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Abstract

This dissertation aims to develop new condition-based maintenance (CBM) tools for

increasing performance of Apache helicopter drivetrain gearboxes, through lubrica-

tion and signal analysis. An extensive consumer of CBM is the Apache helicopter

that involves testing critical components to demonstrate reliability and performance,

measured through data-driven condition indicators (CIs). These indicators provide

vital information about the condition of a mechanical component and are derived

from onboard sensors using signal processing methods. A challenge known among

researchers in the Apache community is leakage of grease lubricant from drivetrain

gearboxes with performance of some CIs unachieved. Although extensive mainte-

nance operations are used in the field to minimize this effect by ground inspections,

failure of grease lubricant still occurs due to heavy loads. Based on this motivation,

oil nanofluids are presented here as a new lubricant approach for the intermediate

gearbox (IGB) of the Apache helicopter. Furthermore, a signal-based approach uti-

lizing wavelet analysis is adapted to develop a new CI. The goal of this work can be

achieved through addressing the following research studies.

The first study qualifies the improved thermophysical properties of two turbine jet

oil nanofluid samples and eight Mobil Aviation Gear Lubricant (AGL) oil nanofluid

samples with different particle concentrations and chemical compositions. Numerous

fluid properties such as thermal conductivity, dynamic viscosity, and viscosity index

are measured using off-line experimental tools. Based on the experimental results,

four AGL oils with graphite nanoparticles have displayed excellent thermophysical

properties and are used as prospective lubricants for mechanical testing in the IGB.
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Then, this study investigates key nanoparticle mechanisms to provide a better un-

derstanding of the nanofluids through developing a new nanofluid model using the

effective medium approach. It is found that experimental results closely agree with

theoretical predictions (eg. R2 =0.988). Experimental data and existing models from

the literature are also used to validate the accuracy of the proposed model. Results

help in improving model predictions and conclude that the flake-like morphology of

the nanoparticles as well as its dynamic behavior in the fluid contribute significantly

to increasing thermophysical properties.

The second study investigates the impact of nanolubricants in an actual IGB. Two

Apache helicopter drivetrain test stands at the CBM research center, University of

South Carolina are presented to optimize performance of the lubricant. First, pre-

liminary testing is performed on a drivetrain test stand with no load being applied.

The four selected samples: 1%, 1.5%, 2% and 2.5% graphite-based AGL additives,

against a control AGL sample are tested as gearbox lubricants. Preliminary condition

monitoring results show that the 2% sample demonstrates optimum gearbox perfor-

mance with the lowest temperature and vibration responses, compared to all tested

lubricants. This improvement can be attributed to the capability of the nanolubri-

cant in obtaining an effective fluid film between gear surfaces, absorbing load, heat,

and friction. The highest concentration of 2.5% graphite additive fails to make an

impact and yields the worst gearbox performance due to possible rheological changes

in oil. Second, full-load mechanical testing on the tail rotor drivetrain test stand

is demonstrated. The 2% nanofluid sample, along with base oil, are tested in the

IGB. Vibration results based on spectral and wavelet analysis demonstrate promising

attributes of this new lubrication approach. A key finding from this study is the im-

provement of temperature-based CI due to the incorporation of nanolubricants with

approximately 40◦F -50◦F lower response, compared to that of base AGL.
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The third study presents a new CI using wavelet analysis for the purpose of fault

detection in an AH-64 gearbox. Historically, vibration-based CIs from employed

component monitoring equipment are derived from both temporal and spectral do-

main analysis. However, these indicators failed to accurately capture high order

correlations for the gearbox study addressed. An improved approach is necessary to

overcome limitations of traditional vibrational monitoring techniques. The proposed

condition indicator is derived from the Morlet continuous wavelet transform. The

power spectra obtained from the wavelet transform coefficients at a certain scale or

frequency are added together and then are normalised to one composite signal, de-

noted by a numeric index. Concepts of the wavelet index (WI) are discussed. This

index is applied using real-world vibration data from a tail rotor gearbox with an

output seal leak as part of CBM practices. Results demonstrate potential of the

proposed WI to more effectively capture the fault when compared to gearbox CIs.

Statistical analysis is demonstrated using a wavelet denoising thresholding approach

to reduce redundancy in the data. Predicted results yielded significant improvement

in WI with less variability. Finally, a statistical test with an 85% confidence interval

is applied on different wavelet power distribution samples. WI results from these

samples are found to be statistically valid.

Research results described in this dissertation establish a step forward towards

the development of new CBM tools in system-based applications. This work ends

with conclusions and recommendations for future research.
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Chapter 1

Introduction

1.1 Maintenance Strategies

Mechanical systems are subject to different failure mechanisms, whether it is in the

form of excessive vibration, fatigue, friction, or thermal shock. In many applications

where the design of a system cannot be fully optimized to minimize or prevent all fail-

ures, it is necessary to take robust maintenance actions so that the system can be in a

functional state. There exists a wide variety of maintenance methods that can be ap-

plied on a system, which encompass activities of testing, inspections, measurements,

and component replacements(Mobley, 2002).

In his work, Mobley proposed three essential approaches that remain to date the

backbone of the maintenance strategy: run-to-failure, preventive maintenance, and

predictive maintenance, which is known as condition-based maintenance or CBM

(Figure 1.1). Run-to-failure is a reactive form of maintenance and is the most tradi-

tional maintenance method where machines simply run until failure. The unexpected

breakdown of a component until failure can lead to longer downtime for major re-

pairs. Preventive maintenance is a scheduled approach where actions on a system

are taken on regular basis; usage-based or time-based. An oil change in a car that

would take place every 3 months or 3000 miles is a good example of preventive main-

tenance. Despite the ability to reduce catastrophic failures by planning ahead in

advance for a given system, the major disadvantage of preventive maintenance can

be costly, especially if excessive and redundant maintenance actions are taken.
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Figure 1.1: Different maintenance strategies

CBM is a state of the art proactive form of maintenance that is implemented in

the field and employs advanced component monitoring equipment to detect signs of

failures and enable targeted maintenance based upon evidence. The predominant

benefit of CBM is the cost-savings it allows over reactive maintenance by maximizing

the component life, minimizing risk and coast. A toolbox that uses different qual-

itative and quantitative data from different sources for the accurate monitoring of

components and its diagnostics.

Applying CBM is a powerful approach in pointing out faults that are almost

always pertained to decisions affecting the characteristics of the system, which can

include structure, material, and performance: dynamics, vibrations, gear pitting,

corrosion and tribology. Fortunately, the US Army has successfully implemented a

CBM program on different aircrafts where advanced condition monitoring equipment

are employed, known as health and usage monitoring system (HUMS). HUMS is

the diagnostic on-board system installed on numerous military aircraft platforms

including, but not limited to, AH-64 Apache and the UH-60 Black hawk helicopters

(Dempsey et al., 2008).
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1.2 Fundamentals of Condition Monitoring

Condition monitoring is the foundational element of CBM. There are numerous

condition monitoring methods and tools used to diagnose faults in mechanical sys-

tems(Randall, 2011). The most common techniques include: vibration analysis, oil

analysis, acoustic emission and thermography. Oil analysis is an offline method used

to monitor debris particles within a lubricant, which can be connected to the condi-

tion of a gear or bearing. Acoustic emission is used to detect cracks in structures or

shock pulses from rotating machinery. Thermography is used to detect mechanical

or thermal defects in electrical equipment like generators or misaligned couplings. To

date, vibration analysis is still the basic component used in condition monitoring of

rotating machinery because of its important dynamic information needed for feature

extraction.(Girondin et al., 2013).

All rotating machinery produce different vibration signatures that carry impor-

tant feature information. If a rotating component is operating with imbalance condi-

tions, reaction forces are produced, and this vibrational energy is transferred to the

non-rotating part of the system. For example, a misaligned gearbox that produces

vibrations due to reaction forces leads to the development of free vibrations in the

structures that are excited as a result of energy dissipation from the forced vibra-

tion. The former are governed by the fundamental properties of mass, stiffness, and

damping, which tend to be constant regardless of the speed of the system.

There are different ways to measure vibrations that include: displacement, velocity

or acceleration in a three-dimensional axis or six degrees of freedom. Most often,

the frequency bandwidth of the system under study is the key point to choose the

appropriate methods of measurement. For rotating machinery, accelerometers are

the commonly used tools to monitor vibration due to their high frequency range.

Furthermore, the structural asymmetry of machines makes the vibration signals in

the axial, radial and vertical directions to be significantly different. Where possible,

3



a three-dimensional sensor can be used to pick up these different signals, however, in

practice only two axis sensors are likely to be used that are mounted perpendicularly

to each other in both radial and axial directions of the rotating component. Despite

the inherent complexity of the vibration monitoring tool as previously mentioned,

it is still the common condition monitoring method and the most used practice in

any CBM industry, compared to other techniques. Vibration is produced by different

sources in the system, such as the applied load or torque of the rotating part to

the deflections of the surrounding structures. The produced vibration signature can

be challenging with the analysis and interpretation to isolate the problem, especially

when it comes to a mechanical system with vibration and noise from different sources.

A key step in condition monitoring is feature extraction using vibration analysis

methods. In CBM for rotorcraft, vibration signals are collected using onboard sen-

sors,attached to critical components. The signals are then processed using different

signal processing algorithms to calculate features known as condition indicators (CIs).

These CIs are developed from controlled ground field data. They are model-based

and sensitive to faults, as they attempt to extract information about a particular

physical process or event, such as shock impulses, gear meshing, friction or temper-

ature. A single component can have multiple CIs; a single fault can affect multiple

CIs and multiple faults can affect a single CI. Numerous CI functions are applied to

various domains to produce normalized single-valued metrics, which are compared to

well-known established thresholds such as ‘healthy’, ‘caution’, and ‘exceed’ created

from the benchmark testing on healthy and faulted components. Maintainers rely on

these values in their decision-making process.

Raw vibration data is typically sampled at some sampling period, and thus it is

known as time-series or time-domain. These signals are quit complex, as the extracted

features or CIs like peak-to-peak, root-mean square (RMS) kurtosis or skewness do

not provide all important information on the condition of the part which is rotat-
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ing and only provides a quick estimation of changes in the overall signal stemming

from imminent failure (Figure 1.2). Therefore, it is often necessary to map the data

into another domain, which is more relevant to condition monitoring applications

being sought, and this is typically done by transformation into the frequency-domain

through a Discrete Fourier transform using the Fast Fourier Transform (FFT) algo-

rithm (Figure 1.3). The analysis in this domain is more suitable for the diagnostics

of rotating components, because metrics extracted can be directly related to the

frequency of the rotating component. The detailed mathematical description from

Lebold et al. discuss the classical signal processing techniques to compute these

CIs that include: raw data preprocessing, time synchronous averaging, filtering, and

spectral analysis. (Lebold et al., 2000).

Figure 1.2: Example of vibration signal in time-domain

1.3 CBM Testing at the University of South Carolina

Over more than a decade, the University of South Carolina (USC) has been collab-

orating with the Army Engineering Directorate (AED) through the South Carolina

Army National Guard. All of the efforts expanded into a fully matured CBM research

center test stand at USC, which hosts actual military aircraft hardware. The goal of

this project is to achieve CBM objectives within the US Army through monitoring
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Figure 1.3: Example of vibration signal in frequency-domain

critical aircraft components and to provide a scientific understanding of the AH-64D

helicopter component conditions, as they relate to vibration signals and other qual-

itative maintenance data. This scientific knowledge is achieved through component

testing, which is a key concept to achieve an integrated CBM.

Testing is an important component of a CBM program to validate certain concepts

that are unsafe to study on actual aircrafts. As CBM involves gathering experimental

data from mechanical systems on test stands using different sensors,it is powerful for

diagnostic purposes in its ability to validate or improve exiting CIs and even produce

new ones based on vibration, temperature or friction.

The CBM research center has a full-scale AH-64 tail rotor drivetrain (TRDT)

and main rotor swashplate test sands, which are designed to emulate flight regimes

as on an actual helicopter (Figure 1.4). The TRDT is a constant-speed and dynamic-

loading power transmission system, starting from the main transmission tail rotor

take-off to the tail rotor swashplate (TRSP) assembly. Furthermore, the stand is

configured with an 800 hp motor, which is the prime mover of the drivetrain controlled

by a variable frequency drive that spins the shafts at 101% of the operating speed

(4863 RPM) . An absorption motor similar to the prime mover creates the braking

torque required and acts as a regenerative system to save energy. These two motors

are also capable of exceeding 150% of the actual drivetrain loading. The components
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or articles subject to testing on the drivetrain include: forward hanger bearing (FHB),

aft. hanger bearing (AHB), intermediate gearbox (IGB), tail rotor gearbox (TGB)

and the TRSP. The drivetrain consists of a total of four shafts, which are purposely

misaligned within the acceptable safe limits of 2 degrees for radial loading on the

bearings. Three of the shafts have the FHB, AHB and IGB components pass through

them. The fourth shaft is on a vertical stabilizer between both IGB and TGB.

The configuration, instrumentation, stiffness, and structure comply with military

standards(Nooli, 2011).

Figure 1.4: TRDT/MRSP in actual AH-64D (Top) and TRDT/MRSP test stands at
USC (Bottom)

The TRDT employs two data acquisition systems (DAQs) for the collection of

vibration,temperature and other data from the drive-train components. The first is

known as Modernized Signal Processing Unit (MSPU): a vibration acquisition tool ,

which is a major component used in HUMS (Figure 1.5). The MSPU is optimized to

acquire data from sensors and to generate the CIs from the vibration-based methods.
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The data is processed through filtering, preprocessing, ensemble averaging, spectral

analysis, and other convolution functions built in MSPU. It is a vital link between

information gathered from a lab setting and on helicopters in the field.

The second is a National Instruments (NI) DAQ that operates in parallel to MSPU

and it collects raw vibration data. The purpose of the NI-DAQ is to help in providing

complete information on the health of the gearbox and to validate test stand results

with MSPU-CI data of the actual airframe. NI-DAQ runs with a custom written

code using LABVIEW software and is responsible for controlling the test stand op-

erations that include speed and load profiles. Detailed data description used in this

dissertation with sensor locations are elaborated in chapter 5.

Figure 1.5: Example of MSPU used on AH-64 (Intelligent Automation Corporation:
VMEP Crew Member Information Guide

1.4 Lubrication and Tribological Characteristics in Ro-

tating Machinery

Lubricants play a key role in mechanical components. The primary function of lu-

bricants is to provide a fluid film layer between moving components for minimizing

friction, wear and heat generation. A secondary function is to remove this gener-

ated heat through a heat transfer process. If the fluid film is broken due to applied

load, friction can be one of the main contributors that lead to lubricant failure and
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leakage (Bartelmus, 2014). There are different lubrication and friction mechanisms

in machine elements that include: hydrodynamic lubrication, elasto-hydrodynamic

lubrication (EHL), and boundary lubrication (Figure 1.6). For gears and bearings

applications, the EHL is the dominant lubrication mechanism considered (Zhu et al.,

2013; Hamrock et al., 1999).

Figure 1.6: Lubrication regimes between sliding contacts

The early work of Dyson, Crook, and Archard investigated the tribological effect

of different lubricants in the EHL regime between sliding contacts (Archard, 1957;

Crook, 1961; Dyson, 1970). All the efforts established the significance of a direct

empirical correlation between friction and thermophysical properties of the lubricant.

During gearbox operation in the EHL regime, the applied load is carried by pres-

sure within the fluid lubricant film between the meshing gears. The bulk thermo-

physical properties of the lubricant become crucial, where friction is generated due

to shearing with dependence on the thermophysical characteristics of the lubricant

film. This means that an adequately selected lubricant for rotating machinery is an

important factor that can significantly increase the performance of the system. De-

spite not being a primary tool for determining the condition of machinery directly,

9



advancements in lubrication through improving tribological, thermal, and rheological

properties is a key step for CBM, where machinery diagnosis can be improved from

the results of lubrication.

In this dissertation, the focus is limited to lubricant studies and applications for

both IGB and TGB that constitute critical components of the AH-64D helicopter.

