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Abstract

Based upon a framework of time-frequency analysis, a path towards systematic and comprehensive im-
plementation of condition based maintenance (CBM), or maintenance only upon evidence of need, is out-
lined for both electrical and mechanical systems. Specifically, metrics are proposed for helicopter drivetrain
systems and electrical cable. Using principles of time-frequency analysis, metrics for health assessment in
non-destructive and non-invasive tests provide a basis fordiagnostic and prognostic analysis. A form of Rényi
entropy or Rényi information based mutual information measure is proposed for comparing vibration data
from multiple sensors toward the creation of new condition indicators for use in rotorcraft. Using similar
methodology, a process for non-invasively assessing the health of low voltage instrumentation cables and
medium to high voltage feeder and transmission cables is proposed by way of Joint Time-frequency Domain
Reflectometry (JTFDR).

From this starting point of derived health indicators for separate systems, research is proposed to facili-
tate the practical implementation of such technology. A newconcept of non-parametric signal detection and
classification technique is proposed using mutual information measures in the time-frequency domain. The
time-frequency based self and mutual information is definedin terms of the cross time-frequency distribu-
tion. Based on time-frequency mutual information theory, this paper presents applications of the proposed
technique to real-world vibration data obtained from a dedicated condition based maintenance experimental
testbed. Baseline, unbalanced, and misaligned experimental settings of helicopter drive train bearings and
shafts are quantitatively distinguished by the proposed techniques. With unbalance quantifiable by variance in
the in-phase mutual information and misalignment quantifiable by variance in the quadrature mutual informa-
tion developed and presented herein, machine health classification can be accomplished by use of statistical
bounding regions.

Electrical, reflectometry-based methods of health evaluation are proposed and will be compared to existing
methods of high voltage test such as high voltage withstand and partial discharge, which can be destructive
when applied to cables. Surface wave insulation health assessment is proposed as a means of connecting
to a cable under test in a noninvasive manner. Also, toward a new standard of smart grid active condition
based maintenance strategies, joint time-frequency domain reflectometry is proposed for monitoring the health
of high temperature super- conducting (HTS) cable. Conditions of localized impedance fluctuation due to
coolant leak have been simulated with the reflectometry assessment properly detecting minute changes in
cable impedance and indicating location and severity of faulted segments.
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1 Introduction

1.1 Preventative Maintenance Concept and Analysis

Standard maintenance practices in most industries involvereplacing existing parts after a certain time period or a
certain number of operational hours. This practice is called time-based maintenance (TBM) and can lead to un-
expected failures in critical parts due to unexpected wear and unforeseen physical stresses, causing operational
downtime and potential safety hazards [1]. Therefore, instead of TBM, it is desirable to consider use-based
maintenance practices so that critical parts are replaced or repaired before their full lifetimes on a variable basis
balancing and optimizing both economic and safe operating conditions [2]. Concepts of condition-based main-
tenance will be applied to health monitoring of rotorcraft and rotational electromechanical systems as well as
power instrumentation and distribution, or to generalize further, cable systems.

A new practice of condition-based maintenance (CBM) is proposed for military aviation fleet management
which fits within the existing framework of vibration management presented by the army’s Vibration Manage-
ment Enhancement Program (VMEP) and Health Usage Monitoring System (HUMS) infrastructure or could be
separated into its own stand-alone product. For health assessment and management of cable systems, new the-
ory and applied examples are posited for Joint Time-Frequency Domain Reflectometry (JTFDR) to help realize
a practical implementation of the technology. The overarching goal of both research topics is advancing the
time- and reaction-based maintenance schedules typicallyoffered in electrical and mechanical systems toward
ones that are predictive and proactive [3, 4].

A typical course of action toward this overarching goal of generalized condition-based maintenance is pre-
sented herein to establish the background for unified condition-based maintenance strategies which could be
used in systems with complicated electrical and mechanicalsystems such as helicopter drivetrain systems, wind
farm systems, nuclear instrumentation and control fuel rodsystems, and high voltage, high temperature super
conducting (HTS) generation/distribution systems. To achieve this innovative maintenance practice, data must
be collected from vital operational components and analyzed in order to determine the current (diagnostic) state
of the baseline case and later the future (prognostic) health of these same critical components. Further, aging or
conditioning must be simulated in a controlled testbed and monitored to identify progressive degradation trends
using heath assessment metrics. These testbed trends can becompared to existing historical component data
from active articles, where such data is available, to form characteristic prognostic functions. Once effective
diagnostic and prognostic health assessment monitoring models are created condition indicator (CI) or health
indicator (HI) single or multiple dimensional metrics can be gathered and packaged into a monitoring unit. The
proposed research will focus on developing metrics for health assessment of rotational components in helicopter
drivetrain systems from an existing testbed and developingan accelerated aging testbed for instrumentation and
medium voltage distribution systems with a practical implementation of non-invasive insulation health monitor-
ing.

1.2 Health Monitoring of Rotorcraft Drivetrain

In order to monitor the health status of drivetrain systems,a variety of signals are collected, including vibra-
tion [5, 6], acoustic [7], and temperature. Over the past decade great advancements have been made in health
diagnostics and vibration management in military helicopters in terms of both progression of metric indicators
and cost benefits to the US Army helicopter fleet maintainers [1]-[4]. The successes to date have resulted in
the large-scale deployment of increasingly useful health monitoring systems such as HUMS (Health and Usage
Monitoring Systems) using Vibration Management Enhancement Program (VMEP) hardware, which have gen-
erated a wide range of benefits from increased safety to reduced maintenance costs.

Most CBM tools such as HUMS for Apache and Blackhawk helicopters assist machinery maintainers in
identifying faulted components through the use of simple visual interfaces and indicators. The most commonly
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utilized functions are condition indicators (CI), which output a dimensioned or dimensionless single scalar value
to monitor key factors most frequently related to frequencyanalysis of vibration signature. Condition indicators
need not be based upon vibration analysis alone and may include component temperatures or acoustic data for
separate or fused CIs. Examples of common indicators in machine diagnostics and prognostics include: spec-
tral peak analysis, envelope analysis, energy ratio, crestfactor, sideband index, and kurtosis of residual signals
[8]. These CI values are typically compared with pre-established thresholds in a simple decision tree classifier
which assign the CI some form of ranked class such as “Good,” “Caution,” or “Exceeded,” and these classes are
then utilized by maintainers in vital decision-making processes. A given component can have several CIs which
may additively form a health indicator (HI). Typically, CIsor HIs are not fault-specific; multiple fault types can
affect the value of a single CI, and a single fault could affect multiple CIs.

