intervals, can be viewed in References [3 and 4]. An example of the 
inspection photos for test L4545R5050 are shown in Figure 3. 
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Table 1: Failure Modes Observed During Tests. 
 

Inspection 

no. 

Timeframe 

(min) 

Run-time between 

inspections 

GL PL 

 

 min hr  

L4545R5050  Damage Scale 

1 1 to 76 76 1.3     

 

No damage 

2 76 to 324 248 4.1     

 

Micropitting or edge wear 

3 324 to 1370 1046 17.4     

 

Scuffing 

4 1370 to 2120 750 12.5   1 

 

1 tooth macropitting 

5 2120 to 2403 283 4.7   2 

 

2 or more teeth macropitting 

6 2403 to 2833 430 7.2   2 

  L1515R5050 

  1 1 to 63 63 1.1     

  2 63 to 705 642 10.7   1 

  3 705 to 1022 317 5.3   2 

  4 1022 to 1291 269 4.5   2 

  L3030R5050 

  1 1 to 70 70 1.2     

  2 70 to 1784 1714 28.6   Micro 

  3 1784 to 3270 1486 24.8   Micro 

  4 3270 to 4633 1363 22.7 1 Micro 

  5 4633 to 5359 726 12.1 1 Micro 

  6 5359 to 5962 603 10.1 2 1 

  7 5962 to 6037 75 1.3 2 1 

  L3535R5050 

  1 1 to 178 178 3.0     

  2 178 to 636 458 7.6     

  3 636 to 6276 5640 94.0     

  4 6276 to 6818 542 9.0 2   

  5 6818 to 7617 799 13.3 2   

  6 7617 to 9358 1741 29.0 2 1 

  7 9358 to 9578 220 3.7 2 1 

  L2020R5050 

  1 1 to 70 70 1.2     

  2 70 to 217 147 2.5 s-all s-all, pit 

  L4040R5050 

  1 1 to 63 63 1.1     

  2 63 to 370 307 5.1 s-all s-all 
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Figure 3: Tests L4545R5050 Tooth Damage Photographs for Left Pinion. 

Condition Indicators and Operational Data: Table 2 summarizes run-time, average 

torque, and average left oil inlet temperature (LOI) of the gear sets tested. Table 3 lists 

the data available for analysis.  
 
Vibration data were collected at sample rates that provided sufficient vibration data for 
calculating time-synchronous-averaged data (TSA). TSA refers to techniques for 
averaging vibration signals over several revolutions of the shaft, in the time domain, to 
improve the signal-to-noise ratio [8]. From the TSA data, several gear condition 
indicators were calculated for this analysis: figure of merit 4 (FM4), root mean square 
(RMS), sideband index (SI) and M8A [8]. FM4, RMS and M8A are common time-
domain, statistically based, vibration algorithms used in commercial HUMS [9].  
 
 

Table 2: Summary of Operational Parameters. 
 

Gear set Minutes Hours Average torque  

(in-lb) 

Average LOI  

(°F) 

L4545R5050 2120 35 6640 250 

L1515R5050 705 12 7500 250 

L3030R5050 4566 76 7882 250 

L3535R5050 6818 114 7782 190 

L2020R5050 217 4 6638 250 

L4040R5050 370 6 6815 190 

 

 

Table 3: Data Available for Analysis. 
 

Operational Parameters: Left Gear Box Only 

Run Time (min) 

Torque (in-lb) 

Left oil inlet temperature (LOI) 

Left fling-off temperature (LFO) 

Left oil outlet temperature (LOO) 

Condition Indicators for Gear (GL) and Pinion (PL) 

Debris (mg) 

GL RMS CI 

PL RMS CI 

GL FM4 CI 

PL FM4 CI 

GL SI1 CI 

PL SI1 CI 

GL SI3 CI 

PL SI3 CI 

GL M8A CI 

PL M8A CI 

Damage state 

PL or GL damage state/scale  
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The SI is another CI used to indicate gear tooth damage [10]. SI is a frequency-domain-
based CI. The CI value is an average value of sideband amplitudes about the fundamental 
gear mesh (GM) frequency. All gears generate a dominant GM frequency in the vibration 
signature due to each tooth impacting the gear it is driving as the pinion and gear mesh. 
One (SI1) and three (SI3) sidebands were included in the calculation. Since the gear set 
on the right side was unchanged and undamaged during the six gear tests, only CIs for the 
GL and GP were evaluated.  

 
Prior to performing a data-mining analysis, an initial data preparation step is used to 
determine if the number of variables provide redundant information and can be reduced. 
One approach is to apply a correlation analysis to the variables, to determine if any had 
strong linear correlations and could possibly be removed. Pearson Correlation 
Coefficients r were calculated for the variables [11]. A correlation matrix was generated 

for each test, and those with values of r  0.8 were assessed for removal.  
 