1.5 Motivation

Both IGB and TGB have an important function of transmitting torque to the blades

and are supported with a set of duplex and roller bearings. These gearboxes are

grease lubricated that is commercially known as NS-4405-FG. It is most commonly

used in rotating machinery components that involve heavy loads. Typically, grease is

a shear-thinning fluid, and its main advantage over oil is its ability to act as a sealant,

minimizing leakage effects, and at the same time acts as a lubricant when exposed to

shearing(Toms and Toms, 2008).

Unfortunately, on the AH-64 helicopter, grease leaking from drivetrain gearboxes

is a pressing challenge, represented in different forms of faults, such as leaks from an

IGB breather port (Figure 1.7). These naturally-occurring field faults have negatively

impacted the availability of the aircraft and present a serious inconvenience to mainte-

nance crews. To date, grease leakage is the leading cause of drivetrain gearbox failure

that requires extensive maintenance procedures and part removals (Abdel Bayoumi

and McVay, 2012). Where these ongoing efforts are successful to minimize leakage,

the main problem over time is the failure of grease lubricant due to the applied load.

Increases in peak temperatures can be attained instantaneously between different

regions of the gearbox, without being detected by the aircraft. Grease loses its ability

as an efficient lubricant and does not maintain a stable film between meshing gears

and other components, and after a long period of operation, excessive vibration, wear
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and friction can be experienced, leading to gearbox failure. Ongoing research efforts

in this area are vital to increase performance of the gearbox lubricant, having more

efficient CIs, so that the aircraft can operate in a normal and safe manner.

Figure 1.7: Grease leaks from IGB breather port

Numerous grease lubricant studies have been conducted at CBM. Goodman et

al. performed a 500 hrs TGB grease lubrication experiment on three different gear-

boxes for the purpose of demonstrating its performance under seeded fault conditions

(Goodman et al., 2009). A previously unknown grease movement between the two

compartments of the gearbox was a major discovery. During testing, lubricant and

temperature issues began to rise that led to over-heating above the specified maximum

operational temperature limit of the gearbox. Furthermore, different vibration-based

CIs were unsuccessful in detecting a fault in the gearbox. One major conclusion from

the study was that changes in the lubricant properties affected vibration responses of

the TGB. Another grease performance study was investigated in the IGB (Goodman,

2011). During the course of the experiment, an unexpected change of gearbox over-

temperature occurred and the test stand was shutdown. A physical investigation of

the IGB components through a tear down analysis was performed,where there was no

indication of actual damage. It was theorized that the reason for this heat generation
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was not due to mechanical phenomena such as friction or wear, but rather due to the

chemical degradation of the grease lubricant.

Oil is a Newtonian fluid; viscosity is independent of shear rate and is still desired

for high speed machinery applications for its ability to act as both a lubricant and

coolant. Furthermore, it has long been discussed among AED community, the neces-

sity to switch to oil instead of grease as a lubricant in the AH-64 drivetrain gearboxes.

An IGB study was investigated using Mobil aviation gear lubricant (AGL) oil as its

lubricant (Abdel Bayoumi and McVay, 2012). The main purpose of this experiment

was to test the gearbox with AGL and to compare its performance with a conven-

tional grease lubricated IGB as baseline. Oil was found to show promise with lower

operating temperature and better cooling capabilities than grease, however, vibration

results were inconclusive with no obvious differences between both lubricant types.

Therefore, as previously mentioned , it is crucial to improve the existing conditions

of lubricant that would lead to better CI performance in drivetrain gearboxes. This

dissertation picks up from previous work performed at CBM and attempts to close

the loop of poor lubrication performance in gearboxes. Nanofluids or nanolubricants

is presented as a new approach for a potential lubricant in the AH-64D gearbox.

Furthermore, an advanced signal processing tool based on wavelet analysis is adapted

to investigate the impact of different lubricants on CI performance. In chapter 2, a

detailed literature review of these techniques is introduced.

Advantages of using nanofluids include:

• Improvement of thermophysical properties of the lubricant.

• Improvement of tribological characteristics with less metal-to-metal contact be-

tween sliding surfaces.

• Improvement of heat transfer characteristics.
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Advantages of using wavelet analysis is extracting transient characteristics from

vibration signals that are buried in noise. Unfortunately, the classical signal process-

ing methods deployed on the helicopter inherently assume a distribution of station-

ary signals that don’t allow transient characteristic extraction from vibration signals.

Several signal processing methods, such as time-frequency and wavelets are capable

of extracting transient characteristics. These transients may appear in the form of

impulses as high frequency harmonics, produced if a rotating component develops a

fault and have to be detected. The use of a signal processing tool in the helicopter is

necessary to overcome these challenges to improve CI performance during lubrication

conditions.

Motivated by the advantages mentioned above, the overarching goal of this disser-

tation is to leverage new approaches in a system-based application for better gearbox

performance that may be deployed as CBM tools to extend time between overhauls.

1.6 Research Objectives

The following research objectives are addressed:

• Investigation of prospective aircraft oil nanolubricants for IGB using off-line

analysis by measuring important thermophysical properties such as thermal

conductivity and viscosity.

• Testing nanolubricants in an actual IGB and investigating the dynamic re-

sponses obtained.

• Optimization of nanofluids as a new lubrication approach for the commercial

readiness in a real-life helicopter gearbox.

• Proposing a new CI based on wavelet analysis for Apache drivetrain gearboxes,

applied to different lubrication conditions
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• Developing accurate diagnostic information from machinery lubrication condi-

tions, leading to a simple-to-use wavelet tool for CBM applications.

1.7 Organization of The Dissertation

The remaining of this dissertation is organized as follows. In chapter 2, I introduce

a literature review of the subjects of nanofluids and wavelets, addressing the basics

of experimental and theoretical investigations of nanofluids, as well as, adaptation of

different signal processing techniques, and the advantage of using wavelets as a tool

in the addressed application. This will facilitate an understanding for the following

chapters that encompass the outcomes of nanolubricant optimization in the gearbox

and the development of a signal processing tool as a new CI based on wavelet analysis.

Furthermore, this chapter discusses the most common deployed CI algorithms used

for gearbox diagnostics.

In chapter 3, a comprehensive experimental and theoretical investigation of differ-

ent aircraft nanolubricant oils are studied as candidates for the IGB. Different off-line

analysis tools are utilized that include a transient method for thermal conductivity(K)

measurement, capillary tube viscometer for viscosity index (VI) measurement, and

rheometer for dynamic viscosity (µ) measurement through different ranges of shear-

rate effects. Then, a nanofluid model is proposed using the effective approach for a

fundamental understanding of the dynamic behavior of NP interactions in the oil.

In chapter 4, wavelet analysis is presented as a possible new tool in a system-based

application. This chapter discusses the detailed mathematical theory of deriving a

new wavelet index for gearbox feature extraction. Moreover, a wavelet denoising

approach based on thresholding is presented to improve wavelet results. Then, a

statistical test based on the wavelet power and gaussian white noise sampling distri-

butions are applied with an 85% confidence level, to point out actual wavelet features
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representing the system. To illustrate effectiveness of this wavelet approach, applica-

tion of wavelet index is demonstrated using IGB and TGB vibration data, presented

in chapters 5 and 6.

In chapter 5, a proof-of-concept study is demonstrated to experimentally investi-

gate the impact of nanolubricants on the IGB. Different system dynamics, such as,

temperature and vibration are investigated to represent key performance character-

istics for CI improvements. Also, wavelet index is applied on IGB to investigate the

impact of nanolubricants on vibration responses, compared to base oil responses.

In chapter 6, the proposed wavelet index is presented as a new CI for a TGB

during lubrication starvation. It is compared to the classical deployed MSPU CIs and

is found to detect failure of gear wear more effectively. Overall, this index advances CI

performance by capturing more information from high frequencies, without the need

of adding more sensors to the component. The chapter ends with statistical analysis

for feature selection on wavelet results. First, a wavelet denoising method based

on thresholding on different observations of gearbox data is undertaken. Wavelet

results illustrate excellent denoising attributes. Finally, a statistical test using an

established null hypothesis is applied on the wavelet index. Results on tested samples

are statistically valid and have succeeded to distinguish real wavelet properties from

noise using an 85% confidence interval.

Summary, conclusions and recommendations of the dissertation are presented in

chapter 7.
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Chapter 2

Background

This chapter starts with a detailed mathematical description of the most common

used CI algorithms for the deployed Apache gearbox. This is followed by a literature

review for the approaches proposed as CBM candidates. Sections 2.1 and 3.3 were

previously summarized in (Gouda et al., 2015).

2.1 Gearbox Condition Indicators

As briefly mentioned in chapter 1, CIs refer to vibration due to mechanical behavior.

This section presents a theoretical background of the most common MSPU deployed

CIs for the addressed gearbox that include: RMS, energy ratio (ER), zero-order figure

of merit (FM0), and sideband level factor (SLF) (Grabill et al., 2002; Večeř et al.,

2005).

Threshold limits for the CI algorithms are listed in Table 2.1. These limits are set

based on engineering judgment and statistical analysis of available data from both

the fleet and ground tests. The majority of the CIs are set subjectively high, and still

hold true to date, until enough fault cases from the aircraft are collected by which to

realistically set them. Then, the limits would be lowered based on its field data vs.

the fleet, which have not yet been fully optimized.

RMS is a good indicator in tracking the overall noise level and is a measure of the

power content in the signal. RMS is given by:

RMS(xn) =
√√√√ 1
N

n∑
n=1

x2
n (2.1)
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where xn is the data series of length N.

The FM0 is defined as the peak-to-peak of the time signal average (TSA) normal-

ized by the sum of gear mesh frequency and its harmonics (Figure 2.1):

FM0 = max(x)−min(x)
n∑
i=1

A(fi)
(2.2)

where x is the TSA signal and A(fi) is the sum of amplitudes of the i-th harmonic of

the GMF.

Figure 2.1: Schematic example of TSA and gearbox FFT

FM0 is a robust condition indicator, which is sensitive to major faults in gear

meshes such as tooth breakage and uniform wear (Lebold et al., 2000).In case of

uniform wear, the peak-to-peak does not change appreciably, but the meshing fre-

quencies decrease and the energy is redistributed from the gear mesh frequency to the

modulating sidebands. This results in increase of FM0 values in which the meshing

surface is affected and degrades significantly.
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Regular, difference and and residual signal CIs

The regular signal (r) represents the difference between the original signal (x) and

the energies of only the primary meshing components with the first order sidebands

included.

r = F−1[A(x)sh + A(x)g + A(x)sb] (2.3)

where A is the FFT amplitude and the subscripts sh, g, sb are the shaft, gear and

sidebands respectively and F−1 is the inverse Fourier transform.

The difference signal (d) is defined as the difference between the original signal (x)

and energies of all regular meshing components (r) that include the shaft frequency,

gear mesh frequency and its harmonics. While the residual signal (s) is the difference

between the original signal and the energies of only the primary meshing components

with the first order sidebands included. In summary, the difference signal is the same

as the residual signal, excluding all first order sidebands of the primary meshing

components.

x(d) = x− r (2.4)

s = x− F−1[A(x)sh + A(x)g] (2.5)

The RMS of the difference signal x (d) and x(s) can then be computed . It is

important to state that the RMS of the original signal and the RMS of the residual

signal are labelled as diagnostic algorithm 1 (DA1)and diagnostic algorithm 2 (DA2),

respectively in the MSPU.

RMS(xd) =
√√√√ 1
N

n∑
n=1

X2
d (2.6)

RMS(xr) =
√√√√ 1
N

n∑
n=1

X2
s (2.7)
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ER is a CI that detects heavy uniform wear and is defined as the RMS of the

difference signal normalized by the RMS of the regular signal (Večeř et al., 2005).

ER = RMS(d)
RMS(r) (2.8)

For a gearbox in healthy condition, the majority of the vibrational energy is

located at the gear mesh frequency (or regular signal). However, as wear develops

energy is redistributed and transferred to the difference signal.

SLF is defined in equation [2.9] as the ratio between the first order sidebands of

the gear mesh frequency and the RMS of the average signal. SLF is a coarse indicator

that is sensitive to tooth damage in gear (Zakrajsek, 1989).

SLF = A(xsb)1,−1 + A(xsb)1,+1

RMS(xn) (2.9)

In probability and statistics, Kurtosis is a measure of peak width in a distribution

and is mathematically defined as follows:

K = 1
N

N∑
i=1

(xi − xa)
4

(2.10)

where xi is the original TSA signal and xa is the mean of the signal.

As a metric, it can be sensitive to major peaks in the data. However, as previously

discussed with time-domain metrics, it might not be very accurate. So, a normalized

kurtosis (FM4)is derived instead.

FM4 is a CI that was developed to overcome some of the limitations of the FM0, it

is sensitive to localized faults in gear teeth, such as cracks or spalling. Mathematically,

it is defined as the absolute kurtosis of the difference signal normalized by the square

of variance of the difference signal.

FM4 = AK(d)
[σ2]2 (2.11)

where AK(d) is the fourth statistical moment or the absolute kurtosis.
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Table 2.1: Threshold levels of some condition indicator algorithms implemented in

MSPU

Algorithm Name Caution Limit Exceedance Limit

FM0 100 200
FM4 5 8
DA1 100 200
DA2 100 200
ER 100 200
SLF 5 8

2.2 Nanofluids

Nanofluids have captured huge attention in the past decade as a new class of heat

transfer material with excellent cooling capabilities for a variety of applications such

as aerospace, microelectronics, transportation, solar energy, biomedical, and thermal

management for efficient heat transfer devices (Taylor et al., 2013). Nanofluids are

colloidal suspension of sub-micron or nano-sized solid NPs in the fluid forming a two

phase solid-liquid mixture (Figure 2.2). These NP additives are thoroughly dispersed

in the liquid phase and are intended to boost the thermophysical properties of the

base fluid, yielding increases in K with minimum impact on µ. The incorporation of

NP additives in fluids will also increase µ due to Brownian and hydrodynamic interac-

tions that are responsible for particle-particle and particle-liquid interactions, and if

applied in machinery lubricants (e.g.gearbox), would yield a strong film between mov-

ing surfaces, and reduce metal-to-metal contact (friction). However, major increases

or decreases in µ should be minimized to avoid energy consumptions due to friction.

Moreover, the distinctive high surface-area-to volume ratio of the NPs enhances sur-

face functionality, resulting in nanofluids with superior heat transfer characteristics
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when compared to the conventional fluids with no additives. All these attributes

make nanofluid a serious candidate to meet aircraft demands and specifications of

extremely high loads.

Figure 2.2: Schematic example of nanofluid dispersion

Numerous studies of nanofluids in the review of literature have been investigated

where the focus is on synthesis, characterization and computational modelling. Song

et al. determined experimentally the rheological properties of different concentrations

of nanofluids or nanolubricants using aircraft grease, concluding the major impact the

NPs have on the lubricant where more shear-thinning behavior of the nanofluid was

observed than that of the base grease with no NPs (Song et al., 2010). Other groups

were interested in understanding the underlying mechanism behavior of particle in-

teraction in nanofluids and nanolubricants. Three different mechanisms are widely

proposed in the literature for alleviating friction and wear between moving parts.

Eastman and Rapoport presented the ‘ball bearing mechanism’ where the nanoparti-

cles act as clusters or aggregates of a third body between asperities of moving parts,

preserving their shape (Eastman et al., 2004; Rapoport et al., 2003). Schwarz et al.

showed that the nanofluids are subjected to very high loads, leading to the formation

of a protective sheet, having a particle-liquid interface or layer at surface of particles
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with extremely large thermal properties(Schwarz et al., 2002). The third mechanism

addressed by Liu et al. is governed by a surface engineering point of view, where NPs

have Brownian motion and hydrodynamic interactions that help in an efficient heat

transfer process (Liu et al., 2004).

Yu et al. measured experimentally the thermal conductivity and dynamic viscos-

ity of aluminum oxide nanoparticles in engine polyalphaolefin oil (Yu et al., 2012).

