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Fig. 1. Schematic representation of (a) the AH-64 helicopter tail rotor drivetrain test stand and (b) the actual test stand with labeled components for comparison.

TABLE I
LOADING PROFILE FOR A30-min BASELINE TEST RUN

measured via thermocouples, and speed and torque measured.
The measurement devices were placed at the forward and aft
hanger bearings and both gearboxes. This paper focuses on the
application of time-frequency techniques to the forward and
aft hanger bearing vibration signals denoted asS1 and S2 in
Fig. 1(a) and (b). The physical separation between accelerome-
ters (which will further be referred to more generally as sensors)
on the bearings is 3.43 m.

A. Data Acquisition

The data acquisition software collects data from the hanger
bearings once every 2 min during the course of the 30-min
baseline runs, with the exception of two additional collection
periods at the start of the run, a total of 17 measurements. An
experimental run consists of an intermediate speed ramp from
0 to 600 r/min followed by a ramp from 600 to 4863 r/min. The
measurements for baseline characterization were then taken
during operation of the test stand at a constant rotational speed
of 4863 r/min from the prime mover, with a simulation of the
output torque at 111 ft· lb from the secondary. A summary of
the test conditions is given in Table I given a few conventions.
Rotational speed is the speed of the input shafts and hanger
bearings. Output torque is given by the torque at the output
of the tail rotor gearbox simulating rotor operation while the
torque applied to the input shafts and hanger bearings is equal
to 32.35 ft· lb.

Data collection yielded 65 536 points at a sampling rate of
48 kS/s per scheduled sampling period, which results in a data
collection time of roughly 1.31 s per acquisition. For each run,
data were acquired 17 times on these 1.31-s intervals: twice at
the beginning and then once every 2 min until the end of the
run. With individual data �les containing 65 536 samples each,
the acquisition results in over one million data points per set,

which is too intensive for many processors to handle during
time-frequency analysis. In order to resolve this computational
issue and decrease the computation time, each data set under
test was divided into 17 experimental frames to correspond to
each time the sensor was activated to collect data. Each of the
17 experiments was then divided into 16 windows that
comprised 4096 points each. Within these subdivided win-
dows, spectrogram measurements were made on bothS1 and
S2, while the mutual information measure was applied to
4096 point segments ofS1 andS2.

Additional windows can be determined by an overlap per-
centage which layers additional 4096 point windows within the
main 16 windows in a given experimental frame at intervals of
4096 multiplied by the overlap percentage in order to create
additional effective mutual information measurements from the
given data. An overlap of 33% was determined to provide
adequate clustering and enhance the probability density for
implementation of predictive con�dence levels.

This overlap selection helps eliminate data outliers and im-
prove the visualization of the clustering when applying the
time-frequency mutual information described in Section II to
multiple data points. Therefore, the total number of mutual
information measure points for the given data is equal to the
number of experimental frames (17) multiplied by the number
of window signal subsets (16) and the inverse of the fractional
overlap percentage (3), for a total of 816 mutual points or
272 mutual points when neglecting overlap components. The
data format of the time series is also provided in [14].

The con�guration of the test stand uses balanced drive-
shafts aligned in a straight assembly as a baseline for normal
operations. After performing test runs in the baseline condi-
tion, intentionally faulted con�gurations are tested to expand
the baselines to include combinations of misaligned and un-
balanced shafts. The goal of the time-frequency analysis is
to establish metrics for the baseline conditions using the
original data set and produce a set of metrics to diagnose
each of the unbalanced and misaligned conditions. The data
presented for analysis included �ve sets of 30-min runs of
the apparatus each taken with different alignment and balanc-
ing conditions. Table II displays these conditions and their
designations.
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TABLE II
TAIL ROTOR DRIVESHAFT EXPERIMENTAL SETTINGS