Since correlation analysis requires continuous values, damage state was quantified as a 
“damage factor,” with a numerical continuous damage value assigned to the damage 
scale. Per the damage scale in Table 1, no damage is indicated by 0; micropitting, by 
0.25; scuffing, by 0.25; macropitting of one tooth, by 0.5; and macropitting of two or 
more teeth, by 1. During intervals where the state transitioned, a sloped line was 
generated from start to end of the inspection interval.  
 
Strong correlations were observed between FM4 and M8A for both the gear and pinion, 
SI1 and SI3 for just the pinion, debris and run-time, and all three oil temperatures. This 
indicated that these variables provided similar information and could be removed from 
the analysis. Based on this analysis, M8A, left oil outlet (LOO) temperature, and run-time 
were removed from the model. Torque was also removed because torque had little 
variation during testing. 

 
Representative plots generated during every test for FM4, RMS, and SI3 for the GL and 
PL, pinion and gear torque, and left oil inlet (LOI), fling-off (LFO) and outlet 
temperatures (LFO), are shown for test L4545R5050 in Figure 4. Plots for the other five 
tests can be viewed in Reference [4]. Note that the triangles on the x-axis for all the plots 
correlate to inspections and are color coded per observed damage during inspections. 
Mass generated from the oil debris accumulated during each test was measured and is 
plotted in Figure 5. The rate and amount of debris mass generated varied for each test. 
Additional information on the oil debris data can be found in Reference [3]. 
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Figure 4: Plots of Operational and Condition Indicators During Test L4545R5050. 

(a) Left-side oil temperatures; (b) Gear and pinion torque; (c) Left pinion (PL) and left 

gear (GL) FM4; (d) PL and GL RMS; (e) PL and GL SI1; (f) PL and GL SI3.  
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Figure 5: Oil Debris Accumulated Mass Generated During Each Test. 

 
Condition Indicator Performance: Prior to applying data mining to the dataset, the 
performance of the condition indicators were assessed with traditional methods using 
discrete thresholds. The true positive rate (TPR) detection, false positive rate (FPR) false 
alarms and accuracy of the condition indicators were calculated for each CI. Table 4 steps 
through the process for test L4545R5050. The calculations are limited to the damage 
mode of macropitting on two or more teeth. The no-damage state data used is in the run 
time, listed from 1 to 1370, in Table 1. The damage state data used is in the time frame 
listed in black from 2120 to 2833. The data within the dark gray region will not be used 
since this is not the damage mode of interest and this region was also the transition 
region, when the damage state went from white to black. In Table 4, the first column 
identifies the number of cases, or data points, available within each inspection interval for 
each gear state. The second column identifies the observed state at that inspection. For 
this test, only the left pinion teeth had damage. The next four columns identify the 
number of times the CI values exceeded the thresholds within the inspection interval. The 
black arrows shown where the data came from to make the calculations for PL RMS.  

 
Reviewing Table 4, the only CI that achieved a detection rate of >90 percent at a 
threshold of 4.5 was FM4. However, the false-alarm rate was 0 percent for all four CIs. 
That is why the accuracy is >70 percent for each CI. Although the detection rate was 
poor, the false alarm rate was good. The detection rate and false alarm rate are equally 
weighted for these calculations.  
 
Table 5 lists the TPR, FPR, and accuracy of condition indicators RMS, FM4, SI1, and 
SI3. The false positive rate was <0.10 for all CIs for all tests. CI damage detection and 
accuracy rate was >0.90 for test L4545R5050 (PL FM4), test L3535R5050 (PL SI1 and 
PL SI3), and test L2020R5050 (PL RMS and GL RMS). CI damage detection rate and 
accuracy rate was >0.75 for test L3030R5050 (PL SI1, PL SI3, and GL FM4), test 
L3535R5050 (GL FM4), and test L2020R5050 (PL SI1). Reviewing Table 5, the CI with 
the highest detection rate and lowest false alarm rates across all tests was pinion SI1.  
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Table 4.—Calculating TPR, FPR, and Accuracy for Rig Test L4545R5050. 
 

L4545R5050 Thresholds 3.5 4.5 0.5 0.35 

Cases Pinion Left CI PL RMS CI PL FM4 CI PL SI1 CI PL SI3 CI 

76 No damage 0 0 0 0 

248 No damage 4 0 0 0 

1046 No damage 0 0 0 0 

750  0 0 0 0 

283 >2 teeth macropitting 3 279 0 0 

430 >2 teeth macropitting 182 430 215 206 

      

  PL RMS CI PL FM4 CI PL SI1 CI PL SI3 CI 

a True positive (TP) 185 709 215 206 

a+c Number of faults 713 713 713 713 

a/(a+c) True positive rate (TPR) 0.26 0.99 0.30 0.29 

b False positive (FP) 4 0 0 0 

b+d Number of healthy 1370 1370 1370 1370 

b/(b+d) False positive rate (FPR) 0.00 0.00 0.00 0.00 

d True negative (TN) 1366 1370 1370 1370 

a+d  1551 2079 1585 1576 

a+b+c+d Total number of cases 2083 2083 2083 2083 

(a+d)/(a+b+c+d) Accuracy 0.74 1.00 0.76 0.76 

 

Table 5.—TPR, FPR, and Accuracy for Rig Tests. 
 