A substantial increase in these lubricant properties was reported. Koo and Rizvi

developed new models to predict the effective thermal conductivity and effective

viscosity of nanofluids, taking into account different parameters that include: the

interfacial nano-layer,particle size, volume fraction, Brownian motion, and tempera-

ture. (Koo and Kleinstreuer, 2004; Rizvi et al., 2013). The results were in agreement

with available experimental data found in the literature. The tribological effect of

the nanotribology was also an interest to several researchers. Peng et al. studied

experimentally the tribological behavior of diamond nanoparticles in liquid paraffin

using instruments like tribometer, scanning electron microscope (SEM) and Fourier

transform infrared spectrum. Results have shown outstanding promising behavior

of NPs to improve tribological properties (Peng et al., 2009). The cursory overview

of this literature suggest that the incorporation of NPs in fluids are expected to in-

crease thermal, rheological, and tribological properties of lubricants, and ultimately

improving the performance of the system.

Although these scientific efforts have achieved advancements in different areas of

nanofluid research, its application in complex mechanical systems remain limited and

is yet to be explored.
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2.3 Wavelets

The most famous signal processing techniques to detect transient characteristics are

time-frequency and wavelets (Staszewski et al., 1997; Coats et al., 2011; Wang et al.,

2013). Unlike time-frequency analysis, wavelet analysis has the flexibility to apply

a movable window with variable-sized regions for the investigation of high and low

frequency components. This is a key aspect making wavelets favorable for feature

extraction in mechanical system applications that involve multi-component signals.

Wavelets discriminate in both time and frequency domains. This is performed

by mapping a one-dimensional input time signal to a two-dimensional time-scale

plane. The output at a given position in this plane is known as the wavelet transform

coefficient. This coefficient is obtained from the convolution of a given input signal

with a wavelet function called the ‘mother wavelet’. The mother wavelet generates a

series of other wavelet functions at various scales and shifts in time to compute all

the wavelet coefficients. As a result, the signal is transformed into its constituent

wavelets (Figure 2.3). Proper selection of the mother wavelet function is vital to

provide a good filtering performance.

Figure 2.3: Example of convolution process between an input signal and impulse
response

There exists a variety of wavelet functions to be used with different transforms. For

example, orthogonal wavelets are mainly used with the discrete wavelet transforms
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(DWT). These orthogonal wavelets have the capability to reduce redundancy from the

transform through an orthonormal basis. DWT is used with different applications,

which include image de-noising and compression. However, there are major challenges

when applying DWT in mechanical diagnostics. DWT has stringent requirements to

obtain the output of the transform through the choice of the correct orthogonal

wavelets with alias cancellation capabilities, perfect reconstruction and the number

of vanishing moments Fugal (2009). Furthermore, the scales in DWT are slightly

sparse due to dyadic discretization. This means features in signals might not be

accurately detected. On the other hand, non-orthogonal wavelets are mainly used

with continuous wavelet transform (CWT). CWT is still the preferred transform for

signal identification and feature extraction in rotating machinery, since discretization

is across all possible integers when applied with non-orthogonal wavelets (Boulahbal

et al., 1999; Lin and Zuo, 2003; Lokesha et al., 2011). Abundant research in the

review of wavelet literature proposed robust metrics for diagnosis of several rotating

machinery components such as bearings and gearbox. (Ren et al., 2006; Kankar et al.,

2011; Gao and Yan, 2006; Wang et al., 2009; Bendjama et al., 2012; Chen et al., 2012;

Lim and Leong, 2013).

Where these scientific efforts have achieved significant advancements in condi-

tion monitoring, the findings were exclusively applied on component-based test rig

experiments and were not accurately comparable to actual CIs from aircraft moni-

toring systems. This dissertation proposes a new CI based on wavelet analysis using

real-world data that would represent naturally occurring field-faults
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Chapter 3

Experimental investigation of nanoparticle

additives in oil using off-line analysis

3.1 Introduction

The purpose of this fluid study is to test the hypothesis of improved thermophysical

properties of ten nanofluid samples and to select optimum samples for gearbox testing

based on oil analysis measurements. In this work, two types of synthetic gear oils are

investigated as potential lubricants in the IGB, Turbine Jet oil and AGL. Both are

common oils that are widely used as lubricants and coolants in a variety of military

applications. The nanofluid dispersions were prepared by CBM’s industrial partner

using high shear mixing after ultrasonic processing or thermochemical exfoliation.

The chemical compositions of the solid NPs incorporated in the base fluid are boron

nitride (BN) and graphite. These samples contain different particle concentrations

ranging from 0.5%-2.5% by volume (Table 3.1). Numerous thermophysical properties

including K, µ, and VI are the measured from the experiments. Also, SEM micro-

graphs in Figure 3.1 reveal the characteristics of particles. This flake-like morphology

is attributed to the graphite and BN precursors, where the particle size distribution

of the NPs are expected to be within ranges of nanometer size.

The upcoming sections explain the detailed methodology, experimental set up,

results and discussion. Moreover in this chapter, a new nanofluid model is developed

based on effective medium theory (EMT); a theoretical approach that predicts dis-

persion of particles in fluids, as a one phase system. Nanofluid model results are a key
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step towards a better understanding of NPs mechanism and the dynamic behavior

of these particles in oil. Results are connected with the interpretation of IGB online

results presented in chapter 5.

Table 3.1: Nanofluid samples investigated

Base Oil Chemical Composition Concentration (vol%)

Turbine Jet Oil BN 0.5
Turbine Jet Oil BN 1

AGL BN 1.5
AGL BN 1
AGL BN 2
AGL Graphite 0.5
AGL Graphite 1
AGL Graphite 1.5
AGL Graphite 2
AGL Graphite 2.5

Figure 3.1: Example of SEM micrograph of graphite nanoparticles
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3.2 Thermal Conductivity Measurement: A Transient

Method

The purpose of this experiment is to determine the K value for the nanofluids un-

der stationary conditions using a transient method (Figures 3.2). K is an important

lubricant property that indicates the ability of material to conduct heat. This exper-

imental approach is similar to the well-established hot wire method (Xie et al., 2006).

In this experiment, an oil sample is injected at the center of a test tube and placed

in a constant temperature bath that acts as the uniform heat generation source. A

thermocouple sensor is vertically inserted in the test sample. It is gradually heated

and temperature values at the radial position are measured and recorded using the

sensor until reaching equilibrium with the bath temperature. Then, the thermal prop-

erties of the fluid can be calculated from the temperature data using equation [3.1].

This equation represents the governing mathematical model for the approach and is

derived from the Fourier’s law for one-dimensional transient heat conduction with

the assumption of having heat transfer by conduction alone and uniform temperature

across a long thin tube.

Figure 3.2: A schematic representation of the thermal conductivity experiment
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Ks = Q

4π
ln∆t
∆T (3.1)

where Ks is the thermal conductivity of a tested sample, Q is the heating power, t is

the heating time, and T is the temperature

In this work, heat transfer module in Comsol Multiphysics 4.2 is used to acquire

temperature data in which different K values are calculated until it fits with the

experimental data (Figure 3.3). Then, the thermal conductivity of the material can

be found at a temperature of 30 ◦ C.

Figure 3.3: Example for temperature profile measured at the center for the 1.5%
graphite-based AGL nanofluid sample and compared with different predicted K values

3.3 Dynamic Viscosity Measurement

The purpose of this experiment is to determine µ of the nanofluids using a rheometer

instrument and to investigate the impact of NP additives on the rheological charac-

teristics. The device used for dynamic viscosity measurement is a controlled strain

AR2000 rheometer (TA Instruments, DE) with shear rate ranges from 1 to 2000 s−1.

The rheometer consists of three main parts, as can be seen in Figure 3.4. The main
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unit needed for the geometry. (2) The electronic box. (3) Sample holder. A sin-

gle experimental measurement takes approximately 11 minutes. The selection of the

geometry mainly depends on the fluid being tested. The plate can be concentric cylin-

ders or parallel plates. In the case of oils and gels, parallel plates are used with a 200

µm gap. In this rheometer, torque resolution of the instrument is 0.1nNm. During

the experiment, all other parameters including the working temperature of fluid, 40◦

C, speed of 60 rpms, and frequency of 1 Hz are held constant. Due to pre-shearing

the oil at small torque values, measurements are performed at steady-state conditions

after waiting 180 s. As such, viscosity data at very small torques are discarded and

not considered due to this experimental uncertainty.

The following procedures are followed:

• A sample is placed between the two plates. The bottom plate that is stationary,

and moves at a speed of 60 rpm, and a top plate known as the geometry where

a uniaxial compressive force at a displacement rate of 7.5 mm/s is applied and

shear stress is produced on the top plate.

• The sample then comes in close contact with the two surfaces and a 1 % strain

is applied.

• The built-in rheology software outputs two graphs: (1) Rheological curve: shear

stress vs. shear rate. (2) Viscosity vs. shear curve

3.4 Viscosity Index Measurement

VI is another important lubricant property that defines the change in viscosity with

respect to the change in temperature of oil. A high VI indicates minimal change of

viscosity with temperature, and on the other hand,a low VI means a large viscosity

change with temperature. A reverse-flow viscometer (Fig 3.5) is used to calculate
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Figure 3.4: TA AR2000 Rheometer

the VI values for the nanofluids under study. First, the kinematic values γ of the

nanofluids are measured at temperature of 40 ◦ C and 100 ◦ C, respectively. The

viscometer is inserted into a constant temperature bath where an oil sample is in-

jected in the bulb, the sample is allowed to flow vertically downwards until it reaches

the temperature of interest. This follows measuring the efflux time, in which γ is

calculated through multiplying: efflux time * size factor. This constant is dependent

on the size of the tested tube. Finally, VI values can be easily calculated from the γ

at both of the described temperatures.

Figure 3.5: ASTM D445 capillary viscometer
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3.5 Statistical Analysis

Results are reported as mean value ± std. All experiments are replicated five times

(n=5) to reduce uncertainty in measurements or artifact of instruments. The uncer-

tainty in the instruments are within 95% confidence. This is followed by performing

a t-test to evaluate if experimental results are statistically valid, where a p value <

0.05 is considered statistically significant. All experimental results reported below

are significant.

3.6 Results and Discussion

3.6.1 Thermal Conductivity

K results for two turbine jet oil fluid samples are summarized in Table 3.2. The

incorporation of BN NP materials in the oil increased K value from base oil of 0.142

(W/mK) to 0.167 (W/mK).

Table 3.2: Thermal conductivity results for turbine-based BN jet oil samples: values

are mean ± std

Jet oil sample (vol%) K (W/mK)

0% (Base oil) 0.142 ±0.006
0.5% (BN) 0.147 ±0.010
1% (BN) 0.167 ±0.008

K results for three AGL-based BN NPs and five AGL graphite-based NPs are

summarized in Table 3.3. Similarly to jet oil, increases in K values is observed for

the AGL fluid. 2% BN sample reaches a high of 0.178W/mK ±0.008, which is almost

a 30% increase, compared to the Base AGL sample. Graphite-based AGL nanofluid
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samples have shown the highest increases in K, compared to the BN-based additives

and turbine jet oil samples, reaching 0.220W/mK for the 2.5% graphite NP samples.

The rest of the dispersions display different ranges of K values ranging from 0.150

W/mK-0.195 W/mK.

Graphite particles are known to have substantial higher K values, compared to

BN. As such, the increases in K values for the AGL graphite-based nanofluid results

can be attributed to the incorporation of graphite particles with possibility of having

more surface available in the fluid that yield excellent thermal behavior and its ability

to reduce temperatures by conducting more heat, if applied as a potential lubricant

in the gearbox.

Table 3.3: Thermal conductivity results for AGL based samples: values are mean ±

std

AGL sample (vol%) K (W/mK)

0% (Base AGL) 0.135 ±0.012
1% (BN) 0.150 ±0.008
1.5% (BN) 0.155 ±0.014
2% (BN) 0.178 ±0.008
0.5% (graphite) 0.163 ±0.011
1% (graphite) 0.173 ±0.007
1.5% (graphite) 0.178 ±0.009
2% (graphite) 0.195 ±0.014
2.5% (graphite) 0.220 ±0.016

3.6.2 Shear-rate dependence

µ measurements in Figure 3.6 illustrate that the 0.5% jet oil-based BN nearly main-

tains Newtonian features even after the incorporation of the NPs with slight im-

provement in rheological properties, compared to base jet oil. However, the 1%
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incorporation of NPs clearly has a negative impact on the rheological behavior of oil,

which demonstrates non-Newtonian shear-thinning behavior. Despite measurements

being performed at low shear rate conditions in the rheometer, it is clear that the

incorporation of 1% jet oil additive has a dynamic viscosity dependent on shear rate.

After the sudden sharp decrease in viscosity, it became constant near the end of the

experiment, almost matching behavior of the other lubricants. This shows that the

1% jet oil additive is not meeting expectations of significant improvement in rheo-

logical properties for nanofluids. Based on this result, it can be theorized that the

1% jet oil additive would not perform as an optimum lubricant for the IGB at higher

shear rates, due to possible rheological changes in µ that can eventually lead to film

rupture, more friction, wear and high temperature responses.

Figure 3.6: Rheometer results for turbine jet oil BN samples. values are mean ± std
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Further theoretical investigation showed that the 1% jet oil sample falls into a Car-

reau model; a rheological model that describes shear-thinning behavior of Newtonian

fluids. The mathematical expression of Carreau model is given by:

(µγ − µ∞
µ0 − µ∞

) = [1 + (γλ)a]n−1
a (3.2)

where µ∞ is the viscosity function that approaches the constant value µ∞ as the

shear rate becomes large, µ0 is the viscosity function that approaches the constant

value µ0 as the shear rate becomes small, a is an exponent that affects the shape of

the transition region, γ is the time constant parameter for the fluid, n is a power-

law like parameter that describes the slop of the rapidly decreasing portion of the

viscosity curve where n = 1 for Newtonian fluids, n < 1 for pseudo-plastic fluids and

n > 1 for dilatant fluids.

The Carreau model agrees well with the 1% experimental data and can be consid-

ered a good fit (Figure 3.7). Furthermore, model parameters are summarized in Table

3.4 where the exponent n value is 0.23, indicating a shear-thinning response. More

details for this behavior of shear thinning in oil nanofluids is discussed in chapter 5.

Table 3.4: Carreau model parameters for 1% turbine jet oil sample

Parameter Value

µ∞ 0.022
µ0 2.48
a 4.35
n 0.23
λ 9.986

µ results for AGL-based BN and AGL-based graphite samples are summarized in

Figures 3.8 and 3.9, respectively. Viscosity data at smaller shear rates are discarded,
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Figure 3.7: Fitting the Carreau model to rheological data

where torque values are too small to reach steady state. Compared to the rheological

characteristics of jet oil from Figure 3.6, the AGL nanosamples demonstrated higher

µ with Newtonian behavior across the given shear rate range. Also, these AGL-based

graphite samples show significant increases of dynamic viscosity values, compared to

the base AGL.

Brownian and hydrodynamic interactions of particles in fluids are known to be

the main contributor for improving rheological characteristics. These hydrodynamic

interactions seem to be more dominant for graphite additives in the nanofluid samples

than those of BN-based samples. As the former may have more free surface avail-

able in the fluid, also the significate improvement of thermal properties of graphite

reported in previous section play a role to enhance rheological characteristics.
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Figure 3.8: Rheometer results for AGL BN samples. Error bars represent mean ±
std

Figure 3.9: Rheometer results for AGL graphite samples. Error bars represent mean
± std
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3.6.3 Viscosity Index

VI results from the reverse flow experiment are summarized in Table 3.5. The 0.5%

NPs sample increased VI value from 145 to 185, compared to the controlled sample.

Moreover, the VI experiment for the 1% sample could not be completed and was

terminated due to phase separation of particles, which correlates with the rheometer

results from Figure 3.6 that indicated drastic rheological changes in the oil sample.

Furthermore, VI results of AGL-based nanofluid samples are summarized in Table

3.6 with significant VI values as high to 182. As expected, VI results for AGL-based

nanofluids are higher than those obtained from jet oil that indicate less change of

viscosity with respect to temperature. These high VI values can be attributed to the

incorporation of particles and its ability to maintain a constant viscosity at different

temperature due to Brownian and hydrodynamic interactions.