While various condition and health indicators do exist, theproposed work improves their effectiveness by
developing new general methods for fault analysis based around time-frequency analysis that could be used
in existing or new CIs for indication of machinery failure. Previous studies on CBM from diverse applica-
tions [9, 10] have shown that abnormality of the system is characterized by transient precursors in the signals.
Through their use in detecting transient precursors, advanced signal processing techniques have contributed
to develop diagnostics and prognostics algorithms for aging aircraft [11]. The classical methods for vibration
analysis such as spectral analysis or time-frequency distributions represent frequency- or time- and frequency-
localized energy, however, it is not expedient to analyze multiple signals that have been simultaneously collected
from systems under test. In particular, time-frequency analysis is extremely useful to analyze the transient
signature of the abnormality and its precursors [12]. Previous convention dictated that time-frequency based
applications were difficult to implement in real-time, however, methods [14] have been proposed to accomplish
time-frequency algorithms feasible for the constant monitoring required for CBM [15]. We present a path to-
ward using time-frequency analysis and specified metrics based on time-frequency representations for condition
and health monitoring, advancing the analysis of data from existing condition monitoring systems without the
use of additional hardware.

We propose a new concept of non-parametric detection and classification of signals. We define time-
frequency based self and mutual information in order to classify the health status of the system components
in Section 2.5-2.7. Other methods [6], [16], [17] have been proposed to use either classical methods or neoclas-
sical methods moving toward the use of both time- and frequency- based information. The proposed method
takes advantage of both time- and frequency- domain transients to establish a complexity measurement for po-
tential assessment of component health. The experimental setup and data description are provided in Section 3.
The results and discussions are provided in Section 3.4, andconclusions of the paper are drawn in Section 5.
Based on the time-frequency based mutual information theory, this paper presents applications of the proposed
technique to the real-world vibration data and a path for future research in Section 6.1.

1.3 Health Monitoring of Electric Cable

The state of the art for non-destructive detection of defects in wiring and cable is divided into two categories:
time-domain reflectometry (TDR) and frequency-domain reflectometry (FDR). Although these techniques can
successfully assess hard defects, they fall short in the detection and location of soft defects, an essential prog-
nostic capability. The limitations of both TDR and FDR are caused by ineffective design of reference signal and
inappropriate processing of the reflected signal in TDR and FDR, in that these methods refer to only the time or
frequency domains, but not both. We seek an innovative, optimal type of reflectometry that simultaneously uses
the time and frequency domains: Joint Time-Frequency Domain Reflectometry (JTFDR). The JTFDR technique
exhibits its efficacy in cable diagnostics and prognostics such as communication, electric power, and nuclear
control and instrumentation (C and I) cables [32].

In searching for a more universal method of signal injectionfor reflectometry-based assessment, particularly
in cases of prognostic remaining useful life indicators, wesought a method that could couple to the cable in
question (1) without requiring removal of the cable under test from a given system, (2) without damaging
instrumentation or transmission cables, and (3) sensitiveenough to enable assessment of impedance of the
cable by reflectometry. In surveying options of implementation in these three key areas, we desired a means
to further adjust the optimal reference to account for non-idealities in the frequency response of the injection
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method. In this report we will focus on the theory of surface wave injection of reflectometry signals, a method
for optimizing a reflectometry signal in time and frequency domains, and practical optimizations in narrowband
segments or slices of a larger bandwidth. These efforts willcumulatively add to the assessment of health
assessment of insulation materials in the real-world electric power systems.

2 Theory of Joint Time-Frequency Analysis

The goal of this section is to establish some necessary theoretical background for the time-frequency applica-
tions addressed in this proposal. Time-frequency analysiswill be addressed as it applies in the following two
applications: the time-frequency cross correlation whichforms the base for JTFDR reflectometry which will be
applied in the health monitoring of electric cables and the time-frequency mutual information measure which
will be used in health monitoring of helicopter drivetrains.

2.1 Joint Time-Frequency Domain Reflectometry Optimal Reference

To produce an optimal reference signal we must optimize a balance between time domain resolution and fre-
quency domain resolution. In order to optimize the resolution in both domains, we consider a signal that
satisfies the uncertainty principle (derived from the product of time and bandwidth variances and meeting the
Cauchy-Schwarz inequality). In this, case we have chosen a Gaussian envelope due to its functionality as an
eigenfunction of the Fourier transform and its similar variance in both the time and frequency domain. This
Gaussian envelope encloses a chirp signal which provides a specified frequency bandwidth and the overall
equation is provided below:

s(t) =
(α

π

)1/4
e−

α(t−t0)2

2 + j
β(t−t0)2

2 + jω0(t−t0) (1)

Additionally, the use of the Gaussian envelope provides theadded benefit of having well-established back-
ground in general statistics and statistical signal processing of jointly random bivariate distributions. In proposed
research Gaussian properties typically used for statistical hypothesis tests will be used for identification of enve-
lope center and outer boundaries (used in detection of faultlocation and automated determination of optimized
reference). In this study, we will work with the function under the simplifying assumption that time centert0 is
neglected (or centered at zero). This yields the following equation:

s(t) =
(α

π

)1/4
e−

αt
2 + j βt2

2 + jω0t (2)

(a) (b)

Figure 1: Time-frequency distribution of (a) optimal reference and (b) reference with sinusoidal modulation
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2.2 Time-Frequency Distribution

All time-frequency distributions can be obtained from the definition of Cohen’s class:

TFDx(t,ω;φ) =
1

4π2

� � �
x∗(u− τ

2
)x(u+

τ
2
)φ(θ,τ)e− jθt− jτω+ jθudθdτdu (3)

Wherex(t) is the analytic representation of a signal,x∗(t) is the complex conjugate ofx(t), andφ(θ,τ) is
a two-dimensional function known as a kernel. The choice of kernel has an effect on marginals, total energy,
realness, time shift, frequency modulation, scaling invariance, and cross term minimization [22]. Among the
various types of time-frequency distributions, the wignerville (WV) distribution, Choi-Williams (CW) distribu-
tion, and reduced interference distribution (RID) have been shown to exhibit the most suitable properties for the
analysis of the time-varying frequency characteristics ofa disturbance or provide the most common solution to
the time frequency kernel selection. For this preliminary analysis we will consider the selection of these three
kernels along with Zhao-Atlas-Marks (ZAM) kernel to see which kernel performs the best for vibration signal
analysis. The kernels for the distributions are given as follows:

φ(θ,τ)WV = 1 (4)