Test  PL RMS CI PL FM4 CI PL SI1 CI PL SI3 CI GL RMS CI GL FM4 CI GL SI1 CI GL SI3 CI 

L4545R5050 TPR 0.26 0.99 0.30 0.29     

FPR 0.00 0.00 0.00 0.00     

Accuracy 0.74 1.00 0.76 0.76     

L1515R5050 TPR 0.00 0.43 0.00 0.00     

FPR 0.00 0.00 0.00 0.00     

Accuracy 0.10 0.49 0.10 0.10     

L3030R5050 TPR 0.35 0.00 0.87 0.83 0.05 0.76 0.00 0.00 

FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Accuracy 0.41 0.09 0.88 0.85 0.14 0.78 0.09 0.09 

L3535R5050 TPR 0.08 0.00 0.97 0.99 0.08 0.78 0.05 0.00 

FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Accuracy 0.72 0.69 0.99 0.99 0.72 0.93 0.71 0.69 

L2020R5050 TPR 0.97 0.00 0.86 0.00 0.97 0.00 0.00 0.00 

FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Accuracy 0.98 0.32 0.91 0.32 0.98 0.32 0.32 0.32 

L4040R5050 TPR 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00 

FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Accuracy 0.20 0.17 0.17 0.17 0.20 0.17 0.17 0.17 

 
Data mining analysis: Data mining is a process that extracts patterns, correlations, and 
other useful information from datasets using methods taken from statistics and machine 
learning [12]. The results are often used to make predictions about future outcomes or 
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responses. The approach can be supervised or unsupervised. Supervised learning uses 
existing labeled data as inputs and responses to build, train, and test the model. In this 
type of learning, the inputs into the model are seen as a pair made up of the existing data 
and a target output value. Unsupervised learning does not require that the data be labeled 
and have a target value [13]. The objective of this data mining analysis is to build a 
model to predict the damage state by identifying informative parameters and finding 
latent relationships in the data. The inputs to the model are listed in Table 3.  

 
The initial approach was to apply a clustering analysis, where groups of similar data are 
separated into clusters based on some measure of similarity within the cluster, to find a 
new pattern within this dataset. The expectation was that the response of the inputs 
during different gear health states would respond in a similar fashion; that is, different 
clusters could be related to the varying gear health states.  
 
The data were separated into five clusters using the k-means algorithm, where k identifies 
the number of clusters. The k-means clustering is performed by minimizing the sum-of-
squares distances between data and the corresponding cluster centroid. Data with the 
same features are grouped into the same cluster, with the minimum amount of spread 
within the cluster and no overlap between clusters. The clustering is performed by 
minimizing the sum of the squared Euclidean distance between the data and its cluster 
centroid. 

 
One of the disadvantages of the k-means algorithm is that k is not given, and predicting 
the optimal number of clusters can be difficult. When choosing the number of clusters, 
there needs to be balance between the accuracy of a cluster and the information gained 
from the addition of that cluster. One method is to plot and look at the variance of using 
different cluster numbers. This was done for the six tests. In Figure 6, a representative 
plot of the “within sum of squares value” for 10 clusters is shown for test L2020R5050. 
The within sum of squares value is the sum of squared distances of each data point in the 
cluster to the cluster mean. The first few clusters give the highest amount of information 
which is shown in the plot. Five was chosen for the number of clusters because at this 
point the information gained had leveled out. 

 
Figure 6: Within Sum of Squares Plot for Clusters. 

The k-means type of clustering algorithm separates the data into a definite cluster, with 
no overlap, based on their location and distance with respect to other data points. The k-
means clustering algorithm employs an iterative process, and each iteration contains two 
steps. The first step is to randomly generate the initial means of the clusters. Then, in step 
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2, the clusters are formed by associating the mean of each observation with nearest 
cluster mean. After this, in step 3, the centroid of each cluster becomes the new cluster 
mean. Steps 2 and 3 are then repeated until no further change in the clusters occurs [13]. 
For the k-means analysis, the data were split into a testing and training set. The data were 
separated sequentially because of the time dependency of the dataset, and 1/3 was set 
aside for testing and 2/3 was used for training the model.  
 
The k-means algorithm is based on means, and the inputs can be ranked in order of 
importance relative to a specific target, which in this analysis is the gear damage state. 
The k-means analysis was applied to the data for the six tests [14]. Tables 6 through 8 are 
tables of the clustered data, from the test dataset, with inputs ranked in order of 
importance. The size indicates the number of points in each cluster. Their importance is 
quantified from 0 to 1 in the first column, with 1 being the most important input. The 
mean value of the inputs within each cluster are also listed. This information illustrates 
the transitions between clusters and the means of the parameters. 
 