Table 3.5: Viscosity index results for turbine jet oil BN samples:values are mean ±

std

Jet oil sample (vol%) VI

0% (Base oil) 145 ±6
0.5%(BN) 185 ±9
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Table 3.6: Viscosity index results for AGL graphite samples: values are mean ± std

AGL Sample (vol%) VI

0% (Base oil) 160 ±5
0.5%(graphite) 155 ±9
1% (graphite) 161 ±6
1.5% (graphite) 166 ±4
2% (graphite) 182 ±12
2.5%(graphite) 180 ±10

3.7 Theoretical Model

The well-known classical EMT models, such as, Maxwell and Hamilton fail to predict

thermophysical properties of nanofluids due to the inherent limitations of being a

function of concentration only in a solid-liquid mixture with submicron-sized particles,

and produce poor thermal and rheological properties (Abareshi et al., 2010; Earnshaw

and Riley, 2011). Thermal and rheological behavior of non-spherical NPs in non-

aqueous liquids,such as oil,is still not well understood (Yu et al., 2012). The purpose

of this study is to introduce a new comprehensive nanofluid model by combining

two well-known NP mechanisms that are most likely to represent the nanofluids

investigated: (1)Interfacial nanolayer of particle, which is defined as solid-liquid layer

around the particle surface and (2) Hydrodynamic interactions of particle during

dynamics the fluid. The model is modified from the conventional EMT as a quick

tool of analysis to approximately predict K and µ of the non-spherical particles.

In this study, the dynamic portion of the nanofluid model is developed utilizing the

kinetic theory approach and stokes regime to propose effective thermal conductivity

and viscosity models. The theoretical predictions are compared with the experimental

results and are tested with external data and existing models available in literature
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to confirm accuracy. The developed nanoflud model for thermal conductivity and

viscosity are developed in the next two sections with assumption of modelling a

single particle moving in a creep flow regime.

3.7.1 Effective Thermal Conductivity Model

An effective thermal conductivity (Ke) model is developed that takes into account a

modified static part (Ks) from the conventional Hamilton-Crosser model and a new

dynamic part (Kd) that encompasses the hydrodynamic interaction with Brownian

motion of the fluid particle and the particle-particle interactions where:

Ke = Ks +Kd (3.3)

Static Part

To consider the interfacial solid-liquid layer interface of thickness h surrounding the

NP of radius rp, length l (Figure 3.10) , an equivalent particle and volume fraction

(φe) is used that becomes an approximation for non-spherical or cylindrical particles

as follows:

φe = φpN = (2πr2
e + 2πrel)N = [2π(rp + h)2 + 2π(rp + h)l]N (3.4)

φe = 2πr2
p(1 + h

rp
) + 2πrpl(1 + h

rp
) = φp(1 + h

rp
)2(1 + h

l
) (3.5)

where N is the number of particles per volume, V, and re is the equivalent radius of

non-spherical particle.

Using equation [3.5] in the well-known Hamilton-crosser thermal conductivity

model (Wang and Mujumdar, 2007), the static part of the equation is modified as

follows:

Ks = (Ke + (n− 1)Kl + (n− 1)(Ke −Kl)φe
Ke + (n− 1)Kl − (Ke −Kl)φe

)Kl (3.6)
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Figure 3.10: Schematic representation of nanoparticle with liquid layering

Where Kl is the thermal conductivity of the fluid, n is the empirical shape factor

given by: n = 3
ψ
and ψ is the sphericity.

In this work, n=3 for the pseudo rod-shaped particles as ψ is 1. Ke is the effective

thermal conductivity of the particle and liquid layer combined and is given by:

Ke = (
[(n− 1)(1− γ) + φe

φ
(1 + (n− 1)γ)

−(γ − 1) + φe

φ
(1 + (n− 1)γ)

)Kp (3.7)

Where γ is the ratio of thermal conductivity of the liquid layer to that of the particle

and is approximately equal to 1.

Dynamic Part

From the kinetic theory, the heat flux or the energy across the interface (qn) between

a moving particle with Brownian velocity (v), time (∆t) and in thermal equilibrium

at T1 and T2 (Figure 3.11) can be defined as follows:

qn = ∆Q
∆tA = PNmP (T1 − T2)cv

∆tA =
−mPNCv

∆T
l
lv

A∆tv (3.8)

where l/D is the distance a particle moves without changing its direction. For

simplicity, it is assumed to be equal to 1, due to creep flow. mp is the mass of a

particle, and Vp is the volume of a particle.
∆T
/
l=∇T,mp = ρVp, A∆t = V ,Cv is the specific heat of the liquid, NVp

V
= φ is the

concentration of particles and P is the expected probability value of a single particle

to travel in one direction, which is estimated to be approximately one-sixth of total

particles generated in a given sample (Koo and Kleinstreuer, 2004).
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qn = (−PNρpVpCvlv
V

)∆T = −PφρpCvvl∇T = qn = −Kd∇T (3.9)

Figure 3.11: Schematic representation of a particle’s Brownian motion in two different
temperature gradients

Koo et al. developed a thermal conductivity nanofluid model for predicting the

effective thermal conductivity. However, their work was only limited to spherical

particles and the vb used in the analysis was independent of the particle concentration,

but it is more justifiable to employ the Brownian velocity as a function of particle

volume fraction. In this proposed model,the Brownian motion based on effective

diffusion concept is used after taking into account the equivalent volume fraction

(Earnshaw and Riley, 2011):

vb =

√√√√3kT (1− 1.5φe)
2πρer3

e

(3.10)

Where k is Boltzman constant, T is the temperature, φe is the effective volume

fraction, ρe is effective density of particle and liquid layer, and re is equivalent radius

of particle and liquid, given by re = rp+h. vb is substituted in equation [3.9] yielding:

Kd = PφeρlCv

√√√√3kT (1− 1.5φe)
2πρer3

e

(3.11)
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Model Parameters

During hydrodynamic interactions, part of the liquid surrounding a particle is affected

and should be considered. The analytical solution for the dynamics of non-spherical

particles is still a challenging task and such a solution is only available for spheri-

cal particles and only few researchers addressed this approach as an approximation

for the movement of non-spherical particles (Leith, 1987; Hölzer and Sommerfeld,

2008; Rohini Priya et al., 2012; Yu and Choi, 2003). However, the approach used for

modelling was only limited to regression analysis of existing EMT models without ac-

curately accounting for all dynamic parameters, while others developed non-spherical

nanofluid models based on the EMT, without taking into account effect of hydrody-

namic interactions.

This model takes into account several important dynamic factors such as particles

size, shape, temperature, velocity and interfacial nanolayer that would contribute to

the improvement of lubricant properties. In this proposed model (Figure 3.12), a

numerical solution using creeping flow interface in Comsol Multiphysics 4.2 is utilized

as an approximation for the model to estimate the region moving with the particle

(Vf ). This model assumes steady-state creep flow (Re<1) as follows:

Vf = 3.14
6 a2b (3.12)

The numerical representations are presented in Figure 3.13 that show Vf is an el-

lipsoid being influenced by the particle motion for both a spherical and a non-spherical

shape. Fluid bodies surrounding particles depend on the shape of the ellipsoid with

dimensions a and b. This means more bodies of fluid for the non-spherical case are

expected to move with the NPs than those of the spherical and as a result enhance

thermophysical properties. From the creep flow, boundary conditions are estimated
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Figure 3.12: Schematic representation of the proposed mechanism: particle with
surrounding fluids

to be: vmax = 0.01vbrownian at r = 0 and v = 0 at r = rmax and the dimensions

of the ellipsoid can be determined as follows:

a = 4.317D + 5.275H − 0.325DH + 17.500 (3.13)

b = 8.367D + 10.233H − 0.637DH + 35.611 (3.14)

where a, b are the dimensions of the ellipsoid. D and H are the diameter and height

of a particle, respectively.

Therefore equation [3.11] turns into:

Kd = VfPβφeρlCv

√√√√3kT (1− 1.5φe)
2πρer3

e

f(T, φ) (3.15)

Kd = 40660PβφeρlCv

√√√√3kT (1− 1.5φe)
2πρer3

e

f(T, φ) (3.16)

where β is the first model parameter that represents the particle-liquid interaction

and a fraction of Vf travelling with the liquid. Furthermore, the effect of particle-

particle interaction is considered and is assumed to be very strong and represented
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Figure 3.13: Numerical solution of Comsol model to estimate region of influence

by a fractional function f(T, φd), which is the second model parameter. Both these

parameters were empirically developed in the literature(Das et al., 2003; Patel et al.,

2003).

Estimation of model parameters

In this work, both β and f are a function of particle concentration (φ), where β is

expected to decrease with increasing particle concentration. Also, f increases with

the increase of particle concentration. we use only one parameter, α that accounts

for all possible hydrodynamic interactions, given by:

α = β.f (3.17)

α = φ−C1 .(C2φT + C3T ) (3.18)

where C1, C2 and C3 are constant parameters that are calculated by fitting the

experimental data.

The final expression for dynamic thermal conductivity in non-spherical particles

is given by:

Kd = 40660PφeρlαCv

√√√√3kT (1− 1.5φe)
2πρer3

e

(3.19)
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3.7.2 Effective Viscosity Model

Using the same approach for deriving the effective viscosity model, a modified Batch-

elor equation for non-spherical NPs is used as the static part in the model (Wierenga

and Philipse, 1998).

µs = 1 + r2
e

15 ln re
φ+ 36r6

e

5π2β ln re
φ3 (3.20)

where re is the equivalent radius of the particle and β is an empirical factor(103-106)

The final form of the dynamic viscosity portion model is given by:

µd = VfPφeρlα

√√√√3kT (1− 1.5φe)
2πρer3

e

(3.21)

Comparing with the dynamic thermal conductivity model:

Kd = VfPαφeρlCv

√√√√3kT (1− 1.5φe)
2πρer3

e

(3.22)

Most of the work in the literature developed nanofluid models based on spherical

nanoparticles dispersed in aqueous solutions (eg.water), as spherical particles are

easy to be investigated both experimentally and theoretically. However, nanofluids

for real-life application are mostly non-spherical due to the high aspect ratio and

more promising characteristics. Section 3.7 developed a new nanofluid model based

on the EMT approach that describes thermophysical properties for non-spherical NPs

dispersed in oil. A new dynamic term, represented in equations [3.21] and [3.22] is

developed to account for hydrodynamic interactions that include Brownian motions

as well as several other parameters: temperature, particle concentration, size, and

shape.
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3.8 Nanofluid Model Results

3.8.1 Effective Thermal Conductivity

The relative thermal conductivity (Kr = Ke/Kb) is the output from the model and

is used as an indicator to compare the performance or effectiveness of nanofluids

relative to base fluids, where Ke is the effective thermal conductivity and Kb is the

thermal conductivity of the base fluid. From equations [3.7] and [3.19], model results

are summarized in Figure 3.14 that show an increase in the Kr value with particle

concentration. An increasing trend is developed where theoretical results from the

proposed Kr model almost agree with the experimental data having an R2 value of

0.988. Moreover, results are compared to the existing predictions of Hamilton-Crosser

model that is unsuitable for AGL nanofluids and yields lower predictions than the

experimental values.

Model results for the jet oil and BN AGL samples are summarized in Figure

3.15. However, unlike the graphite-based AGL samples, there are limited number of

experimental data to test the model.

To validate the accuracy of this proposed model, three external experimental data

sets from Rohini (Rohini Priya et al., 2012) are fit to the proposed model and results

are presented in Figure 3.16. Rohini produced non-spherical Copper oxide NPs dis-

persed in water as the base fluid. Results show that the theoretical predictions to a

great extent closely agree with the experimental data at different temperatures. The

accuracy of the model increases at higher temperatures (R2 = 0.971) that demon-

strates the impact of particle dynamics on thermal properties of AGL nanofluids.

The proposed model is compared with existing non-spherical nanofluid models from

the literature, it demonstrates more adequate K results than those presented by Choi

and Rohini (Yu and Choi, 2003; Rohini Priya et al., 2012). Also, results are compared

with Maxwell model to emphasize the advantageous attributes of non-spherical NPs.
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Figure 3.14: Comparison of thermal conductivity model predictions with graphite-
based AGL experimental data sets

Maxwell model was originally developed to predict spherical NPs in fluids. The for-

mer under predicts the external experimental data and is not considered to be a good

model for this application. Table 3.7 summarizes fitting parameters for the thermal

conductivity model, where the constant parameters depend on the size and shape of

the particles during hydrodynamic interactions.

Table 3.7: Thermal conductivity model fitting parameters

Fluid particle percentage (%) C1 C2 C3

AGL 0.5-2.5 -0.97954 2.23 ∗ 10−6 −1.7 ∗ 10−8

Water 0.4-1.6 -0.89996 0.000489 −1.5 ∗ 10−6
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Figure 3.15: Comparison of thermal conductivity model predictions with BN-based
turbine jet oil and AGL experimental data sets

3.8.2 Effective Viscosity

The relative viscosity (µr) of AGL graphite NPs is presented in Figure 3.17. Similarly,

model results using equations [3.20] and [3.21] show increases in the relative viscosity

with particle concentration that closely agrees with experimental data (R2 value of

0.981), in which an increasing trend can be observed. Similarly results are compared

to the existing predictions of Batchelor model from the EMT that is clearly unsuitable

for nanofluids and yields lower predictions than the experimental values.

External experimental data from the literature is fit to the proposed model

(Duangthongsuk and Wongwises, 2009) that used water as base fluid. Results in

Figure 3.18 demonstrate the effectiveness of the theoretical predictions compared to

the experimental data produced at different temperatures and concentrations. The

proposed model at 25◦C is in agreement with the existing model from the literature

presented by Duaugthongsuk. However, at 30◦C the proposed model produces more
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Figure 3.16: Comparison of thermal conductivity model predictions with external
experimental data

suitable µ results with R2 = 0.975. Similarly this indicates the importance of the hy-

drodynamic interactions among particles that was not introduced in Duaugthongsuk

nanofluid viscosity model. Table 3.8 summarizes fitting parameters for the viscosity

model, where the constant parameters depend on the size and shape of the particles.

3.9 Conclusions

This chapter demonstrates the crucial impact NPs have on thermophysical properties.

Turbine jet oil and Mobil AGL nanofluid samples are experimentally investigated

using offline tools to test the hypothesis of the improved characteristics of the oil

samples and to select the samples with optimum thermal and rheological properties

needed for online testing. Despite viscosity being measured in a rheometer with lower
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Figure 3.17: Comparison of viscosity model predictions with graphite-based AGL
experimental data sets

Figure 3.18: Comparison of viscosity model predictions with external experimental
data sets
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shear rate conditions than those expected in a gearbox, results provide an important

understanding of viscosity of nanofluids.

The addition of BN NPs in turbine oil has improved thermal characteristics. How-

ever, shear-thinning behavior of the oil is clear due to the incorporation of NP addi-

tives. Furthermore, BN and graphite NP additives in base AGL are tested. It is shown

that the incorporation of graphite-based AGL samples display significant increases in

both K, and VI with with minimum change in µ , demonstrating Newtonian charac-

teristics, compared to both turbine-based samples and AGL-based samples with BN

additives. Based on these findings, four AGL samples with graphite additives are

applied as new lubricants for online testing in the IGB.

A new nanofluid model is proposed that introduces two key mechanisms responsi-

ble for the enhanced properties. The proposed model has demonstrated the ability to

predict K and µ of non-spherical nanofluids with R2 value as high to 0.988. External

experimental data from the literature is used to test the model. Results are found

to be a good fit to the external data when using different fluids with high R2 values

(0.971 and 0.975) that can produce more adequate results than existing literature

models. Overall, the model promotes importance of the flake-like morphology of NPs

(eg. aspect ratio) coupled with its dynamic behavior to drastically increase fluid prop-

erties, compared to spherical NPs. More experimental data sets would still be needed

to improve the proposed model accuracy and have solid conclusions. Despite the

reasonable assumptions made to the model that include: creep flow and movement

of NP in one direction, it has given a fundamental understanding of non-spherical

NP behavior in oil lubricants. These results can be further expanded to more ad-

vanced computational studies that involve numerical simulations of AGL nanofluids

in turbulent fluid flow conditions, and is beyond the scope of this work.
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Chapter 4

A novel methodology for gearbox feature

extraction using wavelet analysis

4.1 Introduction

This chapter is two-fold. The first part focuses on a signal-based approach of wavelet

analysis for feature extraction. The mathematical theory of wavelets is presented.