φ(θ,τ)CW = e
−θ2τ2

σ (5)

φ(θ,τ)ZAM = g(τ)|τ|sinaθτ
aθτ

(6)

Whereφ(θ,τ)WV, φ(θ,τ)CW, andφ(θ,τ)ZAM are kernels for WV, CW, and ZAM distributions, respectively.
These Choi-Williams and Zhao-Atlas-Marks kernels may be classified generally as reduced interference dis-
tributions (RID) designed with the intent of reducing the “cross-terms” or inter-harmonic noise introduced by
computation of the time-frequency distribution on multi-component signals. To obtain the time-frequency dis-
tribution of the optimal reference we take the Wigner Transform defined for a generic time-domain function,
s(t), as follows:

W(t,ω) =
1
2π

� ∞

−∞
s∗(t − 1

2
τ) ·s(t + 1

2
τ)e− jτωdτ (7)

We will consider the simple transform pair:

s(t) 
 W(t,ω) (8)

Time and frequency shift properties as provided by Cohen [35], show that for a time domain signal,s(t),
from 2 with a Wigner Transform given as the following bivariate distribution,W(t,ω), a shift in time and
frequency given by:

s(t) → ejω0ts(t − t0) (9)

A subsequent shift in time and frequency is seen in the WignerDistribution:

W(t,ω) →W1(t − t0,ω−ω0) (10)

Using this simplified assumption we can take the Wigner transform of the simplified optimal reference and
form a derivation of this distribution:

Ws(t,ω) =
1
2π

(α
π

)1/2 �
e−

α(t− 1
2τ)2

2 − j
β(t− 1

2τ)2

2 − jω0(t− 1
2τ) ·e−

α(t+ 1
2 τ)2

2 + j
β(t+ 1

2 τ)2

2 + jω0(t+
1
2τ) ·ejτω ·dτ (11)

Ws(t,ω) =
1
2π

(
α
π

)1/2
�

e−
α(t2−τt+ 1

4 τ2)

2 − j
β(t2−τt+ 1

4 τ2)

2 − jω0(t− 1
2τ) ·e−

α(t2+τt+ 1
4 τ2)

2 + j
β(t2+τt+ 1

4 τ2)

2 + jω0(t+
1
2τ) ·ejτω ·dτ

(12)
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The improper integral can be manipulated into the followingform for an express solution:

� ∞

−∞
e−(aτ2+bτ+c)dτ =

√
π
a

e
b2−4ac

4a (13)

Reexpressing the improper integral we obtain:

Ws(t,ω) =
1
2π

(α
π

)1/2 � ∞

−∞
e−( 1

4ατ2+ j(ω−βt−ω0)τ+αt2)dτ (14)

Further simplifying, we obtain:

Ws(t,ω) =
1
π
·e

( j(ω−βt−ω0))2−α2t2

α (15)

Ws(t,ω) =
1
π
·eαt2− (ω−βt−ω0)2

α (16)

Now we will consider the same simplified signal in (2) and add asinusoidal modulation component to the
signal. The signal becomes:

s(t) =
(α

π

)1/4
e−

αt
2 + j βt2

2 + jm·sinωmt+ jω0t (17)

With the following derivation for the Wigner transform

Ws(t,ω)=
1
2π

(α
π

)1/2 �
e−

α(t− 1
2 τ)2

2 − j
β(t− 1

2 τ)2

2 − jm·sinωm(t− 1
2τ)− jω0(t− 1

2τ) ·e−
α(t+ 1

2 τ)2

2 + j
β(t+ 1

2 τ)2

2 + jm·sinωm(t+ 1
2τ)+ jω0(t+

1
2τ) ·ejτω ·dτ

(18)

Ws(t,ω) =
1
2π

(α
π

)1/2 � ∞

−∞
e−( 1

4ατ2+ jm·(sinωm(t− 1
2τ)−sinωm(t+ 1

2τ))+ j(ω−βt−ω0)τ+αt2)dτ (19)

Ws(t,ω) =
1
2π

(α
π

)1/2 � ∞

−∞
e−( 1

4ατ2+ j 2·m·sin(ωmt)·cos( τ
2 )+ j(ω−βt−ω0)τ+αt2)dτ (20)

Ws(t,ω) =
1
2π

(α
π

)1/2
e−αt2

� ∞

−∞
e−( 1

4ατ2+ j 2·m·sin(ωmt)·cos( τ
2 )+ j(ω−βt−ω0)τ)dτ (21)

ej2m·sin(ωmt)·cos( τ
2 ) =

∞

∑
n=−∞

Jn(2m·cos(ωmt))e
jnωmτ

2 (22)

Ws(t,ω) =
1
π

e−αt2
∞

∑
n=−∞

Jn(2m·cos(ωmt))e
(ω−ω0−βt− nωm

2 )2

α (23)

2.3 Numerical Approximation of Reference Signal for Embedded Implementation

For further background regarding the equation given in 23, we can further analyze the Bessel function described
in 22. The Bessel function is the solution to the differential equation given in

x2 d2y
dx2 +x

dy
dx

+(x2−α2)y = 0 (24)

And can be described by the following integral relation :

Jn(x) =
1
2π

� π

−π
e−i(nτ−x·sinτ)dτ (25)
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This equation presents a set of problems in that no closed-form representation exists for express solution.
Operations such as cross-correlation (further described in Section 2.4) require numerical solutions and numer-
ical approximations. Similarly in the case of the Fourier transform, a temporal integration is required. This
allows for a number of different approximation methods which can be used in combination with an embedded
sensor for constant or periodic health measurement and assessment. The simplest of the approximations is
shown below:

J0(x) '
2
π

� 1

0

cos(2nδω)√
1−ω2

(26)

Further potential methods for Bessel function approximation include Taylor series approximation, polyno-
mial approximation, and exponential approximation. The Taylor series approximation [36] forJp(x) is given by
the following summation:

Jp(x) =
∞

∑
m=0

tpmx2m+p (27)

tpm =
(−1)m

22m+pm!(m+ p)!
(28)

To truncate the Taylor series to a given orderxn we can express the Taylor series as:

JT,n
p (x) =

n+p
2

∑
m=p

tp,m−px2m−p (29)

Alternatively a polynomial approximation [37] can be used such that:

J0(x) '
n

∑
m=0

cnmx2m (30)

cnm =
(−1)mn1−2m(n+m−1)!