For the two tests with only pinion damage (L4545 and L1515), debris and pinion FM4 

were the best predictors, defined by predictor performance values 0.8 that were common 
to both tests. This is shown in Table 6. For the two tests with pinion and gear damage 
(L3030 and L3535), debris, gear FM4, and gear and pinion SI1 and SI3 were the best 
predictors of damage. This is shown in Table 7.  

 

Table 6: Tests L4545R5050 and L1515R5050 Clusters. 
 

L4545R5050 L1515R5050 

 Cluster  Cluster 

5 3 1 2 4 5 2 1 4 3 

Size 37.8%  

(356) 

32.1% 

(303) 

13.1%  

(124) 

13.1%  

(124) 

3.8%  

(36) 

Size 64.1%  

(261) 

20.9% 

(85) 

12.0% 

(49) 

2.7% 

(11) 

0.2% 

(1) 

Inputs 

1.00 

Debris  

(mg)  

4.20 

Debris  

(mg)  

7.76 

Debris  

(mg)  

3.70 

Debris  

(mg)  

25.63 

Debris  

(mg) 

17.78 

Inputs 

1.00 

Debris  

(mg) 

7.66 

Debris  

(mg) 

29.04 

Debris  

(mg) 

6.72 

Debris  

(mg) 

6.82 

Debris  

(mg) 

5.87 

1.00 
LFO (°F) 

271.60 

LFO (°F) 

283.36 

LFO (°F) 

251.53 

LFO (°F) 

267.74 

LFO (°F) 

252.31 
0.88 

GL FM4 CI 

2.69 

GL FM4 CI 

2.67 

GL FM4 CI 

2.86 

GL FM4 CI 

3.02 

GL FM4 CI 

8.61 

1.00 
PL SI1 CI 

0.19 

PL SI1 CI 

0.22 

PL SI1 CI 

0.16 

PL SI1 CI 

0.53 

PL SI1 CI 

0.33 
0.86 

PL FM4 CI 

2.92 

PL FM4 CI 

5.29 

PL FM4 CI 

3.24 

PL FM4 CI 

3.09 

PL FM4 CI 

3.68 

1.00 
PL SI3 CI 

0.13 

PL SI3 CI 

0.18 

PL SI3 CI 

0.11  

PL SI3 CI 

0.37  

PL SI3 CI 

0.22  
0.67 

GL SI3 CI 

0.18 

GL SI3 CI 

0.18 

GL SI3 CI 

0.14 

GL SI3 CI 

0.05 

GL SI3 CI 

0.03 

0.96 
PL FM4 CI 

2.88 

PL FM4 CI 

3.57 

PL FM4 CI 

2.97 

PL FM4 CI 

6.49 

PL FM4 CI 

5.24 
0.65 

LFO (°F) 

276.37 

LFO (°F) 

272.85 

LFO (°F) 

198.95 

LFO (°F) 

157.72 

LFO (°F) 

276.20 

0.94 
GL SI3 CI 

0.16 

GL SI3 CI 

0.11 

GL SI3 CI 

0.11 

GL SI3 CI 

0.17 

GL SI3 CI 

0.13 
0.63 

PL SI3 CI 

0.17 

PL SI3 CI 

0.22 

PL SI3 CI 

0.13 

PL SI3 CI 

0.09 

PL SI3 CI 

0.03 

0.86 
LOI (°F) 

256.55 

LOI (°F) 

254.45 

LOI (°F) 

240.36 

LOI (°F) 

252.67 

LOI (°F) 

239.06 
0.60 

LOI (°F) 

255.61 

LOI (°F) 

251.66 

LOI (°F) 

172.48 

LOI (°F) 

133.45 

LOI (°F) 

257.00 

0.85 
PL RMS CI 

2.56 

PL RMS CI 

3.27  

PL RMS CI 

2.55 

PL RMS CI 

3.37 

PL RMS CI 

3.13 
0.41 

PL RMS CI 

1.79 

PL RMS CI 

2.00 

PL RMS CI 

1.32 

PL RMS CI 

2.35 

PL RMS CI 

0.77 

0.77 
GL SI1 CI 

0.10 

GL SI1 CI 

0.13 

GL SI1 CI 

0.13 

GL SI1 CI 

0.18 

GL SI1 CI 

0.18 
0.40 

PL SI1 CI 

0.34 

PL SI1 CI 

0.37 

PL SI1 CI 

0.25 

PL SI1 CI 

0.19 

PL SI1 CI 

0.02 

0.65 
GL RMS CI 

2.62 

GL RMS CI 

3.23 

GL RMS CI 

2.58 

GL RMS CI 

2.92 

GL RMS CI 

2.85 
0.35 

GL RMS CI 

1.83 

GL RMS CI 

1.91 

GL RMS CI 

1.40 

GL RMS CI 

2.39 

GL RMS CI 

2.31 

0.45 
GL FM4 CI 

2.85 

GL FM4 CI 

2.99 

GL FM4 CI 

2.87 

GL FM4 CI 

2.63 

GL FM4 CI 

2.77  
0.31 

GL SI1 CI 

0.19 

GL SI1 CI 

0.20 

GL SI1 CI 

0.24 

GL SI1 CI 

0.09 

GL SI1 CI 

0.02 
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Table 7: Tests L3030R5050 and L3535R5050 Clusters. 
 