Based on this theory, a new wavelt index is developed as a potential signal processing

tool, denoted as WI. Sections 4.2-4.4 were previously summarized in (Gouda et al.,

2015). Second part presents a feature selection methodology using statistical analysis

on the wavelet results to prove if results are statistically valid. This is a key part

because of redundancy from the continuous wavelet transform. A wavelet denois-

ing method based on a modified thresholding is proposed to remove small wavelet

coefficients caused by noise and improve wavelet index performance. Section 4.4 il-

lustrates a detailed step by step approach for the wavelet denoising method, and a

wavelet-scheme for feature extraction is summarized. Also, section 4.5 summarizes

a statistical test to be performed on the wavelet power spectrum. Wavelet power

of Gaussian white noise(GWN) is used to derive the null hypothesis with an 85 %

confidence interval estimated about the wavelet power spectrum mean value.
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4.2 Wavelet Transform

Wavelet transform is the convolution of the signal xn with a set of wavelets of var-

ious scales (stretches) and shifts in time. The output at a given time and scale is

known as the wavelet transform coefficient. The CWT is defined in the discrete form

as a function of two variables and performs the following inner product operation

(Heidari Bafroui and Ohadi, 2014):

C(τ, s) = 1√
|s|

T−1∑
t=0

x(n).ψ∗((n− τ)δt
s

) (4.1)

where C is the wavelet transform coefficient, xn is the discrete input signal, s is the

scale, τ is the translation or the location of the window, ψ is the mother wavelet and
∗ stands for complex conjugate. The energy of the wavelet is normalized by 1√

|s|
, so

that the wavelets have the same unit energy at every scale.

4.3 Mother Wavelet

The wavelet function adopted in the analysis is non-orthogonal. Numerous mother

wavelets have been broadly investigated in the literature. However, Morlet has been

shown to accurately represent signals in condition monitoring applications because

of its similarities to the intermittent impulses, which are the symptoms of faults in

machinery diagnostics applications (Rafiee et al., 2010). In this work, Morlet is chosen

as the mother wavelet. A Morlet wavelet is presented graphically in Figure 4.1 as

an exponential decaying cosine function that satisfies the regularity condition (Fugal,

2009).

The mathematical description of the Morlet wavelet is given in equation [4.2].

For a successful transform, the mother wavelet satisfies the admissibility condition as

shown in equation [4.3] and equation [4.4] (Su et al., 2010).
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Figure 4.1: Example of a Morlet Wavelet

ψ(t) = exp(−t
2

2 ) cos(5t) (4.2)

∫ ∞
−∞

|ψ(|ω2|)
|ω|

dω (4.3)

where ψ(ω)is the FT of ψ(t). This admissibility condition implies that the Fourier

transform of the mother wavelet is 0 at 0 frequency. Thus, the mother wavelet has

no DC component as follows:

ψ(0) =
∫
ψ(t)dx = 0 (4.4)

4.4 Development of a Wavelet Index

A wavelet index (WI) is proposed as a new tool to determine whether a CWT to

detect failure is possible. Wavelet coefficients are a measure of vibrational energy

distribution in the signal at a certain scale. These coefficient values can be used as an

indicator to describe progression of fault in the gearbox. The proposed WI is given in
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equation [4.5]. The wavelet coefficients from the convolution are first used to compute

the wavelet power spectra. Then, the index is computed by summing the absolute

wavelet power spectrum values, which are located at different time shifts and at a

particular scale that represents the frequency of interest in the gearbox. The WI is

then further normalized by the number of samples for better comparison with other

index values.

WIs =
n2∑

n=n1

|Ci(τ, s)2|
N

(4.5)

Where |Ci(τ, S)2| is the absolute wavelet power spectrum at a given scale s and

n is the wavelet energy sample at given position in τ .

To relate the WI to the actual frequencies in a physical system, the scales can be

converted to a pseudo-frequency as follows:

Fs = Fc
s.Ts

(4.6)

where Fc is the central frequency of the Morlet wavelet, s is the scale and TS is

the sampling period.

4.5 Wavelet Thresholding: Denoising

Real-world vibration signals from rotating components are often corrupted with noise

that can lead to loss of important information. As previously discussed in chapter 1,

there are numerous linear filtering techniques used to remove noise and process the

data for feature extractions such as time synchronous averaging or Fourier analysis.

However, these frequency domain filtering are often ineffective to separate all the

noise from signal due to spectra overlap.

It is crucial to remove noise from signals before diagnosis, while keeping true

features untouched. Unlike the classical filtering methods, a key attribute of using

wavelets is suppressing noise by means of thresholding the wavelet coefficients, and
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have the signal information represented with small number of large wavelet coeffi-

cients. The thresholding approach is based on the hypothesis that small wavelet

coefficients are caused by noise in the signal, while large absolute wavelet coefficients

contain the important impulse characteristics. To do this, the absolute wavelet co-

efficients are compared with the variance of the wavelet coefficients. Therefore, it is

crucial to chose a wavelet function that would match impulse components in the signal

and yield high wavelet coefficients. There are numerous wavelet shrinkage methods

presented in the literature (Guo and Zhang, 2012). The most famous is the wavelet

scheme using hard and soft shrinkage, as proposed by Donoho and Johnstone(Donoho

and Johnstone, 1995).In their work, Donoho and Johnstone proposed a wavelet de-

noising thresholding technique, in which the empirical wavelet coefficients are being

threshold based on an appropriate shrinkage function (Φ) to remove the unwanted

noise from the signal. Wavelets has the capability of thresholding its coefficients. The

larger the value is an indication of true features, and the smaller the value can be

presented as noise.

If we assume the background noise to be GWN with zero mean and unknown

variance. After the transform, the noise-based wavelet coefficients has the same inde-

pendent distribution. According to the statistical inference of Donoho, the distribu-

tion depends on the variance of the noise and number of data points. An appropriate

threshold value, T is calculated based on the given data. If the wavelet coefficients

are below this value, a reasonable estimator for the wavelet coefficient is zero. Thus,

we cannot separate wavelet coefficients from noise. On the other hand, if large coef-

ficients above T value are kept untouch, then an estimator is the wavelet coefficients

itself. The proper choice of threshold depends on several factors: variance of noise

(σ2), sample size (N), and signal-to-noise (SNR) ratio. A large T value, yields fewer

wavelet coefficients, resulting in over-smoothing. This can lead to the possibility

of losing important information. On the other hand, with a small T value, yields
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more wavelet coefficients. The optimum selected of T for noise damping performance

still remains an open statistical problem. Wavelet denoising methods as presented

by Donoho has been successfully implemented in numerous applications for image

processing and edge detection.

However, it has two shortcomings when applied with mechanical diagnostics.

First, the background noise might not be modeled as GWN due to the dyadic dis-

cretization, white noise means constant power at all the frequencies. Second, an

orthogonal wavelet has to be used for the DWT damping noise capabilities. In this

dissertation, a modified hard thresholding approach is proposed using non-orthogonal

Morlet function instead of a dyadic DWT. High and low frequency components can

appear in the signal with different features of mean and variance. The approach used

here is a sample size-dependent threshold method, where T values are calculated for

each signal of sample size, N.

Advantages of using wavelet thresholding denoising in this work are:

• Elimination of small wavelet coefficients caused by noise; minimizing false

alarms

• Improvement of the proposed WI metric, represented by fewer number of

wavelet coefficients

Based on these advantage attributes, a proposed a wavelet scheme for gearbox

feature extraction is presented in Figure 4.2. The detailed mathematical steps for

denoising WI approach is given as follows:

Step 1.The given input original signal,x(n) is modeled as:

y(n) = x(n) +GWN(0, σ2) (4.7)

where y(n) is the signal with GWN, N is the noise with zero mean and finite variance.

Step 2. Perform the CWT and compute wavelet coefficients C(τ, s) as explained in
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equation [4.1].

Step 3. Compute the variance of noise, σ2 from the given wavelet coefficients

(Donoho and Johnstone, 1995).

σ = med(|Cτ, s|)
0.6745 (4.8)

where med(Cτ, s) is the median of the absolute wavelet coefficients.

Step 4. Thresholding the coefficients using a universal threshold, T value (Narona

et al., 2013).

T = σ2
√

2log(N) (4.9)

where σ2 is the variance of wavelet coefficients, N is the number of samples. In this

study, thresholding is performed on different intervals of collected gearbox data to

compute different T values with noise reduction capabilities

Step 5. This step attempts to remove the irrelevant wavelet coefficients caused by

noise. Thresholding is performed using the following shrinkage function (Narona

et al., 2013):

Φ =


y, if |y| ≥ T

0, if|y|<T

Step 6. Reconstructing the original denoised signal, y(n) by computing the inverse

continuous wavelet transform (iCWT) from the revised wavelet coefficients. Despite

the redundancy of CWT, an approximate reconstruction of the signal is possible from

a subset of CWT coefficients.

s(n) = 1
Cψ

n2∑
n1

C ′i(s, n)s−3/2 (4.10)

where C ′i is the revised wavelet coefficients, and Cψ is defined in equation [4.3].

Step 7. Compute the WI metric after eliminating irrelevant wavelet coefficients due

to noise.
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Step 8. In this last step, a statistical analysis is performed by evaluating the root-

mean square error (RMSE), SNR, and correlation coefficient (R). These metrics are

commonly used in the literature to evaluate wavelet denoising reduction performance

(Narona et al., 2013).

RMSE =

√√√√ 1
N

N∑
i=1

(stdOriginalsignal − stdDenoisedsignal)2 (4.11)

The SNR can be determined as:

SNR = 10log10

N∑
i=1

(Denoisedsignal)2

N∑
i=1

(originalsignal − denoisedsignal)2
(4.12)

The correlation coefficient is a statistical measure that illustrates resemblance of

predicted signal and original signal.

R =

N∑
i=1

(x− x̄)(y − ȳ)√
N∑
i=1

(x− x̄)2
N∑
i=1

(y − ȳ)2

(4.13)

Figure 4.2: A proposed wavelet scheme for denoising the wavelet index
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4.6 Statistical Test on Wavelet Power Spectrum

In this section, statistical analysis is extended to prove if wavelet power spectrum

results are statistically valid through a statistical test, which should be taken into

consideration to avoid misinterpretation of the data. Statistical tests using wavelets

is not something new and has been extensively studied in the literature(Torrence and

Compo, 1998; Ge, 2008). However, their work was limited to theoretical signals and

few actual observations, here we will extend the developed statistical test for wavelets

using real-world vibration data from mechanical systems. The same reasonable as-

sumption is valid in which the wavelet power spectrum of studied samples follows

a normal distribution about a mean value. Ge created the null hypothesis from the

wavelet power sampling distribution of GWN for the statistical test that was found to

be dependent on the covariance of wavelets at different time locations. Consequently,

this significant test depends on the choice of wavelet functions, as well as, distribution

of wavelet power at different time locations. The mean wavelet power spectrum (or

WI) can be shown in equation [4.15], and is defined as sum of the absolute wavelet

power spectrum values that are located at different time shifts and at a particular

scale or frequency. Finally, the null hypothesis when only using Morlet wavelet is

given by equation [4.14].

|C|2

σ2 =⇒ 1
2δtX

2
k(1− α) (4.14)

¯C(s)2 = 1
N

n2∑
n=n1

|C(s, n)2| (4.15)

Equation [4.14] shows that the normalized wavelet power have a chi-squared nor-

mal distribution only when using Morlet wavelet function, where k is the degree of

freedom (k=2, incase of Morlet ), δt is the sampling time, σ2 is the variance of input
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vibration signal, and (1 − α) is the significance level for confidence interval, α can

have different values such as 0.05, 0.01, and 0.1, and depending on the application.

The null hypothesis is accepted if a wavelet power spectrum peak is below the

significant level and can be inferred due to random noise. On the other hand, the

null hypothesis is rejected, if wavelet power spectrum is above this level, then one can

say that the wavelet results are statistically significant with a confidence level that

represent true features of the system.
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Chapter 5

Oil Nanolubricant Testing: A new approach

5.1 Introduction

This chapter consists of two main parts. The first is testing of nanofluids in a prelim-

inary test-bed known as ‘no-load’ test stand. The second part is nanofluid testing in

the TRDT test stand with load being applied. Numerous vibration and temperature

data are collected during the experiments to investigate the impact of nanofluids on

IGB responses. The newly developed wavelet index is applied on the raw vibration

data as a metric to reflect on lubricant testing conditions. Furthermore, viscosity

measurements are performed after gearbox testing to investigate changes in rheolog-

ical characteristics of nanofluids.

5.2 No-load Nanofluid Testing

The purpose of this testing is to filter out poorly performed oil samples in the IGB

based on the dynamic responses and to reduce the number of variables tested on

the full-load TRDT. The no-load test stand in Figure 5.1 is capable of being used

as a preliminary test bed for components before moving to the full-load test stand.

Currently, the no-load test stand is set up similarly to the tail rotor drivetrain test

stand. It is driven by a 5 horsepower motor and it allows for full speed testing of

components without applying a torque load. It is worthy of mentioning that in the

no-load there are difficulties in identifying the frequency components in the IGB due
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to the free vibration, noise or other components in the drivetrain sharing similar

frequencies. For the purpose of this task, as much as possible, analysis is performed

as if no other vibrational information are present.

Testing is preformed on an IGB that was removed from an Apache aircraft after

completing its lifetime. A design of experiment (DOE) approach is applied , where

the four chosen nanofluid samples alongside a fifth control AGL sample (0%NPs) are

tested for a thirty minute experimental run per sample (Table 5.1). The purpose

of this DOE is to identify the dominant factor that would yield optimum responses.

The concentration of NPs is the tested factor with different levels of concentrations,

and vibration and temperature are the experimental responses. Each sample is tested

three times, and after completing all the experimental runs of a tested sample, the

gearbox is drained and flushed at least 3 times using fresh oil to ensure the removal

of oil from the previous experiment. All experiments are performed in a controlled

climate lab environment.

Figure 5.1: No-load test stand at USC
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Table 5.1: Design of experiment on no-load test stand: 15 total of experimental runs

Experimental run NP Concentration (vol%)

1,2,3 0% (control sample)
4,5,6 1%
7,8,9 1.5%
10,11,12 2%
13,14,15 2.5%

5.3 Data Description

NI-DAQ (cDAQ-9174) is used to acquire vibration data that is collected periodically

during the thirty minute experimental run (Figure 5.2). The responses are measured

using sensors as illustrated in Figure 5.3; a spark type accelerometer to measure

vibration from the gearbox and a K-type thermocouple that measures temperature

close to the gear mesh. On the other hand, temperature data is collected continuously

during the coarse of the experiment. The following sampling parameters are used:

• Total sampling period: 4 s

• Sampling Frequency: 52 kHz

Figure 5.2: Acquiring vibration data

Oil in the gearbox lubricates both gears and bearings with a fluid film between

moving surfaces. So, it is crucial to measure bearing temperature to investigate the
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Figure 5.3: Accelerometer and thermocouple sensors on IGB

impact of nanofluids on bearings. Additional thermocouple sensors are installed near

the input roller bearing (IRB) and output dublex bearing (ODB), as illustrated in

Figure 5.4.

5.4 Results and Discussion

5.4.1 Temperature Analysis

Temperature readings for two experiments performed on the no-load stand are sum-

marized in Figure 5.5. The response of the lubricants have the same trend from both

experiments, almost reaching steady state after 25 minutes. A significant improve-

ment is seen in temperature responses due to the implementation of NPs in the oil

lubricant. The 1.5% and 2% NP samples demonstrate an operating temperature near

150◦F , which is approximately 35◦F less than that of base AGL, while the 1% shows

minimum improvement.
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Figure 5.4: Different thermocouple sensors on IGB

As briefly mentioned in chapter 1, the lubrication mechanism between gears is

the EHL, where friction is dependent on shearing of the lubricant film. As such,

the nanolubricant maintains a solid film between gear surfaces, with particles having

high surface area-to-volume ratio. This means it has the capability to absorb heat

generated due to friction more effectively than the base AGL, carrying it through

the lubricant, and speeding heat transfer between the oil and metal contaminants.