22m(n−m)!(m!)2 (31)

Lastly, an exponential approximation can be made. Due to theoscillatory nature of the Bessel function,
for an exponential approximation to be made, the Bessel function must be represented as a set of complex
exponentials [36]. This provides the following relationship:

JV(x) =
1
2

2N

∑
n=1

anesnx (32)

wherean,sn are complex parameters such thatan = anr + jani,sn = snr + jsni andan+N = a∗n,sn+N = s∗n.
The zero order expansion is then given as:

J0(x) =
1
2

2N

∑
n=1

anesnx (33)

These approximations can be used to make a simplified approximation of the optimized reference for im-
plementation on smaller scale waveform generation and signal injection embedded systems toward eventual
continuous or periodic health assessment monitoring in either cable insulation assessment or structural health
monitoring.

9



2.4 Time-Frequency Cross Correlation

JTFDR computes the time-frequency cross correlation between an incident signal and the reflected signal
through a propagating medium with the following equation:

Csr(t) =
1

EsEr(t)

� t′=t+Ts

t′=t−Ts

�
Wr(t

′,ω)Ws(t
′− t,ω)dωdt′ (34)

whereWr(t,ω) is the Wigner distribution of the reflected signal;Ws(t,ω) is the Wigner distribution of incident
signal; andEs andEr(t) are normalization factors.

Csr(t) =
1

EsEr(t)

� t′=t+Ts

t′=t−Ts

�
e−α(t

′
)2

∞

∑
n=−∞

Jn(2m·cos(ωmt
′
))e

(ω−ω0−βt
′ − nωm

2 )2

α

·e−α(t
′−t)2

∞

∑
n=−∞

Jn(2m·cos(ωm(t
′ − t)))e

(ω−ω0−β(t
′ −t)− nωm

2 )2

α (35)

2.5 Time-Frequency Ŕenyi Information Measure

This section has been adapted from a previously submitted paper produced by the author [19]. The classical
information measure of a continuous stochastic process is known as Shannon information [20] given as:

Hx = −
� ∞

−∞
f (x) log2 f (x)dx (36)

where the continuous functionf (x) is a probability density function which is positive and bounded between 0
and 1. Williams, Brown, and Hero proposed a measure of time-frequency information by use of the generalized
Rényi information [20]. The definition of the generalized Rényi information [21] of a continuous bivariate
distributionP(x,y) is defined as follows:

Hα(P) =
1

1−α
log2

� �
Pα(x,y)dxdy

� �
P(x,y)dxdy

(37)

The definition of the generalized Rényi information can be extended by replacing the bivariate distribution
P(x,y) with a Cohen’s class [23] time-frequency distributionCs(t,ω) of signals(t) with the following definition:

Cs(t,ω;φ) =
1

4π2

� � �
s∗(u− τ

2
)s(u+

τ
2
)∗φ(θ,τ)e− jθt− jτω+ jθudθdτdu (38)

Use of the Cohen’s class distribution permits a more generalsolution allowing for variable kernel selection.
The kernel function of the distribution is described by theφ(θ,τ) term in (38). In other words, the theory
described in this section presents analysis for the generalcase of the Cohen’s class time-frequency distribution
while any distribution kernel could be selected when applying the time-frequency mutual information measure
including, but not limited to, the general (Cohen’s class),spectrogram, Zhao-Atlas-Marks, Wigner-Ville, Choi-
Williams, or reduced interference distribution (RID) kernel [23]. We selected the spectrogram kernel for the
time-frequency information because it has the desirable property of nonnegativity forwarded by Williams, et.al
in [20] for all time and frequency variables. To provide consistency of discussion with time-frequency analysis
in Section??, the spectrogram here is defined as a Cohen’s class distribution as seen in (38) where the kernel
functionφ(θ,τ) is specified as the spectrogram kernel given by:

φ(θ,τ) =

�
h∗(u− 1

2
τ)h(u+

1
2

τ)e− jθudu (39)
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The order of the generalized Rényi information determinedby parameterα for the time-frequency distri-
bution has been investigated in [24] so thatα = 3 is a reasonable selection, with the exception of contrived
counterexamples [20]. Hence, the following information measure of time-frequency distribution will be uti-
lized:

Hα(Cs) =
1

1−α
log2

� �
Cα

s (t,ω)dtdω
� �

Cs(t,ω)dtdω
(40)

2.6 Cross Time-Frequency Distribution

The metricHα(Cs) defined in (40) measures the number of signal elements ofs(t) over the time and frequency
planes. The Rényi information measure is a meaningful measure of time-frequency distribution, but it is only
defined for a single realization of signal, e.g. self-information. If we have a pair of signals closely related, how
can we define or quantify the interactions in terms of information? We will investigate a generalization of the
time-frequency information measure by introducing the mutual time-frequency information.

In order to analyze the information of two closely spaced components, the classical mutual information of
two random processes is extended to two time-frequency distribution functions. Let us consider the classical
definition of the mutual information that might be extended to the measure of mutual information of the time-
frequency distributions. The joint entropyH(X,Y) of a pair of continuous random variables(X,Y) with a joint
probability density functionp(x,y) is defined as:

H(X,Y) = −
� �

p(x,y) log2 p(x,y)dxdy (41)

By chain rule,
H(X,Y) = H(X)+H(Y|X) (42)

whereH(Y|X) is the conditional entropy. Under the same conditions, the mutual informationI(X;Y) is the
relative entropy between the joint distributionp(x,y) and the product distribution of the individual marginal
distributionp(x) andp(y) as follows:

I(X;Y) =

� �
p(x,y) log2

p(x,y)
p(x) · p(y)

(43)

The relation of the mutual informationI(X;Y) and joint entropyH(X,Y) is defined as follows:

I(X;Y) = H(X)−H(X|Y)

= H(Y)−H(Y|X)

= H(X)+H(Y)−H(X,Y) (44)

Thus, it is necessary for us to define cross time-frequency distributionJs1s2(t,ω;φ) of the signal pairsS1 andS2

[25].