L3030R5050 L3535R5050 

Cluster Cluster 

 5 3 1 2 4  5 2 1 4 3 

Size 67.4% 

(1356) 

20.2%  

(407) 

6.5%  

(131) 

4.6%  

(92) 

1.2%  

(25) 

Size 36.8% 

 (1171) 

22.9% 

(729) 

16.6%  

(529) 

13.1% 

(416) 

10.6% 

(337) 

Inputs 

1.00 

Debris  

(mg)  

5.12 

Debris  

(mg)  

14.91 

Debris  

(mg)  

3.51 

Debris  

(mg)  

9.11 

Debris  

(mg) 

39.01 

Inputs 

1.00 

Debris  

(mg) 

7.06 

Debris  

(mg) 

15.17 

Debris  

(mg) 

51.26 

Debris  

(mg) 

2.93 

Debris  

(mg) 

35.96 

1.00 GL SI3 CI 

0.15 

GL SI3 CI 

0.18 

GL SI3 CI 

0.12 

GL SI3 CI 

0.14 

GL SI3 CI 

0.12 

1.00 GL FM4 CI 

2.69 

GL FM4 CI 

2.69 

GL FM4 CI 

5.92 

GL FM4 CI 

2.85 

GL FM4 CI 

4.77 

1.00 LFO (°F) 

279.03 

LFO (°F) 

284.78 

LFO (°F) 

255.13 

LFO (°F) 

257.09 

LFO (°F) 

179.37 

1.00 GL RMS CI 

2.01 

GL RMS CI 

2.08 

GL RMS CI 

3.28 

GL RMS CI 

1.96 

GL RMS CI 

2.67 

1.00 LOI (°F) 

253.93 

LOI (°F) 

254.59 

LOI (°F) 

240.12 

LOI (°F) 

235.89 

LOI (°F) 

140.34 

1.00 GL SI1 CI 

0.21 

GL SI1 CI 

0.35 

GL SI1 CI 

0.39 

GL SI1 CI 

0.13 

GL SI1 CI 

0.38 

1.00 PL SI1 CI 

0.28 

PL SI1 CI 

0.48 

PL SI1 CI 

0.19 

PL SI1 CI 

0.43 

PL SI1 CI 

0.41 

1.00 GL SI3 CI 

0.14 

GL SI3 CI 

0.21 

GL SI3 CI 

0.25 

GL SI3 CI 

0.12 

GL SI3 CI 

0.25 

1.00 PL SI3 CI 

0.19 

PL SI3 CI 

0.34 

PL SI3 CI 

0.14 

PL SI3 CI 

0.32 

PL SI3 CI 

0.28 

1.00 PL FM4 CI 

2.94 

PL FM4 CI 

3.21 

PL FM4 CI 

3.43 

PL FM4 CI 

2.94 

PL FM4 CI 

3.39 

0.99 GL SI1 CI 

0.12 

GL SI1 CI 

0.18 

GL SI1 CI 

0.17 

GL SI1 CI 

0.22 

GL SI1 CI 

0.18 

1.00 PL RMS CI 

2.03 

PL RMS CI 

2.22 

PL RMS CI 

3.28 

PL RMS CI 

1.90 

PL RMS CI 

2.77 

0.96 GL FM4 CI 

2.92 

GL FM4 CI 

4.35 

GL FM4 CI 

2.92 

GL FM4 CI 

3.60 

GL FM4 CI 

6.96 

1.00 PL SI1 CI 

0.27 

PL SI1 CI 

0.42 

PL SI1 CI 

0.68 

PL SI1 CI 

0.12 

PL SI1 CI 

0.57 

0.44 PL FM4 CI 

2.77 

PL FM4 CI 

2.50 

PL FM4 CI 

3.04 

PL FM4 CI 

2.52 

PL FM4 CI 

2.55 

1.00 PL SI3 CI 

0.15 

PL SI3 CI 

0.31 

PL SI3 CI 

0.48 

PL SI3 CI 

0.08 

PL SI3 CI 

0.41 

0.41 GL RMS CI 

3.39 

GL RMS CI 

3.23 

GL RMS CI 

3.00 

GL RMS CI 

3.02 

GL RMS CI 

3.02 

0.36 LFO (°F) 

233.20 

LFO (°F) 

236.53 

LFO (°F) 

238.47 

LFO (°F) 

222.12 

LFO (°F) 

235.00 

0.36 PL RMS CI 

3.42 

PL RMS CI 

3.48 

PL RMS CI 

3.00 

PL RMS CI 

3.25 

PL RMS CI 

3.40 

0.12 LOI (°F) 

189.13 

LOI (°F) 

189.17 

LOI (°F) 

189.80 

LOI (°F) 

184.67 

LOI (°F) 

189.64 

 

Table 8: Tests L2020R5050 and L4040R5050 Clusters. 
 