The heat dissipates away by conduction or convection, resulting in the cooling of the

gearbox. Surprisingly, the 2.5% had an operating temperature higher than that of

base AGL. Apparently, excessive amount of heat is generated due to incorporation

of the NPs in oil. Analysis of other system dynamics in the upcoming sections are

investigated. Results are connected to the nanofluid mechanism from chapter 3 to in-

terpret the reason of the unexpected high temperature response of the 2.5% nanofluid.

Overall, these temperature results are promising to improve the performance of the

gearbox with the possibility of reducing friction and slowing oil break down.
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Figure 5.5: Average operating temperature of IGB on the no-load using different oil
samples from no-load experiments

From the same experiments, bearing temperature plots are summarized in Figures

5.6 and 5.7. The 1.5% sample has demonstrated slight decreases in IRB and ODB

temperatures, compared to AGL. The response from the 2% sample has shown the
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most significant decreases in temperature. On the other hand, the 2.5% sample

had minimum improvement effect on bearings, where the thermal plot demonstrated

responses close to that of the AGL, indicating poor thermal characteristics.

Nanofluids also have an impact on improving bearing temperature. In the case of

nanofluids, a very strong lubricant film between the surfaces is formed that absorbs

heat and cools supporting bearings of the IGB.

Figure 5.6: Average bearing temperature of IGB on the no-load. Base AGL (left)
and 1.5% (right)

Figure 5.7: Average bearing temperature of IGB on the no-load. 2% (left) and 2.5%
(right)
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5.4.2 Vibration Analysis

A typical waveform from the collected raw vibration data can be seen in Figure

5.8. These signals are complex and have a low SNR to extract meaningful vibration

features. The data has to be further processed for better feature extractions.

Figure 5.8: Example of waveform sample collected from Intermediate gearbox

Spectral analysis is a tool used for diagnostic capabilities in rotating machinery. A

gearbox spectrum contains vital information about this complex system that include:

shafts rotational frequency, bearing frequencies, GMF, harmonics, and sidebands.

Other high frequency components can be excited in the spectrum such as structural

resonance or noise.

Samples of the auto-power-spectrum (PS) from the oil experiments is presented

in Figured 5.9 and 5.10. PS plots show the majority of energy near the GMF of IGB

at 3000 HZ with the presence of other GMF harmonics, sidebands and other high

frequency components. As previously mentioned due to the nature of the no-load test

stand, there is a possibly of having other high frequency noise from the remaining

drivetrain components in the spectrum and it is extremely challenging to distinguish

true vibrational properties.

For a qualitative description of the system, cumulative sum of numerous PS sam-

ples taken at different time-locations of no-load testing are summarized in Figures
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Figure 5.9: Example of power-spectrum (Base AGL)

Figure 5.10: Example of power-spectrum (2% nanofluid sample)

5.11-5.13. A trend develops from these different samples. Nanofluid show almost little

to no impact impact on improving vibrations of low-frequency bearing components

that approximately range from 500 Hz-29000 Hz. However, differences in frequency

response for the tested lubricants appear at high gear mesh harmonics (>3000 Hz),

where the 2% NP sample displays overall less vibrational energy, compared to all

tested samples, and the 2.5% NP sample has the highest energy response.

It can be theorized that the damping effect in vibration at high gear mesh fre-

quency harmonics is attributed to the impact of nanofluids. It lubricates gears
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through a solid fluid film, where the NPs act as a filler or bundles between sur-

faces, having the capability to absorb load and reduce vibration effects. These key

vibrational characteristics that represent the actual physical system (eg. misalign-

ment, wear, or friction) start to appear due to interactions between gear surfaces and

are picked up by the gearbox spectrum.

Figure 5.11: Cumulative sum of PS plot after 10 minutes

Figure 5.12: Cumulative sum of PS plot after 20 minutes
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Figure 5.13: Cumulative sum of PS plot after 30 minutes

Wavelet analysis is performed to validate spectral results an to capture periodic

impulses that are still buried in noise. Impulses are localized in time, therefore, it is

preferable to perform the analysis at finer time granules. The sampling period of four

seconds collected on the no-load test stand are cut-off into smaller window samples

of 0.01 seconds to accurately capture transients in signals.

Wavelet plots at different temporal locations are summarized in Figures 5.14 and

5.15. Additional frequency bands in the ranges of 1000 Hz-2800 Hz from the 2.5%

nanofluid samples are repeated. These transient characteristics can also be seen from

the base AGL samples, but with a slightly less distribution. On the other hand,

the 2% nanofluid samples have less vibrational distribution near bearing frequencies.

These frequency components represent second, third, and fourth energies of ball pass

frequency. Moreover, the repeated wavelet peak distributions near GMF harmonics

from the base AGL and the 2.5% nanofluid samples progress with more intensity,

compared to distribution from the 2% sample.

These impulses can occur due to poor lubrication between gears or on the inner-

race or outer-race of a bearing. As a gear or roller spin through a defect an impulse

can appear that can be the start of a possible fault in the system and have to be
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detected in its very early stages. It can be theorized that the nanofluid properties

near surface become important in reducing vibration effects through maintaining a

strong lubricant film during friction. The high surface-area-to volume ratio of the

particles increases the capability of the lubricant to absorb loads effectively.

Figure 5.14: Wavelet plots during gearbox testing.2.5% nanofluid (top) and base AGL
(bottom). Circles represent regions of additional frequency components

The proposed WI is applied on the truncated experimental data at different time

intervals and for different lubricants and computed at a frequency where majority of

energy appears, 3400 Hz. Results are summarized in Figure 5.16. As the concentra-

tion of NPs increase, WI values demonstrate a decreasing trend for 0.5%, 1%,1.5%,

and 2% samples due to the incorporation of the nanolubricants. However, WI yields

the highest value for the 2.5% sample, which is an indication of more transient char-

acteristics.
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Figure 5.15: Wavelet plots during gearbox testing. 2% nanofluid (top) and base AGL
(bottom)

These wavelet results agree with the conventional spectral analysis and validate

the importance of nanofluids to reduce vibration effects by maintaining a strong

lubricant film between surfaces that tend to reduce vibration sources at high gear

mesh frequency harmonics

Figure 5.16: Proposed wavelet index for tested lubricants on no-load test stand. Error
bars represent mean ± std
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5.4.3 Viscosity Analysis

Nanofluids are expected to be applied in real-life applications with flow conditions

and so viscosity plays a key role in performance and is affected by many factors.

Shear-rate and temperature are two of them that impact rheological characteristics

of nanofluids. In this section, we will investigate these effect on the tested nanofluids.

Rheometer measurements are performed under lower shear rate conditions than the

real gearbox. However, viscosity results give an important understanding of impact of

NP additives in oil on the rheological characteristics, predicting the expected behavior

of tested lubricant in a gearbox.

Shear-rate dependence

After gearbox testing, the dynamic viscosity of used oil are measured in the rheometer

and results are summarized in Figure 5.17. Results illustrate that nearly all nanofluids

had a Newtonian plateau with slight decreases in dynamic viscosity values even after

gearbox testing. However unlike the initial results of fresh oil from Figure 3.9, the

2.5% nanofluid sample clearly demonstrated a shear thinning behavior due to the

NPs. These results seem to be consistent with findings in the literature that showed

low viscosity NP dispersions are approximated as Newtonian fluids, where as high

viscosity NP dispersions (> 3%) demonstrate non-Newtonian flow (Zhou et al., 2010).

From a colloidal suspension point of view, Newtonian fluids are changed to non-

Newtonian fluids due to complex interactions between the fluid and particles. Re-

calling nanofluid model results from chapter 3 that concluded key mechanism for

increasing thermophysical properties is the hydrodynamic interactions between fluid

and particles. Therefore it can be hypothesized that under high shear rates, aggrega-

tions are formed in the relatively high concentration 2.5%, leading to an inhomoge-

neous network structure of NPs that negatively impact fluid properties and possibly

to disrupt dynamic interactions of the particles. This means that nanofluid sample

would form an ineffective lubricant film between gears and bearings. Mechanical fric-
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tion may start to occur, and this explains high temperature and vibration responses

from onboard sensors that are presented earlier in this chapter. Low concentration

nanofluids have small shear-rate dependence and can be approximated as Newtonian

fluids. However, relatively high concentration of particles in nanofluids often show

non-Newtonian behavior due to shearing of NP additives.

Figure 5.17: Rheometer results for tested AGL nanofluid samples. Error bars are
mean ± std, n=5

Temperature dependence

The nanofluid model from chapter 3 illustrated that temperature dependence of

nanofluid viscosity is vital, as it influences hydrodynamic interactions. As a result,

temperature dependence on the absolute viscosity and relative viscosity (µr = µ/µb)

of nanofluids are investigated. A TA AR2000 rheometer with a temperature sweep

feature is used to measure relation between apparent viscosity and temperature. The

following controlled variables are used:
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• Temperature ranges from 8◦C-56◦C

• 1% strain applied to allow flow of material

• Speed of motor is 60 rpm

The relation between viscosity of nanofluids and temperature is summarized in

Figure 5.18. As expected for for all liquids, viscosity of nanofluids decrease with the

increase of temperature. However, the change of dynamic viscosity with temperature

is slightly greater for the largest concentration Np sample, compared to all tested

fluids.

Figure 5.18: Relation between dynamic viscosity of nanofluids and temperature

The viscosity-shear rate results presented is a motive to explore more on the rela-

tion between relative viscosity, µr and temperature of nanofluids. Relative viscosity

is computed and is plotted against temperature for all nanofluid samples in Figure

5.19. According to this graph, relative viscosity for the 1%, 1.5%, and 2% is almost
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constant against temperature with values around 1.5 ± 0.04, 1.79 ± 0.02, and 2.24

± 0.07, respectively. However, the relative viscosity of the 2.5% nanofluid sample de-

creases with increasing temperature. These relative viscosity trends with temperature

are consistent with results in the literature (Zhou et al., 2010).

Figure 5.19: Relation between relative viscosity of nanofluids and temperature. Error
bars are mean ± std, n=5

From these findings, it is clear that most of the studied nanofluids can be approx-

imated to be independent of temperature, which means that changes in rheological

behavior is mainly due to the base fluid (BF) rather than the incorporation of NPs.

Moreover, the 2.5% nanofluid sample has a relative viscosity dependent on temper-

ature, which means the movement and dynamics of NPs is dominant more than BF

effects. Another interesting observed effect is that nanofluids either demonstrate

Newtonian rheological characteristics with relative viscosity temperature indepen-
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dence (1%, 1.5%, and 2%) or have non-Newtonian rheological characteristics (2.5%)

with temperature dependence of relative viscosity.

5.5 Preliminary Gearbox Testing Conclusions

Preliminary gearbox testing is successful as an intermediate or optimization step

to test the performance of the nanolubricant samples and in achieving its objective

before the main TRDT testing. The following conclusions are drawn:

• Initial vibration and temperature results indicate the promising features of the

nanolubricants.

• 2% nanofluid sample yielded optimum results and the 2.5% yielded unsatisfac-

tory results.

• High viscosity AGL nanofluids are possibly more susceptible to rheological

changes in the gearbox due to high shearing of NPs.

• Viscosity results provides a fundamental understanding of particle-fluid inter-

actions and can be linked to online gearbox responses

• AGL nanosamples demonstrate both Newtonian and non-Newtonian rheological

characteristics that can be empirically correlated to temperature of relative

viscosity of nanofluids.

The 2% sample is further tested in the IGB of the full-load TRDT test stand

alongside a base AGL sample for comparison purposes.

5.6 Full-load Nanofluid Testing

The same IGB from preliminary testing is used on the main TRDT to minimize

the number of variables (Figure 5.20). On the main test stand, we investigate the
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effectiveness of nanofluids in a full-scale mechanical system with coupling effects from

other drivetrain components. A single test run on the TRDT is 4 hours long where the

torque is ramped up from 0 ft-lb to 1223 ft-lb during the experimental run with a 10

minute survey at a constant load step of 111ft-lb (Table 5.2). These specific conditions

of speed, time of test and torque match those of flight regimes as requested by AED

(Goodman, 2011). In this work, a total of four IGB experiments are performed that

sums to a total of 16 testing hours.

• 4 hrs base AGL; 1 experiment

• 12 hrs nanofluid; 3 experiments

Figure 5.20: IGB on full-load test stand
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Table 5.2: Load profile of AH-64 TRDT test stand

Time (hrs) Output Torque(ft-1b) hp

00:00-00:10 111 30
00:10-01:00 371 100
01:00-01:10 111 30
01:10-02:00 734 198
02:00-02:10 111 30
02:10-03:00 979 264
03:00-03:10 111 30
03:10-04:00 1223 330
04:00-04:10 111 30
> 04:10 0 0

5.7 Data Description

As briefly mentioned in the introduction chapter, data is collected from two DAQ

sources: MSPU and NI. MSPU is the source for vibration-based CIs. NI collects raw

data for validating, improving or creating new CIs. In this section, we investigate

both MSPU-CIs and results from analysis of raw data. The following are the DAQ

parameters for the collected data.

• Experiments 1 and 2. Vibration data is sampled and collected during sur-

vey with parameters: total sampling period (4 s), sampling rate (Fs=48 kHz),

and number of samples (N)=192000 samples. Moreover, temperature data is

collected continuously.

• Experiments 3 and 4. Vibration data is sampled and collected every 2 min-

utes: total sampling period (0.17 s), sampling rate (Fs=48 kHz), and number
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of samples (N)=8192 samples. Moreover, temperature data is collected contin-

uously.

5.8 Results and Discussion

5.8.1 Temperature Analysis

Thermal plots are illustrated in Figures 5.21-5.23, where the nanofluid sample ap-

proximately operates 45◦F cooler than different responses obtained from base AGL.

This reduction in temperature is crucial that validates no-load results and shows po-

tential of this nanofluid to enhance oil performance. It is worthy of mentioning that

the thermal plots illustrate the effect of loading on the IGB temperature where the

increases in temperature regions correspond to the loading periods and the areas of

decreases in temperatures correspond to the cooling regions during the MSPU survey.

This new finding indicates the ability of nanolubricants to improve existing CI

temperature response.

Figure 5.21: Experiment 1. IGB temperature response of base AGL response from
full-load test stand

82



Figure 5.22: Experiment 2. IGB temperature of nanofluid response from full-load
test stand

5.8.2 Vibration Analysis

Two key MSPU-CIs extracted from the vibration signatures are presented in Figure

5.24. The nanolubricant sample has a noticeable impact on those CIs, the intensity

of FM4 CI is less than that obtained from the base AGL through the coarse of the

experiments. FM4 CI of the nanofluid is fluctuating near 4, and the FM4 CI of the

base AGL is near 3-3.4.

The second CI is the FM0, which almost trends in a similar way as the presented

FM4. FM0 CI of the nanofluid is hovering near a value of 10 and the FM0 CI of the

base AGL is almost constant at 12.

FM0 CI is an indicator sensitive to major wear or vibrational characteristics at the

gear meshes, while FM4 is more sensitive to minor wear or localized vibrational char-

acteristics at the gear meshes. As interactions occur between gear surfaces, friction-
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Figure 5.23: Experiment 3. IGB temperature of nanofluid response from full-load
test stand

induced vibrations is strongly dependent on shearing of lubricant film. As such, CI

responses from nanofluid experiments subside, compared to those obtained from base

AGL.

Figure 5.24: Condition indicator results. Base AGL (left) and 2% (right)
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Raw vibration data is used to validate MSPU results, and produce a new CI

from nanofluid experiments. This is achieved through the following frequency-domain

analysis and wavelet analysis.

FFT samples taken periodically throughout the IGB experimental runs are sum-

marized in Figure 5.25. The majority of vibrational energy for base AGL and the

nanofluid plots is located at the first GMF of 3000 Hz with a few sidebands, and

other GMF harmonics at 6000 Hz and 9000 Hz. Furthermore, the spectrum contains

few energies for 1st, 2nd, and 3rd harmonics of ball pass frequency input at frequen-

cies of 794, 1588, and 2382, respectively. Vibration amplitudes of the nanosample

experiment at different frequencies is less in magnitude across the bandwidth of the

spectrum.