Js1s2(t,ω;φ) =
1

4π2

� � �
s1(u+

τ
2
)s∗2(u−

τ
2
)φ(θ,τ)

∗ e− jθt− jτω+ jθudθdτdu (45)

The kernelφ(θ,τ) is equivalent to the kernel given in Cohen’s class in (38) andthe cross time-frequency
distribution satisfies time and frequency marginal property under the same constraints given in Cohen’s class.
Consider a joint information of time-frequency distributionHα(Js1s2) in terms of cross time-frequency distribu-
tion Js1s2(t,ω;φ) as follows:

H(S1,S2) = Hα(Js1s2) =

= − 1
1−α

log2

� �
Jα

s1s2
(t,ω)dtdω

� �
Js1s2(t,ω)dtdω

(46)
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2.7 Time-Frequency Mutual Information Measure

However, one must be careful in defining the information measure of the cross time-frequency distribution
which is a complex number. In addition, normalization of thedistribution is important for a proper bound of the
information measure. Therefore, instead of direct application of the generalized Rényi information, consider
the normalized cross time-frequency distributionJs1s2(t,ω) as follows:

Js1s2(t,ω) =
Js1s2(t,ω)

√

Cs1(t,ω) ·Cs2(t,ω)

=
Rs1s2(t,ω)

√

Cs1(t,ω) ·Cs2(t,ω)

+ j
Qs1s2(t,ω)

√

Cs1(t,ω) ·Cs2(t,ω)

= Rs1s2(t,ω)+ jQs1s2
(t,ω) (47)

We can define the time-frequency mutual information measureof in-phaseIR
α(S1;S2) =−Hα(Rs1s2) and quadra-

tureIQ
α (S1;S2) = −Hα(Qs1s2

) as follows:

IR
α(S1;S2) =

1
1−α

log2

� �
Rα

s1s2
(t,ω)dtdω

− 1
2
· {Hα(Cs1)+Hα(Cs2)} (48)

IQ
α (S1;S2) =

1
1−α

log2

� �
Qα

s1s2
(t,ω)dtdω

− 1
2
· {Hα(Cs1)+Hα(Cs2)} (49)

Then, the mutual information measureIα(S1;S2) of S1 and S2 is defined in terms of in-phase time-frequency
mutual informationIR

α(S1;S2) and quadrature time-frequency mutual informationIQ
α (S1;S2) as follows:

Iα(S1;S2) = IR
α(S1;S2)+ IQ

α (S1;S2)

= −Hα(Rs1s2)−Hα(Qs1s2
)

= Hα(Cs1)−Hα(Cs1|Cs2)

= Hα(Cs2)− (Hα(Cs1,Cs2)−Hα(Cs1))
︸ ︷︷ ︸

Hα(Cs2|Cs1)

= Hα(Cs2)−Hα(Cs2|Cs1) (50)

Therefore, the mutual time-frequency informationIα(Cs1;Cs2) is the sum of individual time-frequency infor-
mationHα(Cs1), Hα(Cs2) and joint informationHα(Cs1,Cs2). For example, ifs1(t) = s2(t), thenCs1 = Cs2 and
Qs1s2 = 0 such that

Iα(Cs1;Cs2) = Iα(Cs2;Cs2) = Hα(Cs1) or Hα(Cs2) (51)

Based on the mutual time-frequency information measure, weinvestigate the efficacy of the proposed technique
with real-world data sets. The experimental setup and data descriptions are provided in Section 3.
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(b)

Figure 2: Schematic representattion of AH-64 helicopter tail rotor drivetrain test stand (a) and actual test stand
(b) with labeled components for comparison.

3 Health Monitoring of Rotorcraft Drivetrain by Mutual Info rmation

3.1 Introduction

3.2 Experimental Setup

The CBM center at The University of South Carolina has an AH-64 Helicopter tail rotor drivetrain test stand
for on-site data collection and analysis [1]. The test standincludes an AC input motor (Fig. 2(a)) rated at 400
horsepower to provide input drive to the configuration, a multi-shaft drive train supported by hanger bearings,
flex couplings at shaft joining points, two gearboxes, and anabsorption motor of matching rating to simulate the
torque loads that would be applied by the tail rotor blades. The test stand, with picture provided in Figure 2(b),
was used to collect data to be used in conjunction with historic helicopter vibration data to develop the baseline
of operation for the systems under test. The signals are collected during the operational run of the apparatus
included vibration data measured by accelerometers, temperature measured via thermocouples, and speed and
torque measurements. The measurement devices were placed at the forward and aft hanger bearings and both
gearboxes. This paper focuses on the application of time-frequency techniques to the forward and aft hanger
bearing vibration signals denoted asS1 andS2 in Figures 2(a) and (b). The physical separation of between
accelerometers (which will further be referred to more generally as sensors) on the bearings is 3.43 m.

3.3 Data Acquisition

The data acquisition software collects data from the hangerbearings once every two minutes during the course
of the thirty minute baseline runs, with the exception of twoadditional collection periods at the start of the run,
a total of 17 measurements. An experimental run consists of an intermediate speed ramp from 0 to 600 RPM
followed by a ramp from 600 to 4863 RPM. The measurements for baseline characterization were then taken
during operation of the test stand at a constant rotational speed of 4863 RPM from the prime mover with a
simulation of output torque at 111 ft-lbs from the secondary. A summary of test conditions is given in Table 1
given a few conventions. Rotational speed is the speed of theinput shafts and hanger bearings. Output torque is
given by the torque at the output of the tail rotor gearbox simulating rotor operation while the torque applied to
the input shafts and hanger bearings is equal to 32.35 ft-lbs.

Data collection yielded 65,536 point at a sampling rate of 48kS/s per scheduled sampling period, which
results in a data collection time of roughly 1.31 sec per acquisition. For each run, data was acquired 17 times on
these 1.31 sec intervals: twice at the beginning and then once every two minutes until the end of the run. With
individual data files containing 65,536 samples each, acquisition results in over one million data points per set,
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Table 1: Loading profile for a 30 minute baseline test run
Rotational
Speed
(RPM)

Output
Torque
(ft-lb)

Input
Torque
(ft-lb)

Duration
(min)

0-600 0 0 7.5
4863 111 32.35 30
600-0 0 0 7.5

which is too intensive for many processors to handle during time-frequency analysis. In order to resolve this
computational issue and decrease computation time, each data set under test was divided into 17 experimental
frames to correspond to each time the sensor was activated tocollect data. Each of the 17 experiments was
then divided into 16 windows comprised of 4096 points each. Within these subdivided windows, spectrogram
measurements were made on bothS1 andS2 while the mutual information measure was applied to 4096 point
segments ofS1 andS2.

Additional windows can determined by an overlap percentagewhich layers additional 4096 point windows
within the main 16 in a given experimental frame at intervalsof 4096 multiplied by the overlap percentage in
order to create additional effective mutual information measurements from the given data. An overlap of 33
percent was determined to provide adequate clustering and enhance the probability density for implementation
of predictive confidence levels.

This overlap selection helps eliminate data outliers and improve the visualization of the clustering when
applying the time-frequency mutual information describedin Section 2.7 to multiple data points. Therefore the
total number of mutual information measure points for the given data is equal to the number of experimental
frames (17) multiplied by the number of window signal subsets (16) and the inverse of the fractional overlap
percentage (3), for a total of 816 mutual points or 272 mutualpoints when neglecting overlap components. The
data format of the time series is also provided in [15].