L2020R5050 L4040R5050 

Cluster Cluster 

 5 3 1 2 4  5 2 1 4 3 

Size 41.7%  

(30) 

22.2%  

(16) 

18.1%  

(13) 

9.7%  

(7) 

8.3%  

(6) 

Size 43.1%  

(53) 

39.8%  

(49) 

12.2%  

(15) 

4.1%  

(5) 

0.8%  

(1) 

Inputs 

1.00 

PL RMS CI 

6.32 

PL RMS CI 

2.04 

PL RMS CI 

4.28 

PL RMS CI 

2.71 

PL RMS CI 

5.83 

Inputs

1.00 

LFO (°F) 

232.99 

LFO (°F) 

220.78 

LFO (°F) 

198.04 

LFO (°F) 

184.71 

LFO (°F) 

158.17 

0.98 PL SI1 CI 

0.58 

PL SI1 CI 

0.21 

PL SI1 CI 

0.49 

PL SI1 CI 

0.20 

PL SI1 CI 

0.57 

0.96 LOI (°F) 

188.32 

LOI (°F) 

172.73 

LOI (°F) 

170.43 

LOI (°F) 

155.83 

LOI (°F) 

158.17 

0.98 GL RMS CI 

6.22 

GL RMS CI 

2.07 

GL RMS CI 

4.20 

GL RMS CI 

2.76 

GL RMS CI 

5.75 

0.93 PL SI1 CI 

0.33 

PL SI1 CI 

0.34 

PL SI1 CI 

0.14 

PL SI1 CI 

0.11 

PL SI1 CI 

0.18 

0.90 PL SI3 CI 

0.30 

PL SI3 CI 

0.10 

PL SI3 CI 

0.25 

PL SI3 CI 

0.10 

PL SI3 CI 

0.30 

0.74 PL SI3 CI 

0.18 

PL SI3 CI 

0.17 

PL SI3 CI 

0.11 

PL SI3 CI 

0.09 

PL SI3 CI 

0.11 

0.58 GL SI1 CI 

0.22 

GL SI1 CI 

0.02 

GL SI1 CI 

0.23 

GL SI1 CI 

0.04 

GL SI1 CI 

0.30 

0.74 GL SI1 CI 

0.11 

GL SI1 CI 

0.13 

GL SI1 CI 

0.29 

GL SI1 CI 

0.39 

GL SI1 CI 

0.10 

0.55 LOI (°F) 

255.39 

LOI (°F) 

247.64 

LOI (°F) 

242.46 

LOI (°F) 

234.09 

LOI (°F) 

253.68 

0.65 GL SI3 CI 

0.07 

GL SI3 CI 

0.07 

GL SI3 CI 

0.14 

GL SI3 CI 

0.17 

GL SI3 CI 

0.05 

0.37 LFO (°F) 

277.47 

LFO (°F) 

259.01 

LFO (°F) 

274.84 

LFO (°F) 

242.34 

LFO (°F) 

276.02 

0.50 PL RMS CI 

3.09 

PL RMS CI 

2.37 

PL RMS CI 

1.97 

PL RMS CI 

1.53 

PL RMS CI 

1.20 

0.32 GL SI3 CI 

0.10 

GL SI3 CI 

0.08 

GL SI3 CI 

0.10 

GL SI3 CI 

0.04 

GL SI3 CI 

0.20 

0.49 GL RMS CI 

3.10 

GL RMS CI 

2.38 

GL RMS CI 

2.00 

GL RMS CI 

1.60 

GL RMS CI 

1.29 

0.29 GL FM4 CI 

3.07 

GL FM4 CI 

2.90 

GL FM4 CI 

3.42 

GL FM4 CI 

2.90 

GL FM4 CI 

3.07 

0.49 Debris  

(mg)  

2.25 

Debris  

(mg)  

2.19 

Debris  

(mg)  

2.03 

Debris  

(mg)  

2.03 

Debris  

(mg) 

2.14 

0.12 PL FM4 CI 

2.96 

PL FM4 CI 

3.08 

PL FM4 CI 

2.81 

PL FM4 CI 

3.31 

PL FM4 CI 

3.20 

0.35 PL FM4 CI 

3.20 

PL FM4 CI 

2.79 

PL FM4 CI 

2.81 

PL FM4 CI 

2.68 

PL FM4 CI 

2.73 

0.05 Debris  

(mg)  

4.27 

Debris  

(mg)  

2.00 

Debris  

(mg)  

2.00 

Debris  

(mg)  

2.00 

Debris  

(mg) 

2.00 

0.17 GL FM4 CI 

3.35 

GL FM4 CI 

3.11 

GL FM4 CI 

3.16 

GL FM4 CI 

2.81 

GL FM4 CI 

2.72 
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For the tests with scuffing damage, L2020 had scuffing and pitting, while L4040 had 
scuffing only damage. For these two tests, the importance of debris as a predictor of tooth 
damage decreased, as shown in Table 8. For both tests, pinion SI1 was a good predictor. 
For the test with scuffing only, L4040, the fling-off oil temperature was an important 
predictor. This aligns with previous experimental work that has shown that a spike in 
fling-off temperature is a good predictor of scuffing damage and that debris is not a good 
predictor of scuffing damage [3, 4].  
 