Figure 5.25: Progress of FFT spectrum for experiments 1 and 2 of gearbox testing
after 2 hrs (top) and after 4 hrs (bottom)

Moreover, an accurate representation for the spectral results are illustrated in

Figures 5.26-5.29. The cumulative sum of the FFT energies from the different lubri-

cant experiments are presented. From these repeated spectral results, it is clear that
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each lubricant has its own frequency response distribution, where Nanofluids have an

overall less vibrational energy distribution across the spectrum.

Similar to the preliminary interpretation discussed earlier in the chapter, the

impact of nanofluids becomes more clear at higher frequencies. Starting at approxi-

mately 1000 Hz, the two frequency response start to diverge apart. Most of energy

in FFT gearbox spectrum is located at the fundamental GMF and sidebands. These

energies are more likely to represent vibrations sensitive to physical phenomena of

friction, temperature, and gear mesh near the surfaces. In this EHL regime, load is

carried by the pressure within the fluid, nanolubricants are effective to damp these

high vibration effects induced from the gearbox due to their enhanced thermophysical

properties near the surface. On the other hand, for a bearing component, important

information due to wear or improper lubrication are short in time and are represented

as impulses. As such, most of these vibration information are undetectable in the

FFT to conclude impact of nanofluids on bearings.
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Figure 5.26: Cumulative sum of FFT energies. After 1 hr (top) and two hrs (bottom)
from experiments 1 and 2

Figure 5.27: Cumulative sum of FFT energies. After 10 minutes from experiments 1
and 3

Figure 5.28: Cumulative sum of FFT energies. After 1 hr from experiments 1 and 3

Motivated by the above mentioned discussion, wavelet analysis is performed on

different short-time locations to investigate impact of nanofluids on gearbox com-

ponents through extracting repeated periodic impulses or transient characteristics.

Moreover, the proposed WI is applied on the data and is compared to conventional

CI results to illustrate its effectiveness as a potential tool for feature extraction.
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Figure 5.29: Cumulative sum of FFT energies. After 4 hrs from experiments 1 and 4

Numerous wavelet plots during the first two experiments are illustrated in Figures

5.30-5.33. All wavelet results show majority of vibrations from first GMF harmonic

and from bearing components. At the first 1 hr of running, significant transient

impulses near frequency components of 795 Hz-1050 Hz appear from the base AGL

experiment. However, these energies are clearly reduced from the nanofluid exper-

iment. After 3 hrs of running and near the end of the experiment, a similar trend

can be seen for base AGL with apparent distribution of impulses across different fre-

quency bands in the wavelet spectrum, and major distribution near GMF. On the

other hand, distribution of vibrational energy from the nanosample becomes only lo-

cated at selected frequency bands of the first GMF and sidebands with less intensity.

Figure 5.30: Experiment 1. Wavelet plots during gearbox testing. Base AGL (1 hr)
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Figure 5.31: Experiment 2. Wavelet plots during gearbox testing. Nanofluid (1 hr)

Figure 5.32: Experiment 1. Wavelet plots during gearbox testing. Base AGL (3 hrs)

Wavelet plots during the third and fourth experiments of the nanofluids are sum-

marized in Figures 5.34-5.36 that show similarity to the results of the second nanofluid

experiment. After 10 minutes, there are slight vibrational distributions across the

wavelet spectrum. It is not until 1 hr into the experiment, impulse components are
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Figure 5.33: Experiment 2. Wavelet plots during gearbox testing. Nanofluid (3 hrs)

minimal near bearings and majority of energy is located near GMF and harmonics.

Moreover, after 3 hrs of running, all vibrations are only present near the fundemental

GMF and sidebands.

Figure 5.34: Experiment 3. Wavelet plots during gearbox testing. Nanofluid after 10
minutes
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Figure 5.35: Experiment 3. Wavelet plots during gearbox testing. Nanofluid after 1
hrs

To accurately match feature extraction process in the 4 hr run, the proposed

WI is computed during survey after each load step. Results are summarized in

Figures 5.37-5.38. WI values are computed where majority of energies are distributed.

Based on the results, a significant difference in WI values is observed between both

tested lubricants. For bearing energies at 850 Hz , WI extracted from the base AGL

experiment has larger values, compared to those extracted from the nanolubricant.

Also, WI extracted near GMF frequency from nanofluid experiment has a constant

trend with less variations in the data. Comparing these wavelet results to the MSPU

CIs from Figure 5.24, WI as a potential CI shows capability of capturing transient

characteristics that remain undetectable from the conventional vibration methods and

illustrates potential improvement in performance of nanolubricants using wavelet as

a tool. Overall, the distribution of impulse components across the entire wavelet

spectrum from nanofluid experiments subside and only focus on vibration at the

fundamental GMF and its sidebands. On the other hand, impulse components from
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Figure 5.36: Wavelet plots during gearbox testing. Nanofluid after 3 hrs. Experiment
3 (top) and experiment 4 (bottom)

base AGL experiment are more distributed at different frequency bands across the

spectrum.

This wavelet analysis shows how more transient characteristics are extracted from

the base AGL experiment than nanofluid responses. Similarly to previous interpreta-

tions, it is theorized that nanofluids can protect gear and bearing components from

friction, high temperatures or vibration characteristics due to maintaining a solid

lubricant film between gear surfaces.

5.9 Conclusions

In this chapter, a new approach of applying nanofluids as potential lubricant for the

IGB is possible. Gearbox testing is demonstrated on two different test stands for

optimization purposes that shows lower viscosity nanolubricants (2% graphite-based

AGL) yielding optimum responses and performing better than higher viscosity nanol-

ubricants. This short-term testing of nanolubricants has shown potential performance
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Figure 5.37: Wavelet index of Base AGL during loading profile. Error bars are mean
± std

Figure 5.38: Wavelet index of nanolubricant during loading profile. Error bars are
mean ± std

benefits in a full-scale mechanical system. Moreover, a possible empirical correlation

between temperature, vibration, and the lubricant can lead to further development

of diagnostic algorithm or a predictive nanofluid tool for CBM. However, these long-

term benefits as a tool on the real helicopter may require more hours of testing. The

following conclusions from this study are presented as follows:
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• A significant contribution in this study from a condition monitoring perspective

is the improvement of temperature response as a CI due to the nanolubricants.

This improvement show that temperature can add value by giving an early

warning of lubricant performance rather than depending on vibration as the

only source of dynamic information.

• Improvements in existing vibration-based CIs and spectral results due to the

implementation of nanolubricants.

• Wavelet analysis is used as a tool to validate vibration-based CIs and to advance

gearbox performance through its impulse feature extraction capabilities from

gearbox lubricant testing

• High concentration of AGL nanofluids is prone to drastic rheological changes

upon shearing. This is demonstrated by both online gearbox responses and

off-line viscosity measurements.
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Chapter 6

A Wavelet-based Index for Fault Detection and

its application in condition monitoring of

helicopter drive-train components 1

6.1 Introduction

The first part of this chapter demonstrates results of advanced signal processing

based on wavelet analysis for feature extraction. The wavelet-based index is applied

on a TGB experiment to detect a possible fault. This gearbox has demonstrated

severe grease lubrication conditions, where gear wear remains undetectable by con-

ventional vibration tools. Second, this chapter presents statical analysis to prove that

wavelet results are statistically valid. First, The proposed wavelet denoising method

is adapted on different TGB signals for the purpose of improving WI through reduc-

ing redundant wavelet coefficients. Predicted WI is evaluated and compared to the

observed WI. Second ,a statistical test established from the GWN is applied on nu-

merous samples from the TGB experiment with an appropriate significant level and

confidence interval to statistically validate autocorrelation distribution of the wavelet

power.

1Gouda, K.M., Tarbutton, J.A., Hassan, M.A., Coats, D., and Bayoumi, A-M.E., A
Wavelet-based index for fault detection and its application in condition monitoring of he-
licopter drive-train components, INT. J. Manufacturing Research, Vol.10, No.1, pp.87-106,
doi:10.1504/IJMR.2015.067619 2015. Reprinted here with permission of publisher
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6.2 AH-64 TGB Experiment with Output Seal Leak

The TGB is a right-angled grease lubricated gearbox mounted on the vertical stabi-

lizer as previously presented mentioned. The TGB constitutes a critical component

on the AH-64D drive-train helicopter and its function is to transmit torque to the

blades. This gearbox contains a set of pinion and output spiral bevel gears with a

gear ratio of 2.591:1 and a gear mesh frequency (GMF) of 1333.20 Hz. The TGB is

comprised of two sections: main gear compartment and static mast, as explained in

Figure 6.1. The output seal is located at the end of the static mast. It was hypothe-

sized among maintenance crew that the static mast was sealed completely from the

main gearbox chamber.

Figure 6.1: TGB internal components

In the field however, TGB is known to be susceptible to grease leaking from its

output seal (Goodman et al., 2009). Motivating this study was the fact that the Army
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replaced the entire TGB at the first sight of grease leaks. This natural occurring field-

fault has contributed to the aircraft not being available for flight operations.

A test plan was initiated to create a worst case scenario through a seeded fault

TGB experiment. The original objective of the test was to demonstrate whether

the aircraft would continue to operate with a leaking output seal until the scheduled

phase maintenance of 250 hours. A secondary objective was to identify the failure

mode of the gearbox. A leak was induced in the output seal that allowed grease to

drain from the static mast.

During the first few days of testing, large volumes of grease were observed leaking

from the static mast. The test was stopped for an inspection that showed the main

gearbox to be under-serviced with grease. Grease was added to the gearbox following

standard military procedures to compensate for the loss. The test was resumed

and grease ejection was observed from the static mast again. At that point, it was

suspected that the addition of grease to the main gearbox would interfere with the

original objective of the experiment: output seal leak. Adjustments were made to

the original test plan by disallowing any addition of grease to the gearbox. After 490

hours of testing, it was concluded that there were large amounts of grease movement

from the main gearbox compartment to the static mast (Figure 6.2). Seeded fault

testing of TGB led to the discovery of a natural fault: a previously unbeknownst

phenomenon at that time of grease transfer between the two compartments. This

caused gear surface starvation and eventually led to severe wear due to loss of grease

at the input gear teeth (Figure 6.3). Several vibration signatures were recorded as

gear failure approached.

The data for this wavelet analysis was acquired from the NI-DAQ system. This

data represents the discrete vibration time-series in which numerous samples were

collected and analysed during the coarse of the experiment. The vibration survey for

both DAQ systems were taken simultaneously at a steady state with the following
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parameters: total sampling period (0.17 S), sampling rate (Fs=48 kHz), and number

of samples (N) = 8192 samples

Figure 6.2: Movement of grease through static mast of TGB: after 120 minutes (left)
and after 145 minutes(right)

Figure 6.3: Earlier stage of testing (left)and after failure (right)

6.3 TGB Output Seal Leak Results

6.3.1 Progress of Gearbox Failure Using Spectral Analysis

Progress of PS plots of the TGB during the last four days of testing is summarized

in Figure 6.4 and Figure 6.5. Prior to the day of failure, inspection of the first three

PS plots in Figure 6.4 (left and right) and Figure 6.5 (left) are almost the same.

There is only a slight monotonic increase of vibrational power at the first and second

harmonics of the GMF of 1333.20 Hz. It is not until the day of failure in Figure
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6.5 (right) when the PS plot shows significant increases in both the third and fourth

harmonics of the GMF.

The conventional PS did not give indications of increases in vibrational power to

warning values except on the day of failure, which validates the inherent limitations

of the CIs extracted from this method in detecting early faults.

Figure 6.4: Progress of PS during gearbox testing. 3 days before failure (left) and 2
days before failure (right)

Figure 6.5: Progress of PS during gearbox testing. 1 day before failure (left)and the
day of failure (right)

6.3.2 TGB CI Results

TGB CIs were expected to have high sensitivity to gear wear, especially at the day

of failure. However, FM0, ER, DA2, and SLF CIs in Figure 6.6 display little to no

variation and remain almost flat the entire time of the experiment. None of these

CIs showed alarming levels, except the input DA1 CI. It has an increase trend in its

value from 6 g to 16 g during the final hours of testing. Despite this increasing trend
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of the DA1 CI, it is still considered a non-warning value below the threshold limit set

by AED, as previously discussed.

The x-axis in Figure 6.6 is the discrete time samples. It represents the life time

of the gearbox experiment, which is 480 hours. The samples have been distributed

over different hours and days depending on the time of the test. Actual numbers are

not represented on the scale for conciseness. The Y-axis is divided into two portions:

primary and secondary to have all the CIs plotted.

Figure 6.6: TGB CI responses over the whole period of testing

6.3.3 Progress of Gearbox Failure Using Wavelet Analysis

The results of this section are plotted using the wavelet toolbox in Matlab. CWT

plots for different samples collected on the last couple days of testing are presented in

Figure 6.7 and Figure 6.8 and as the extent is limited to feature extraction purposes

only, the convolution is performed from scales 1:50 to have a complete picture of the

scalogram. Unlike the Fourier power spectrum from Figure 6.4 and Figure 6.5, the

wavelet plots start to demonstrate increases in vibrational energy where transients
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at key harmonics in Figure 6.7 (bottom) start to appear at least two days before

failure. Progress of the fault significantly builds up ‘1 day before failure’ in Figure

6.8 (top) where distributions of vibrational energy at the second, third, and fourth

GMF harmonics become clear.

Figure 6.7: Progress of CWT during gearbox testing. 3 days before failure (top) and
2 days before failure(bottom)

Figure 6.8: Progress of CWT during gearbox testing. 1 day before failure (top) and
the day of failure (bottom)
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Application of the WI is demonstrated using different sets of the experimental

data. In most machinery gearboxes, excitation near the second harmonic and higher

commonly promotes heavy gear wear (Scheffer and Girdhar, 2004). For diagnostic

purposes, these transients are detected by the wavelets earlier than the conventional

vibration methods at a region of a single frequency where the majority of transient

characteristics are expected to be dominant. Consequently, the proposed WI is com-

puted near the second and fourth GMF at 2666 and 5330 Hz, respectively and are

summarized in Table 6.1. Where the large coefficients are an indication of more

impulse components in the signal.

Table 6.1: Average WI value from all acquisitions taken on a single day

Day of experiment WI at second GMF WI at fourth GMF

Three days before failure 1477 211
Two days before failure 131 950
One day before failure 8162 5647
The day of failure 10380 6758

6.3.4 Comparison with Time-Frequency Analysis

We will now show a comparison of a set of time-frequency distributions comparable

to the CWT scalograms, previously obtained from wavelet analysis for the days im-

mediately preceding part failure. These time-frequency representations in Figure 6.10

utilize a reduced interference distribution with a Zhao-Atlas-Marks kernel function

for elimination of cross-terms (Zhao et al., 1990). One of the primary faults of this

gearbox study is a degraded set of gear teeth. This affects the gear mesh frequencies

and distribution of energy in the first through fourth harmonics, which also represent

aperiodic pulses or transients. These pulses are harder to see and diagnose with the
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constant sampling period typical of time-frequency analysis, when compared to the

wavelet results.

Figure 6.9: Progress of time-frequency analysis during gearbox testing. 3 days before
failure (left) and 2 days before failure(right)

Figure 6.10: Progress of time-frequency analysis during gearbox testing. 1 day before
failure(left)and the day of failure(right)

Where time-frequency plots in Figure 6.10 may present the progress of fault, it

is not showing a complete distribution of energy at different frequencies like those

from the wavelet approach in Figure 6.7 and Figure 6.8. The major downside of

time-frequency distribution in rotating machinery applications can be collecting a

kernel function that removes cross-terms and sometimes impacting valid component

signals. However, one potential advantage of time-frequency would be the ability

for utilizing cross-distributions such as from two separate sensor locations. On the

other hand, several potential advantages are presented by the use of wavelet analysis

and subsequent pseudo-frequency summing methods for the application being sought.

The increased time resolution with acceptable frequency characteristics offered by the
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variable time sampling period of wavelet analysis may provide a better fit for the type

of fault looking to be diagnosed.

6.3.5 Comparision of WI with traditional MSPU CIs

The proposed WI is compared in Figure 6.11 with TGB CIs to validate the usefulness

of the wavelet approach. Most of the conventional time-domain and frequency-domain

CIs showed little to no change during the entire experimental lifetime of the gearbox.