The configuration of the test stand uses balanced drive-shafts aligned in a straight assembly as a baseline
for normal operations. After performing test runs in the baseline condition, intentionally faulted configurations
are tested to expand the baselines to include combinations of misaligned and unbalanced shafts. The goal of
the time-frequency analysis is to establish metrics for thebaseline conditions using the original data set and
produce a set of metrics to diagnose each of unbalanced and misaligned conditions. The data presented for
analysis included five sets of thirty minute runs of the apparatus each taken with different alignment and bal-
ancing conditions. Table 2 displays these conditions and their designations.

The primary physical fault conditions characterized experimentally are bearing unbalance and shaft mis-
alignment. While these conditions will be described more thoroughly in Section 3.4, an overview of these
settings helps in gaining a familiarity with the experimental set up. The nomenclature of the baseline sets is
dictated by numbered segments of the drive-train. Each segment of concern in experimentation is designated
by a number (1 through 5) and coupled by flex couplings at the bearings locations to hanger bearings. Un-
balance is related to drive shafts which exhibit geometrical or mass centerlines that do not coincide with axes
of shaft rotation (UB/A and UB/MA cases). These will be referred to as the unbalanced-aligned (UB/A) and
unbalanced-misaligned (UB/MA) cases respectively. Misalignment (MA/B, UB/A and MA/UB cases) in the
test configuration is characterized by a change in bearing and shaft placement that moves the number 3, 4, and
5 shafts from straight alignment to produce an angle of 1.3 degrees. Either a 3-5 unbalance (unbalance of three
consecutive drive shafts) or a 4-5 unbalance (unbalance of only two drive shafts) differentiates two experimental
settings. The aforementioned settings will be referred to as the misaligned-balanced (MA/B) and unbalanced-
misaligned (UB/MA) 3-5 and 4-5 cases. These settings produce additional wear on drive-train components
while also presenting additional transients in harmonics that can be measured for health classification purposes.
For the purposes of this paper we will simply refer to these cases as baseline (A/B), misaligned (MA/B), un-
balanced (UB/A), and misaligned-unbalanced (MA/UB) as shown in the nomenclature of Table 2. Instances of
ambiguity between the misaligned-unbalanced cases will bespecified as 3-5 misaligned or 4-5 misaligned.
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Table 2: Tail Rotor Driveshaft Experimental Settings
Shaft Status Balanced Unbalanced

Aligned A/B UB/A
Misaligned MA/B MA/UB 3-5, 4-5

Unbalance vibrations are generated when geometrical centerline or mass centerline of a shaft do not coin-
cide with the rotational axis of the shaft, for example in cases of bearing looseness or due to manufacturing
imperfections. This inconsistency between rotational axis and geometrical or mass centerline creates a radial
bow forceFu at a fixed relative phase angle,ϕ, which varies in magnitude along the length of the shaft as
shown in Figure 3-(b). The unbalance condition creates harmonically varying vibrations, D, on a hanger bear-
ing housing, which are registered by dedicated accelerometers. These varying vibrations consist ofx andy axis
radial vibrations,zaxis axial vibrations, and torsional vibrations of a shaft in a bearing (Figure 3-(b)) as well as
additional vibration signal contributions coming from coupled bearings, gearboxes, power units, airframe, and
other components. Each hanger bearing on a helicopter system has only one dedicated accelerometer in current
settings, which can pick only lateralx axis component of the vibrations (Figure 3-(c)) of the form:

Dx = Ax ·cos(ωt + ψx) (52)

Dy = Ay ·sin(ωt + ψy) (53)

whereDx,y andAx,y are displacements and amplitude of displacements in x and y axis directions,ω - angular
velocity, andψx,y - phase angles.

Vibrations caused by unbalance will be in-phase on both bearings accelerometersS1 andS2 when(ϕy−ϕx =
0), and will vary only in magnitude depending on the magnitude of unbalance,Fu. The drive shaft supported
by the hanger bearings at sensor locationsS1 andS2 is not a uniform shaft but rather a sectionalized shaft as
previously described. Therefore, misalignment cannot typically be avoided. It should be noted that as shown in
Table 1 the experimental data is gathered under conditions of constant or near constant torque load and speed.

Misalignment in our case is considered as an angular misalignment when the shaft centerlines of the two
shafts meet at angle with each other. This, on the contrary tounbalance, causes axial preloads on the shaft in the
z axis direction, and can be decomposed tox signal component based on angle of misalignmentFx = Fzsin(αm).
This force will have the greatest impact on the bearing closest to the shafts’ coupling point, and will have a
phase difference in reference to force registered at a further located sensor(ϕy−ϕx 6= 0) (Figure 3-(c)) because
of finite stiffness and dampening in the system. In industrial vibration monitoring one would use shaft
diagnosis techniques such as shaft centerline orbit monitoring, which requires twox andy sensors at a single
location, and a skilled human operator, which make such technique inapplicable in our case and justifies the
need for an advanced diagnostic measure. Mutual information measure takes advantage of two accelerometer

Figure 3: Unbalance force distribution over the shaft supported at theS1 andS2 accelerometers locations (a)
cross-section of a bearing and the shaft at theS1 accelerometer location (b) shaft centerline orbits at theS1 and
S2 accelerometer locations, and (c) displacement or vibration components in the x and y axis directions (Du,
Dm1 orbits whenϕy−ϕx = 90◦, Dm1 whenϕy−ϕx = 120◦)
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(b) S1 of MA/UB 3-5

Figure 4: Spectrogram ofS1 for (a) baseline (B/A), and (b) misaligned-unbalanced (MA/UB 3-5).

signals located at different locations, simultaneously quantifying all frequency and phase components of the
mechanical vibrations signals.

3.4 Vibration Analysis

In the predictive maintenance practices of CBM, metrics similar to the simpler total harmonic distortion (THD)
or root mean squared (RMS) classical methods are used as diagnostics. These provide comparisons of a signal
harmonic component (such as the fundamental) to other harmonics in weighted algorithms. These metrics
provide good indications of vibration characteristics under the condition that the frequency components under
test are stationary, or remain unchanged with the progression of time.

Unfortunately, this classical approach inherently assumes the disturbance is of a periodic nature. In fact, not
all real life disturbance events result in periodic waveforms and transient frequency variations are common in
the event of faulted components. Often events such as damagecause disturbances that can best be character-
ized as transient in nature. In such cases it is necessary to study the time-varying frequency components of a
disturbance. This can be accomplished with time-frequencyanalysis.