To illustrate this further, tables were created that summarize the clusters and values 
associated with the best predictors across the damage state. Plots were also generated, for 
each test, that compare the damage factor during test progression to how those data were 
clustered. The tables and figures are combined and shown together in Figures 7 through 
9. The damage factor is the numerical continuous damage value assigned to the damage 
observed during inspections. Note that at rig starts, the clusters typically oscillate 
between two cluster groups. 
 
For the two tests with only pinion damage (L4545 and L1515), Figure 7 summarizes the 
clusters and values associated with the best predictors across the damage state. These 
results align well with the performance metrics calculated in Table 5. Cluster 2 was a 
good indicator for the damage state of two or more pinion teeth. 
 
For the two tests with pinion and gear damage (L3030 and L3535), Figure 8 summarizes 
the clusters and values associated with the best predictors across the damage state. These 
results also align well with the performance metrics calculated in Table 5. Cluster 3 was a 
good indicator for the two or more gear teeth damage state with combined pinion damage 
for test L3030. Cluster 2 and 5 were good indicators for the two or more gear teeth 
damage state with combined pinion damage for test L3030. 
 
In test L2020, the damage state can be divided into two states (no damage and 
scuffing/pitting). Figure 9 summarizes the clusters and mean cluster values associated 
with the best predictors across the damage states. Clusters 1 and 4 describe the state with 
no damage, and clusters 2, 3, and 5 describe the scuffing/pitting state. In test L4040, the 
damage state can be divided into two states (no damage and scuffing). Figure 10 
summarizes the clusters and mean cluster values associated with the best predictors 
across the damage states. The clusters identified in this test can be assigned to a damage 
state. Clusters 1 and 5 describe the no-damage state, and clusters 2, 3, and 4 describe the 
scuffing-only state.  
 
What this analysis shows is that with very little knowledge of the dataset, the parameters 
appeared to cluster differently based on gear health state. The results of the clustering 
analysis can be used to feed into a supervised learning classification model. Using this 
approach, observed data and known responses can be used to build the predictive model, 
or classifier, with discrete response variables [15].  
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Damage state 
Debris  

mean average 

Debris  

mean range 

Pinion FM4 

mean average 

Pinion FM4 

mean range 

No damage 

(clusters 1, 5) 
3.95 3.70 to 4.20 2.93 2.88 to 2.97 

1 tooth 

(clusters 3, 4) 
12.77 7.76 to 17.78 4.41 3.57 to 5.24 

2 or more teeth 

(cluster 2) 
25.63 25.63 to 25.63 6.49 6.49 to 6.49 

 

 

Damage state 
Debris  

mean average 

Debris  

mean range 

Pinion FM4 

mean average 

Pinion FM4 

mean range 

No damage 

(clusters 1, 4) 
6.77 6.72 to 6.82 3.17 3.09 to 3.24 

1 tooth 

(cluster 5) 
7.66 7.66 to 7.66 2.92 2.92 to 2.92 

2 or more teeth 

(cluster 2) 
29.04 29.04 to 29.04 5.29 5.29 to 5.29 

 

Figure 7: Comparing Damage Factor, Clusters, and CI Values for Tests L4545 and 

L1515. 
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Damage state 

Debris  

mean  

average 

Gear SI3 

mean  

average 

Gear SI1 

mean  

average 

Pinion SI3 

mean  

average 

Pinion SI1 

mean  

average 

No damage 

(clusters 1, 4) 
4.32 0.14 0.15 0.17 0.24 

1 tooth 

(cluster 2) 
14.91 0.18 0.18 0.28 0.48 

2 or more teeth 

(cluster 3) 
39.01 0.12 0.18 0.34 0.41 

 

 

 

Damage state 

Debris  

mean  

average 

Gear FM4 

mean  

average 

Gear SI1 

mean  

average 

Gear SI3 

mean  

average 

Pinion SI1 

mean  

average 

Pinion SI3 

mean  

average 

No damage 

(clusters 1, 3, 4) 
8.34 2.74 0.23 0.16 0.27 0.18 

Two or more teeth 

(clusters 2, 5) 
43.61 5.35 0.39 0.25 0.63 0.45 

 

Figure 8: Comparing Damage Factor, Clusters, and CI Values for Tests L3030 and 

L3535. 
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Damage state 
Pinion SI1  

mean average 

Pinion SI1 

mean range 

Pinion SI3  

mean average 

Pinion SI3 

mean range 

No damage 

(clusters 1, 4) 

0.20 0.20 to 0.21 0.10 0.10 to 0.10 

Scuffing/pitting 

(clusters 2, 3, 5) 

0.55 0.49 to 0.58 0.28 0.25 to 0.30 

 

 
Damage state Pinion SI1  

mean 

average 

Pinion SI1 

mean  

range 

Pinion SI3  

mean  

average 

Pinion SI3 

mean  

range 

LFO 

mean 

average 

LFO 

mean  

range 

No damage 

(clusters 1, 5) 

0.15 0.11 to 0.18 0.10 0.09 to 0.11 195.16 184.71 to 205.61 

Scuffing 

(clusters 2, 3, 4) 

0.27 0.14 to 0.34 0.15 0.11 to 0.18 217.27 198.04 to 220.78 

 

Figure 9: Comparing Damage Factor, Clusters, and CI Values for Tests L2020 and 

L4040. 