B. Misalignment and Imbalance Experimental Conditions

The primary physical fault conditions characterized exper-
imentally are bearing imbalance and shaft misalignment. An
overview of these settings helps in gaining familiarity with the
experimental setup. The nomenclature of the baseline sets is
dictated by numbered segments of the drivetrain. Each segment
of concern in the experimentation is designated by a number
(1 to 5) and coupled by flex couplings at the bearing locations
to hanger bearings. Imbalance is related to driveshafts which
exhibit geometrical or mass centerlines that do not coincide
with axes of shaft rotation (unbalanced–aligned (UB/A) and
unbalanced-misaligned (UB/MA) cases). These will be referred
to as the UB/A and UB/MA cases, respectively. Misalign-
ment (misaligned-balanced (MA/B), UB/A, and misaligned-
unbalanced (MA/UB) cases) in the test configuration is
characterized by a change in bearing and shaft placement that
moves the number 3, 4, and 5 shafts from a straight alignment to
produce an angle of 1.3� . Either a 3–5 imbalance (imbalance of
three consecutive driveshafts) or a 4-5 imbalance (imbalance of
only two driveshafts) differentiates two experimental settings.
The aforementioned settings will be referred to as the MA/B
and UB/MA 3–5 and 4-5 cases. These settings produce addi-
tional wear on drivetrain components while also presenting ad-
ditional transients in harmonics that can be measured for health
classification purposes. For the purposes of this paper, we
will simply refer to these cases as baseline [aligned–balanced
(A/B)], misaligned (MA/B), unbalanced (UB/A), and MA/UB
as shown in the nomenclature in Table II. Instances of ambi-
guity between the MA/UB cases will be specified as 3–5 mis-
aligned or 4-5 misaligned.

Imbalance vibrations are generated when a geometrical cen-
terline or a mass centerline of a shaft does not coincide
with the rotational axis of the shaft, for example, in cases of
bearing looseness or due to manufacturing imperfections. This
inconsistency between rotational axis and geometrical or mass
centerline creates a radial bow force Fu at a fixed relative phase
angle � which varies in magnitude along the length of the
shaft as shown in Fig. 2(b). The imbalance condition creates
harmonically varying vibrations D on a hanger bearing hous-
ing, which are registered by dedicated accelerometers. These
varying vibrations consist of x- and y-axis radial vibrations,
z-axis axial vibrations, and torsional vibrations of a shaft in
a bearing [Fig. 2(b)], as well as additional vibration signal
contributions coming from coupled bearings, gearboxes, power
units, airframes, and other components. Each hanger bearing
on a helicopter system has only one dedicated accelerometer
in current settings, which can pick only the lateral x-axis
component of the vibrations [Fig. 2(c)] of the form

Dx = Ax · cos(�t + 	 x) (17)

Dy = Ay · sin(�t + 	 y) (18)

where Dx,y and Ax,y are the displacements and the amplitudes
of the displacements in the x- and y-axis directions, � is the
angular velocity, and 	 x,y are the phase angles.

Vibrations caused by imbalance will be in phase on both
bearing accelerometers S1 and S2 when (� y Š � x = 0) and
will vary only in magnitude depending on the magnitude of
imbalance Fu. The driveshaft supported by the hanger bearings
at sensor locations S1 and S2 is not a uniform shaft but
rather a sectionalized shaft as previously described. Therefore,
misalignment cannot typically be avoided. It should be noted
that, as shown in Table I, the experimental data are gathered
under conditions of constant or near-constant torque load and
speed.

Misalignment in our case is considered as an angular mis-
alignment when the shaft centerlines of the two shafts meet at
an angle with each other. This, on the contrary to imbalance,
causes axial preloads on the shaft in the z-axis direction and
can be decomposed to an x signal component based on the
angle of misalignment Fx = Fz sin(� m). This force will have
the greatest impact on the bearing closest to the shafts’ coupling
point and will have a phase difference in reference to force
registered at a further located sensor (� y Š � x �= 0) [Fig. 2(c)]
because of finite stiffness and dampening in the system.