The motivation to use time-frequency analysis is to have theability to represent and analyze non-stationary
signals whose spectral characteristics change in time. Oneapproach to time-frequency analysis is to take the
time-frequency distribution of a signal.

The problem with WV distribution is that it introduces artifact when a signal is multicomponent between
existing components (on auto terms) at non-linear spacings(cross-frequencies). This artifact can be reduced
with CW, RID, and ZAM distributions, shown in Figure 5(a)-(f). The ZAM kernel was selected for this project
for its its general capability to represent a fair tradeoff in time and frequency resolution. The window for
this function is selected based on the number of frequency bins (N = 1024) with the Hamming window being
selected in both time and frequency smoothing. The time and frequency window lengths are given as N/10 (or
103) and N/4 (or 255) respectively with rounding to the nearest odd number. Looking at the time-frequency
distributions of the two signals, we can see that the first signal (advanced state) has four frequency bands while
the second signal (damaged state) has two frequency components with increased energy in the second harmonics
and decreased energy in the first harmonics. However, the second signal seems to have more transient variation
among the frequency bands. We will search for a way to define this transient variation. The metricHα(Cs)
defined in (40) measures the number of signal elements ofs(t) over the time and frequency planes.

Figure 7 is a metric derived from the Rényi information of the time-frequency distribution. In Figure 7(a),
the Rényi information or entropy of the of Wigner-Ville kernel is compared to that of the reduced interference
distributions. From the metric, we can see a higher value forthe amount of information as represented by the
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Time-frequency distributions of vibration signals from (a) data set 1, and (b) data set 2 with WV
distribution, illustrating the potentially negative impact of cross terms in vibration analysis.

reduced interference distribution. This can be interpreted similarly to visual inspection of the time-frequency
distributions for the respective kernels. By visual inspection of the reduced interference distributions, we see
more of the information represented in the transient variations of the signals and less of the cross-terms. The
values of these test points (1-10) are randomized within theweek long duration of testing approaching failure in
our case study, so we will now view the sorted version of the same data and consider the metric for a sequential
interpretation approaching failure. This will help us viewthe Rényi information as a metric for condition
assessment.

The sequential time-series to failure is shown in Figure 7(b). The bars corresponding to 1, 2, and 4 showcase
approximately the same complexity by our metric and all correspond to the start of an experiment run. However,
bar number 7 corresponding similarly to the start of an experimental run, shows a significantly higher complexity
value while actually decreasing in the number of frequency bands (as seen from Figures 4-6). This corresponds
to high amount of frequency transient information caused bythe impending failure. Extensive damage was
likely caused during the previous runs at the values indicated by high Rényi metric and failure occurred soon
after the measurement used for bar 10. Constant increase is seen from bar 3 to 5 to 6 leading up to failure,
and it will be interesting in the future to consider sectionsthat have been completely matched in terms of the
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(a) (b)

Figure 6: (a) Rényi metric comparison, and (b) sequential sorting of metric for the CW.

test sequence (both loading and rotational speed). With thegiven results, we would suggest using the Rényi
metric derived previously to confirm that a part is failing. If the second harmonic of the gear mesh frequency
measured here were increasing, we could measure the Rényi based metric and confirm that while the number of
frequency bands from 1x of mesh to 4x of mesh frequency is decreasing, the Rényi information is increasing.
This would indicate a high number of transient variations and allow for rejection of some false positives based
on the previous metrics of first and second harmonics of gear mesh frequency.

3.5 Comparison of Ŕenyi Derived Self Information to Time-Frequency Methods

The first step of analysis and discussion uses the self Rényiinformation measure defined in (40) of Section 2
to describe the individual time series. The self Rényi information measures ofS1 andS2 for baseline and mis-
aligned cases are provided in Figure 7. Signal 1,S1, and Signal 2,S2, in both the baseline (A/B) and misaligned
(MA/B) cases are processed by applying the 8-point moving average filtering followed by Rényi information
calculation to obtain the self information measure. Thus, for every time instance of every experiment window
of the data, a Rényi calculation of each auto-correlated signal was gathered. As shown in Figure 7, a total of 272
self information measures were gathered for each signal of each case. Additional overlapping is used for x-y
coordinate mapping used in visualizing part health. In order to identify the tendency of the measure, an 8-point
moving average filter was applied to each signal with the filter covering half of the time instances provided in
each experiment window. The results of this self information measure are compared side by side in Figure 7
for each signal. The referenced time instance (15th of file frame at 5th experiment window) is marked on each
graph to show a consist reference point based on the description of Section 2.

Notable difference from the side by side comparison in Figure 7 is a sizable increase in the self infor-
mation measure of the misaligned case over the baseline case. This could be a characteristic signature of a
misaligned case. The self information measure shows a general increase at the given samples when comparing
the balanced-aligned case with the misaligned case and an increase on the average of measured frames. The av-
erage self information value of the baselineS1 signal is reported at 6.72 bits while the average value of thesame
signal in the misaligned-balanced case was 7.68 bits. Comparing the second signal set,S2, we obtain a value
of 6.78 bits compared to 7.31 bits for the same cases. However, from this derived metric, the interpretation is
yet unclear. This self-information measure can be verified using the spectrogram example discussion in Figure
4. From this data, there is little other indication of changefrom the baseline case to another “faulty” status
of the shaft. Moreover, the self Rényi information ofS1 in the balanced case in Figure 7(a), as well as both
signals in the misaligned case, oscillate more compared to the self Rényi information ofS2 of the baseline case
(A/B). This could be attributed to more high frequency components shown in the time-frequency spectrogram
of Figure 4(b).
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Figure 7: Self Rényi information measure ofS1 andS2 for baseline in (a)∼(b), and self Rényi information
measure ofS1 andS2 for misalignment in (c)∼(d)

While this self information proves useful and shows a notable basis by which to compare data sets, it lacks
potential for comparison of closely related signals and in this instance shows an increase when compared on
average while not for localized comparison. This only partly supports the desired qualities of a condition indi-
cator while further information can be gathered from the mutual information measure. This mutual information
measure is a complex value and can be further subdivided intotwo constituent values: an in-phase mutual time-
frequency information (Iα(Rs1s2)) and a quadrature mutual time-frequency information (Iα(Qs1s2)) defined in
(48) and (49).