 
Decision Tree Model: A decision tree was selected to demonstrate the use of clustering 
analysis to develop a predictive model. A decision tree uses rules to separate the data into 
branches and nodes based on the decisions from a set of rules. The root node is the start 
of the tree before any decisions have been made and contains all possible damage states. 
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The next node defines a node based on an input and decision rule. The benefit of decision 
trees is that it enables multivariable analysis, instead of single cause-and-effect 
relationships, of quantitative and qualitative data [16]. The optimal decision tree would 
achieve perfect classification with the smallest number of decisions, but this is not always 
possible because of inconsistencies in the data. In order to cut down on the number of 
decisions the model would need to make, observations made in the clustering analysis 
were used to decrease the number of inputs. The following inputs were chosen because 
they were identified as being good indicators of damage states: debris, pinion FM4, gear 
FM4, gear SI1, gear SI3, pinion SI1, pinion SI3, and LFO. 
 
Four damage states were classified based on the damage scale shown in Table 1. These 

states were no damage, PL or GL 1 tooth, PL or GL 2 teeth, and scuffing. All six gear 
sets are partitioned separately into a dataset for training, used to fit the model, and 
another for testing, to assess how the model will perform on a new dataset. The training 
dataset was 2/3 of the data set, while test data composed 1/3 of the data set. Because of 
the time dependency of the dataset—run time affects damage progression—the data were 
separated into each group by stepping through the dataset sequentially in three steps. 
 
Figure 10 shows part of a decision tree for one test. The root of the tree contains all the 
damage states at the start, and no decisions have been made. The nodes shaded in blue 
represent the terminal or leaf nodes of the decision tree, and each leaf node is assigned to 
one damage state. The structure of the tree is determined by the input variable chosen at 
each node and the value of the split. In this analysis, a greedy strategy was used, which 
results in the best partition being used first. The best partition produces the highest 
amount of information being gained based on that split.  

 

 
 

Figure 10: Decision Tree for Classifying Damage. 
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The first split from the root node looks at the amount of debris. If the amount is 5.56, 

then the node contains data with possible damage states of no damage, PL or GL 2 
teeth, or scuffing. If the debris amount is >5.56, then the node contains data with possible 

damage states of no damage, PL or GL 1 tooth, or PL or GL 2 teeth. Continuing with 

the left node, the next split decision is based on the pinion SI1 value. If it is 0.33, then 
the node contains data with the damage state of no damage and becomes a terminal node. 
If the pinion SI1 value is >0.33, then the node contains data with possible damage states 

of PL or GL 2 teeth or scuffing. The split decision for this node looks at the gear SI3 

value. If it is 0.1, then the node contains data with the damage state of scuffing. If the 

value is >0.1, then the node contains data with the damage state of PL or GL 2 teeth.  
 
From this analysis of the left side of the tree, the following rules can be derived: 

 

1. If Debris  5.56 and Pinion SI1  0.33, then no damage 

2. If Debris  5.56, Pinion SI1 > 0.33, and Gear SI3  0.1, then scuffing 

3. If Debris  5.56, Pinion SI1 > 0.33, and Gear SI3 > 0.1, then PL or GL 2 teeth 

 
The analysis of the right side of the tree can be done by returning to the root node and 
looking at the right node that was produced from the first split based on debris, but its 
discussion is outside the scope of this paper.  
 
The decision tree example illustrates the benefits of combining clustering with decision 
trees when developing predictive models. Decision trees enable multivariable analysis on 
varying measurements that include qualitative and quantitative data. Future studies are 
planned combining data-mining analysis methods with a decision tree model. 
 
Conclusions: Tests were performed in the NASA Glenn Spiral Bevel Gear Fatigue Rig 
from damage initiation to progression on the gear and/or pinion teeth. Six gear sets were 
tested with varying levels of tooth damage, and vibration-based gear condition indicators, 
amount of debris generated, and oil temperatures were measured and damage progression 
was documented with photographs. The state of the gear tooth was quantified with a 
numerical continuous damage factor. Condition indicator performance was assessed with 
traditional methods and data-mining methods that included clustering and a decision tree 
model. The condition indicators and operational parameters that were good predictors of 
health state found from the data mining investigation aligned with those observed during 
testing, with minimal knowledge of the system. Lessons learned during this investigation 
will be used to define additional analysis methods to be incorporated into future data-
mining models. 
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