In industrial vibration monitoring, one would use shaft di-
agnosis techniques such as shaft centerline orbit monitoring,
which requires two x and y sensors at a single location and a
skilled human operator, which make such technique inapplica-
ble in our case and justify the need for an advanced diagnostic
measure. The mutual information measure takes advantage of
two accelerometer signals located at different locations, simul-
taneously quantifying frequency and phase components of the
mechanical vibration signals.

C. Analysis via Spectrogram and via Rényi Information

A Cohen class time-frequency distribution utilizing the spec-
trogram kernel as detailed in Section II was used to identify
time-frequency signatures of different experimental setups. In
Fig. 3(a) and (b), a set of spectrograms of signal S1 is pro-
vided for the baseline shaft and the MA/UB shaft, selected
for its significant increase in transient time-frequency content
over the A/B case. The top portions of the figures are the
time series, and the time-frequency distribution is provided
in the same time axis. The classical power spectral density
results are summarized in Table III with dominant frequencies
common to both sensors determined by cross-power spectral
density calculations between S1 and S2 for each experimental
setting. Typical CIs measure changes in the spectra of one or
more sensors based on static power spectrum plots, similar
to this analysis. However, these characteristics and the key
frequency harmonics, as well as transient variations in these
harmonics, of the power spectral density can be visualized and
summarily expressed in the spectrogram plots of S1 and S2.
The vibration signatures in the time-frequency domain exhibit
distinctive characteristics in the oscillatory nature of the system
harmonics.

From analysis of the spectrograms, the existence of the domi-
nant frequencies seen from the power spectral density and cross
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Fig. 4. Rényi self-information measures of (a) S1 and (b) S2 for baseline. Rényi self-information measures of (c) S1 and (d) S2 for misalignment.

defined in (5). One can find more time-frequency signal com-
ponents in Fig. 3(a) at the 15–20-kHz frequency bandwidth,
which results in a slightly higher value of the Rényi information
measure of the spectrogram in Fig. 3(a). In addition, the Rényi
information measures of the misaligned-case time-frequency
distribution of S1 [shown in Fig. 3(b)] and S2 are 7.83 and
6.93 bits. Comparing the spectrograms in Fig. 3(a) and (b)
illustrates that the spectrograms in Fig. 3(b) exhibit more
time-frequency components than those in Fig. 3(a), and one
can quantitatively confirm a reasonable measure of the time-
frequency information using the Rényi information measure.

These differences and signatures on the time-frequency do-
main cannot be clearly distinguished from the traditional power
spectrum reading, a fact which is made apparent from the
quantitative reading of the Rényi information. Nevertheless,
the results obtained by the spectrogram are not sufficient to
describe mutual interactions between the signal pair of S1

and S2 in different experimental setups. In the next section,
we investigate the efficacy of the time-frequency-based mutual
information measure discussed in Section II in order to quanti-
tatively characterize the experimental setups of the baseline and
misaligned shafts.

IV. RESULTS AND DISCUSSION

A. Comparison of Rényi-Derived Self-Information to
Classical Time–Frequency Methods

The first step of the analysis and discussion uses the Rényi
self-information measure defined in (5) to describe the individ-
ual time series. The Rényi self-information measures of S1 and
S2 for the baseline and misaligned cases are shown in Fig. 4.
Signal 1 S1 and signal 2 S2 in both the baseline (A/B) and

misaligned (MA/B) cases are processed by applying the eight-
point moving average filtering followed by Rényi information
calculation to obtain the self-information measure. Thus, for
every time instance of every experiment window of the data,
a Rényi calculation of each autocorrelated signal was gathered.
As shown in Fig. 4, a total of 272 self-information measures
were gathered for each signal of each case. Additional overlap-
ping is used for xŠy coordinate mapping used in visualizing
part health. In order to identify the tendency of the measure,
an eight-point moving average filter was applied to each signal
with the filter covering half of the time instances provided in
each experiment window. The results of this self-information
measure are compared side by side in Fig. 4 for each signal.
The referenced time instance (15th of the file frame at the
5th experiment window) is marked on each graph to show
consistency with the analyses in Sections I and III-C, which
use the same 4096 data points for the spectrogram.