Input DA1 CI is the only indicator that reacted to the fault. However, DA1 only shows

increases in the overall vibrational energy that indicates warning of an occurring event

without providing information on the component that was failing; DA1 has limited

value for diagnostic purposes. As for WI, an increasing trend is significantly observed

at‘1 day before failure’ almost matching DA1 CI. The WI shows potential to identify

the gear failure lubrication, being more sensitive to transients that appear in high

frequency harmonics, and outperforming the rest of the CIs that include: SLF, FMO,

ER, and DA2.

Wavelet analysis is presented as a promising approach for an additional feature

in the MSPU of the AH-64 helicopter. The results propose a new index with use-

ful characteristics in its sensitivity to gear wear and may facilitate in earlier fault

detection for the TGB. This proposed WI shows its ability to react to vibrational

energy through the derived wavelet coefficient where the the index can be physically

interpreted as transient characteristics of gear teeth degradation.

6.4 Wavelet Denoising Results

The modified denoising approach proposed in chapter 4 is applied on different sam-

ple intervals of the TGB experiment. A comparison between original and predicted

signals can be shown in Figure 6.12. Moreover, CWT plots of the original and recon-

104



Figure 6.11: Comparison between averaged conventional TGB CIs and averaged WI
during the last four days of testing

structed signal are presented in Figures 6.13-6.14. CWT using orthogonal wavelets is

possible, however, the use of these wavelet types is not a good fit for the application

being sought, as the vibrational distribution is scattered all over the spectrum and

may not represent the true features of the system. The use of orthogonal functions

yield a signal with features that may not identical to the original signal. On the other

hand, wavelet plot using Morlet gives better results, in which noise seems to be re-

duced with less wavelet coefficient distribution at key gear mesh frequency harmonics,

compared to the wavelet plot of original signal.

To quantify results in Figure 6.12, statistical metrics are calculated to evaluate

reduction in noise performance between original signal and predicted signal. These

metrics are the RMSE, SNR, and correlation coefficient. Results are summarized in

Tables 6.2-6.3. From these tables, improved SNR values for different intervals are
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Figure 6.12: Comparison between original signal and predicted signal using different
thresholds from the denoising method. N=512 (top)and N=2048(bottom)

between 72 dB and 79 dB from the proposed denoising method and are between 59

dB to 67 dB from the classical denoising approach. Moreover, ranges of the RMSE

from Table 6.2 is less with higher correlation coefficient values that indicate a good

fit. From these estimators, it can be shown the proposed denoising method based on

Morlet has the capability to provide improved results for the WI than the classical

approach of Donoho that solely uses orthogonal functions.
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Figure 6.13: CWT wavelet plot of original signal. 1 day before failure

Figure 6.14: Example of CWT wavelet plots from predicted signals. 1 day before
failure. Donoho’s method(left) using haar orthogonal wavelet and the proposed de-
noising method based on Morlet(right)

Table 6.2: Statistical metrics between original and predicted signals from various

sample sizes of TGB data using proposed denoising method (1 day before failure)

SNR RMSE corr. coeff.

72.5874 0.0985 0.9325

73.3489 0.0871 0.9465

75.9654 0.0823 0.9568

77.5268 0.0731 0.9598

79.2567 0.0524 0.9652
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Table 6.3: Statistical metrics between original and predicted signals from various

sample sizes of TGB data using Donoho denoising method (1 day before failure)

SNR RMSE corr. coeff.

59.8521 0.9025 0.6689
60.0569 0.7737 0.6718
64.2143 0.3921 0.7125
65.875 0.2569 0.7256
67.0258 0.1052 0.7426

A comparison between observed and predicted WI, extracted from the fourth

GMF during TGB testing is presented in Figure 6.15. It can be shown that the pre-

dicted WI trends with less wavelet coefficient distribution, compared to the observed

WI. Moreover, variability from the predicted WI represented with error bars at the

given data points are reduced. This means the denosing method has significantly

contributed in improving statistical performance of WI by eliminating small wavelet

coefficient values in signals caused by noise and representing it with fewer wavelet

coefficients close to the distribution of the mean. As such, predicted WI is more likely

to reflect actual physical characteristics of vibration.

6.5 Statistical Significance Test Results

Different SNR samples from TGB data are applied to demonstrate the statistical

significance of wavelet power at a given scale. In this section, TGB data samples from

the day before failure are used in the statistical test(N=512, 2048, 4096). Results

are summarized in Figure 6.16, where each distribution represent a horizontal slice

of wavelet power spectrum or WI, as previously explained in section 4.5 of chapter 4.

From the first drawn observation in Figure 6.16, the estimated effect is shown to be
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Figure 6.15: Comparison between observed and predicted wavelet index at fourth
GMF from TGB experiment.Error bars represent mean ± std

within the significant level. This means that it would be possible to increase sample

size for better statistical performance. In this work, vibration signals have a sampling

rate of 48 kHz, Morlet wavelet is used in the analysis with chi-squared distribution

(k=2). Also, since significant test is applied on real-world vibration samples, which

109



means the theoretical α values of 0.05, 0.1, or 0.01 might be too strict due to the

nature of the low SNR of the data. As such, a fair assumption is made here by

choosing a lower and less rigid significant level of 15%, which is equivalent to an 85%

confidence level.

It is shown that for all three slices of WI from these different samples, wavelet

peaks above the significant level of 85% confidence interval are considered to be sta-

tistically significant, reflecting actual features. On the other hand, wavelet spectra

peaks below the significant level are considered to be noise fluctuations. It can be

inferred from these sample observations that this significant test succeeded to distin-

guish true features from noise with 85% confidence.

6.6 Conclusions

The research efforts in this chapter provide potential to improve diagnostic capabil-

ities for lubrication gear related failures in the Apache helicopter. Some important

concepts utilizing wavelet analysis have been discussed through the evaluation of a

new condition indicator used for fault detection. Conclusions drawn are as follows: (1)

The proposed wavelet index has the capability to outperform some of the traditional

signal processing techniques that are commonly used onboard the AH-64 aircraft.(2)

Although CWT carries alot of redundancy, it is found to be effective in detecting

the fault in a military gearbox where convolution provides the wavelet coefficients at

frequency bands that are indicative of major changes in the signal.(3) Morlet wavelet

is a good fit for vibration analysis of rotating machinery, matching transient signals

from the gearbox.(4) Time-Frequency analysis may provide diagnostics of the gear-

box, however, wavelets has more flexibility and accuracy for the application being

addressed.
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The work in this chapter also represents an empirical method of reducing noise

in the wavelet index. A modified denoising technique based on Morlet wavelet is

proposed. Results are satisfactory and show the capability of this technique to more

effectively reduce noise from gearbox data, compared to the classical Donoho method.

Noise reduction performance have been evaluated using well-known statistical metrics

of RMSE, SNR, and correlation coefficient. Empirically WI has shown a significant

reduction in overall wavelet coefficients at key GMF harmonics. These coefficients

would probably represent actual vibrational characteristics with minimum noise. De-

spite, excellent characteristics of the traditional denoisng technique using orthogonal

wavelets in numerous other applications, it is clearly not a good fit for CWT feature

extraction from mechanical systems. Future work can include classification of wavelet

index to accurately represent a model between sensitivity of true positive and false

positive.

Statistical tests on few observations is possible, especially when studying non-

stationary time series signals. It is shown that this significance test depends on

the distribution of wavelet power time-series. Conclusions are only drawn from the

observation samples tested, in which statistical test yield an 85% confidence interval

with the ability to distinguish real properties of the system from those due to noise.

Findings in this work prove that the proposed wavelet index drawn from these samples

would be statistically valid. Results also show that smoothing the wavelet power

spectrum by increasing the number of samples can enhance confidence of significant

wavelet power, in which the estimation of 85% confidence interval of different samples

can become closer to the true mean. However, more statistical analysis on larger

training and testing data sets for classification would be needed to further increase

statistical performance of the wavelet power.
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Figure 6.16: Wavelet power of different horizontal slices and the 85 % confidence
interval. Top (N=512 samples), middle (N=2048 samples), bottom (N=4096 samples)
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Chapter 7

Summary and Conclusions

7.1 Summary

This dissertation was motivated to address a crucial research question on how to

minimize lubricant leaks in Apache helicopter drivetrain gearboxes through increas-

ing performance. In this work, nanofluids were proposed as a potential lubricant for

the intermediate gearbox (IGB) of the Apache helicopter. Moreover, an advanced

signal processing approach based on wavelet analysis was utilized to develop a new

condition indicator (CI) as a performance metric during gearbox lubrication condi-

tions. First, a detailed fluid study was conducted on different oil nanofluid samples

to craft the hypothesis of enhanced thermophysical properties using off-line oil anal-

ysis measurements. It was shown there were crucial effects of nanoparticles (NP)

additives on oil. Next, these nanolubricant samples were investigated in the IGB on

a test stand that emulates the exact operating condition of a real helicopter. Re-

sults yielded promising characteristics of the proposed lubricant based on gearbox

responses. Finally, a signal processing study was addressed to create a wavelet index

(WI), applied on a tail rotor gearbox (TGB)undergoing severe lubrication conditions.

This WI has shown its capability to effectively capture gear wear fault from the TGB

through transient characteristics extracted from vibration data. WI has also applied

on the IGB data to illustrate performance of nanofluids on gearbox. Then, a wavelet

denoising analysis was proposed to improve the statistical performance of WI by re-

moving unwanted noise from signals. Finally, a statistical test based on distributions
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of wavelet power spectrum and gaussian white noise estimated a threshold line that

helped to distinguish meaningful wavelet peaks from those due to noise.

In the first study, turbine jet oil and Mobil Aviation Gear Lubricant (AGL) oil

nanofluid samples were experimentally investigated using offline tools to measure im-

portant thermophysical properties, such as thermal conductivity, dynamic viscosity,

and viscosity index. Moreover, a modified nanofluid model using the effective medium

approach was derived that takes into account both the morphology and hydrodynamic

interactions of non-spherical NPs in oil.

Graphite-based AGL samples displayed most significant increases in the measured

fluid properties, compared to both turbine-based samples and boron nitride-based

AGL samples and were recommended as the possible lubrications for gearbox testing.

Interestingly, high concentration turbine jet oil demonstrated non-Newtonian char-

acteristics due to the incorporation of NPs and as a result were not considered for

gearbox testing. The proposed nanofluid model has indicated not only relevance of

the two key fundamental mechanisms for the samples being studied, but also were ex-

tremely important for significant interpretation, when linked with gearbox responses.

Despite the reasonable assumptions made in the model, it has given a necessary un-

derstanding of non-spherical nanoparticle behavior in oil lubricants, which can be

further expanded to more rigorous computational studies that involve turbulent fluid

flow conditions.

In the second study, a new approach of applying nanofluids as potential lubricant

for the IGB was presented. Testing was demonstrated on two different test stands

for optimization purposes: preliminary no-load test stand and the full-load tail rotor

drivetrain (TRDT) test stand. Numerous gearbox responses that include: tempera-

ture and vibration were collected during experiments. Moreover, vibration data was

thoroughly investigated using signal processing techniques to illustrate effectiveness

of nanofluids.
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Initial preliminary testing results for the 2% nanofluid sample have shown im-

provements in both vibration and temperature responses due to the incorporation

of the NPs, while the 2.5 % yielded unsatisfactory results. Second, high viscosity

AGL nanofluids are possibly prone to rheological changes in the gearbox due to high

shearing of NPs. Third, AGL nanosamples either demonstrated Newtonian flow with

relative viscosity temperature independence or non-Newtonian flow with relative vis-

cosity temperature dependence.

Full-load testing was performed on the 2% nanofluid sample for further investiga-

tions. It was shown that there were improvements in the onboard vibration-based CIs,

temperature CIs and spectral results due to the implementation of nanolubricants.

A significant contribution in this study from a condition monitoring perspective is

the improvement of temperature response as a CI due to the nanolubricants. This

improvement show that temperature can add value by giving an early warning of

lubricant performance, rather than depending on vibration as the only source of dy-

namic information. Wavelet analysis was used to validate vibration-based CIs and to

advance gearbox performance through its impulse feature extraction capabilities from

gearbox lubricant testing. Overall these results proved there is a strong correlation

between temperature, vibration, and the lubricant, which can evolve to further devel-

opment of diagnostic algorithm or a predictive tool for condition-based maintenance

(CBM).

In the final third study, a new CI based on wavelet analysis was developed and

applied on TGB vibration data undergoing severe lubrication conditions near the

input gear. The proposed WI has the capability to outperform some of the traditional

signal processing techniques that are commonly used onboard the Apache aircraft by

extracting more vibration information from high-order spectra. This information can

be physically interpreted as gear teeth degradation.
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Wavelet denoising using a thresholding approach based on Morlet wavelet was

proposed. Results were satisfactory and showed the capability of this technique to

reduce noise effects from gearbox data, compared to classical approaches that soley

apply the discrete wavelet transform and orthogonal wavelets. The proposed denois-

ing method has shown a significant improvement in WI with less variability that

may take less computational time to produce, due to reduction in the overall wavelet

coefficients at key gear harmonics. The predicted wavelet coefficients from denois-

ing would probably represent actual vibrational characteristics with minimum noise.

Moreover, a statistical test applied on the wavelet power sampling distribution has

distinguished actual features that represent real properties from those due to noise

with a 85% confidence interval, indicating wavelet results from the tested samples are

statistically valid.

The third study can be viewed as an extension to the previous two fluid studies,

as the wavelet index adds value and can be considered a performance metric that

provides important vibration information during lubricant leaks from the drivetrain

gearbox.

This work provides an interdisciplinary approach aiming to utilize new approaches

with an end result of increasing the Apache gearbox performance that would lead to

achieving CBM objectives (eg. extension of time between overhauls). The general

conclusions from this dissertation are:

• Qualification of graphite-based AGL nanofluids with optimum thermophysical

properties as prospective gearbox lubricants

• Application of nanofluids in a real mechanical system is possible that leads to

improvement of CIs.
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• Development of a new CI based on wavelet analysis that can provide the user

with a better understanding of gearbox vibrational characteristics to properly

identify a gearbox event.

Overall, results of this dissertation establish a step forward towards the adaption

of new CBM tools.

7.2 Recommendations for Future Work

This work was applied on a specific case study that represents a real-world mechan-

ical system. Results of this dissertation can show promise in other helicopter fleets.

However, more research through testing hours are still needed before nanofluids or

wavelets are deployed as CBM tools on real helicopters. The following recommenda-

tions for future work is proposed.

First, throughout the optimization process of nanofluid testing, it was concluded

that high viscosity NP concentrations in oil were prone to drastic rheological changes.

Although, during off-line analysis, the 2.5% NP additive yielded highest thermophys-

ical properties. It was theorized that complex interactions develop during shearing in

a mechanical system and this assessment agrees with what other nanofluid researchers

in the literature have predicted. It would be strongly recommended to pursue further

testing on low concentration AGL graphite-based nanofluids ranging from 0.5%-2%

for better gearbox performance.

Second, this dissertation studied and focused on vibration, temperature and the

lubricant’s viscosity as gearbox responses. For a complete picture of gearbox perfor-

mance, studying the effect of nanofluids on power efficiency would be an important

factor to add value. Moreover, measuring reduction in friction or wear between gear

surfaces would be significant. This work revealed indirectly possible reduction in
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friction due to improvements in dynamic responses of the gearbox, especially tem-

perature.

Third, this work presented a very important conclusion of a possible correlation

between temperature, vibration, and the tested lubricant. With more data available,

recommendations can be aimed to the development of a nanofluid prediction model

through data fusion among different attributes. The benefits can be massive, leading

to a significantly richer source of information as an integrated sensor suite. Data

fusion of different CIs is a part of the new CBM research outlook, envisioned as a smart

predictive tool for prognostics or predicting remaining useful life of a component.

Finally, wavelet was presented as a possible approach for gearbox feature extrac-

tion on the Apache helicopter. In general, a deployment of a signal processing tool

on the Apache helicopter requires other challenging steps besides feature extraction,

which was the main contribution in this work. For further development of WI as a

condition monitoring tool, more gearbox testing and data collection under different

faulted conditions. This would be followed by statistical analysis that include training

the data, eventually achieving long-term goals for feature selection through adjusting

WI thresholds with maximizing true positives and minimizing false positives.
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