Notable difference from the side-by-side comparison in
Fig. 4 is a sizable increase in the self-information measure of
the misaligned case over the baseline case. This could be a char-
acteristic signature of a misaligned case. The self-information
measure shows a general increase at the given samples when
comparing the balanced–aligned (B/A) case with the mis-
aligned case and an increase on the average of the measured
frames. The average self-information value of the baseline S1

signal is reported at 6.72 bits, while the average value of the
same signal in the MA/B case was 7.68 bits. Comparing the
second signal set S2, we obtain a value of 6.78 bits compared to
7.31 bits for the same cases. However, from this derived metric,
the interpretation is yet unclear. This self-information measure
can be verified using the spectrogram example discussion in
Fig. 3. From these data, there is little other indication of change
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Fig. 5. Mutual Rényi information measures ofS1 andS2 for the (a) baseline–aligned, (b) aligned-unbalanced, (c) MA/B, and (d) MA/UB cases.

from the baseline case to another “faulty” status of the shaft.
Moreover, the Rényi self-information ofS1 in the balanced
case in Fig. 4(a), as well as both signals in the misaligned
case, oscillates more compared to the Rényi self-information
of S2 of the baseline case (A/B). This could be attributed to
more high-frequency components shown in the time-frequency
spectrogram in Fig. 3(b).

While this self-information proves useful and shows a no-
table basis by which to compare data sets, it lacks potential
for comparison of closely related signals and, in this instance,
shows an increase when compared on average while not for
localized comparison. This only partly supports the desired
qualities of a CI, while further information can be gathered
from the mutual information measure. This mutual information
measure is a complex value and can be further subdivided into
two constituent values: an in-phase mutual time-frequency in-
formation(I � (Rs1 s2 )) and a quadrature mutual time-frequency
information(I � (Qs1 s2 )) de�ned in (13) and (14).

B. In-Phase and Quadrature Components of the
Time–Frequency Mutual Information Measure

The mutual information measures of the baseline and mis-
aligned cases are shown in Fig. 5. An interesting trend can be
seen in the baseline case in Fig. 5(a). Overall, the in-phase mu-
tual time-frequency information(I � (Rs1 s2 )) stays mostly at a
constant separation from the quadrature mutual time-frequency
information(I � (Qs1 s2 )) . BothI � (Rs1 s2 ) andI � (Qs1 s2 ) of the
baseline case in Fig. 5(a) remain relatively constant throughout
all windows of the experiment. However, toward the end of
the sequence outlined in Fig. 5(a), the in-phase and quadrature
mutual information measure values begin to experience a larger
separation. These characteristics are all important to be noted

while considering what truly characterizes the baseline physics
of the system.

A glance at the mutual information from the misaligned case
in Fig. 5(b) draws attention to two distinctive signatures. First,
like the baseline case, the cospectral mutual time-frequency
information (I � (Rs1 s2 )) remains relatively constant through-
out all experiment windows with a large trough around exper-
iment window 10 corresponding to a minimum value of the
quadspectral mutual time-frequency information(I � (Qs1 s2 )) .
Second, the quadrature component has a larger average value
over the length of the experiments than was seen in the quad-
spectral component in the baseline case. Also, the quadspectral
component in the misaligned case �uctuates greatly, showing
greater amounts of local minima and maxima. Although the
quadspectral information in the misaligned case revealed a
signi�cant rise in the number of bits in the mutual information
measure, the cospectral portion showed little increase over
the experiment windows measured. By comparing the results
in Fig. 5 with other results by classical spectral analysis or
traditional spectrogram, one can �nd the usefulness of the
proposed technique for a quantitative health condition assess-
ment of the experimental setup. Further analysis is underway to
understand the relationship between the time-frequency mutual
information method and other confounding factors such as
speed and torque, isolating the sources of transient changes in
the vibration signatures.

C. Time–Frequency Mutual Information Measure
Visualization and Statistical Analysis

The mutual information measure currently in development
and shown in Fig. 6 provides a graphical interpretation of
part condition by analyzing the amount of mutual data shared