3.6 In-Phase and Quadrature Components of the Time-Frequency Mutual Informa-
tion Measure

Mutual information measures of baseline and misaligned cases are provided in Figure 8. An interesting
trend can be seen in the baseline case in Figure 8(a). Overall, the in-phase mutual time-frequency informa-
tion (Iα(Rs1s2)) stays mostly at a constant separation from the quadrature mutual time-frequency information
(Iα(Qs1s2)). Both theIα(Rs1s2) and Iα(Qs1s2) of the baseline case in Figure 8(a) remain relatively constant
throughout all windows of the experiment. However, toward the end of the sequence outlined in Figure 8(a),
the in-phase and quadrature mutual information measure values begin to experience a larger separation. These
characteristics are all important to note while considering what truly characterizes the baseline physics of the
system.

A glance at the mutual information from the misaligned case in Figure 8 (b) draws attention to two dis-
tinctive signatures. First, like the baseline case, the co-spectral mutual time-frequency information (Iα(Rs1s2))
remains relatively constant throughout all experiment windows with a large trough around experiment window
10 corresponding to a minimum value of the quad-spectral mutual time-frequency information (Iα(Qs1s2)). Sec-
ond, the quadrature component has a larger average value over the length of the experiments than was seen in
the quad-spectral component in the baseline case. Also, thequad-spectral component in the misaligned case
fluctuates greatly, showing greater amounts of local minimaand maxima. Though the quad-spectral information
in the misaligned case revealed a significant rise in the number of bits in the mutual information measure, the
co-spectral portion showed little increase over the experiment windows measure. By comparing the results in
Figure 8 with other results by classical spectral analysis or traditional spectrogram, one can find the useful-
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Figure 8: Mutual Rényi information measure ofS1 andS2 for (a) Baseline-Aligned, (b) Aligned-Unbalanced,
(c) Misaligned-Balanced, and (d) Misaligned-Unbalanced

ness of the proposed technique for a quantitative health condition assessment of the experimental setup. Further
analysis is underway to understand the relationship between the time-frequency mutual information method and
other confounding factors such as speed and torque, isolating the sources of transient changes in the vibration
signatures.

3.7 Time-Frequency Mutual Information Measure Visualization

The mutual information measure currently in development and shown in Figure 9 provides a graphical interpre-
tation of part condition by analyzing the amount of mutual data shared between two vibration signals received
from separate accelerometers. The mutual information measure is comprised of a quadrature component and
an in phase component which, by observation seem to indicatedifferences in the actual physics of the system.
Figure 9 shows the scatter plot distribution of the in phase component of the measure on the x-axis and the
quadrature component of the measure on the y-axis. In the condition of system unbalance, as seen in Figure 9
(a), (c), and (d), which compare misaligned and unbalanced experimental settings to the standard baseline, the
in-phase component shows a potential trend toward a decrease in information bits.

Similarly, misalignment can be observed to decrease the number of information bits of the measure con-
tained in the quadrature component, provided in Figure 9 (b)and (d). As a distribution these values can be seen
to shift along the x-y plane indicating a shift in part or system status. Additional studies should be analyzed and
compared to determine if these trends are truly linear as they appear to be from observation. It would appear
that Figure 9 (c) and (d) which were tested under both misalignment and unbalance conditions, as well as com-
bination settings, have differing degrees of misalignmentand unbalance yielding different distributions which
follow the established trends along the quadrature and in phase components.

4 Health Monitoring of Electric Cable

4.1 Introduction

In order to prevent electrical outages and to save maintenance expenses, a prognostic technique is needed which
can quantify the degradation of the insulation of a cable to predict the remaining life of the cable. Ideally,
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Figure 9: Baseline comparisons of the mutual information measure (a) Aligned-Unbalanced, (b) Misaligned-
Balanced, (c) Misaligned-Unbalanced 3-5, and (d) Misaligned-Unbalanced 4-5 with the Aligned-Balanced Case

the technique should be non-destructive, non-intrusive, applicable to cable types and insulation materials com-
monly used. Furthermore, the ideal scenario is to be able to accurately monitor the health status of cable in
real-time and continuously. Recently, the NRC and Brookhaven National Laboratory have been working on the
diagnostics and prognostics of electric cables with the Broadband Impedance Spectroscopy (BIS) technique de-
veloped by Boeing [31]. On an international scale, the OECD Halden Reactor Project in Norway is researching
similar issues in monitoring the condition of electric cables; their method is known as Line Resonance Analysis
(LIRA) [32]. The purpose of these techniques is to detect andlocate defects before they cause a component
to fail. Although BIS and LIRA have different names, these two methods both monitor impedance of faults
caused by insulation degradation using frequency-domain reflectometry (FDR), primarily due to the extreme
challenges involved in accurately measuring fault impedance in the time domain.

In practice however, there are no condition monitoring techniques available that have all the above attributes.
The capability of joint time-frequency domain reflectometry (JTFDR) to monitor the status of cable insulation
is evaluated in an effort to predict the remaining life of power cables. JTFDR captures the advantages of both
TDR and FDR while avoiding some of their limitations by usingadvanced digital signal processing [30]. A
distinct advantage of this reference signal is its configurability; the user can select appropriate parameters of
the reference signal, including frequency bandwidth, center frequency, and time duration, by considering the
frequency characteristics of the wire being tested. JTFDR has been proven to be able to accurately and sensi-
tively detect both hard and incipient defects on coaxial cables [31]. The unique features of the time-frequency
cross-correlation function employed by JTFDR also allow itto monitor the minor changes in cable insulation
which indicate the health status of the cable with a high degree of sensitivity.

4.2 Experimental Setup

Shown in Figure 10(b) is the system function diagram that describes the configuration and function of the ex-
perimental devices of the JTFDR wiring test bed. The computer (PC) instructs the arbitrary waveform generator
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(a) (b)

Figure 10: Experimental setup is shown with a (a) labeled figure of the laboratory setup and (b) a system
function diagram

to produce the Gaussian-chirp incident signal designed based upon the input center frequency, bandwidth, and
time duration with optional variations in reference signaldescribed such as sinusoidal modulation. This incident
signal propagates into the target cable via the RF amplifier in cases of longer cable lengths, is reflected at the
fault location, and travels back to the signal launcher/receiver. The signal launcher/receiver should be seen as
a general implementation with a circulator or switch being used for this task in laboratory settings while future
work would implement a wireless sensor for insulation assessment. The reflected signal is redirected to the dig-
ital oscilloscope. The computer program acquires both the incident and reflected signals from the oscilloscope,
calculates the time-frequency distribution of the incident and reflected signals, and executes the time-frequency
cross-correlation algorithm to detect, locate, and assessany defects on the cable. The heat chamber used for
accelerated thermal aging is also shown in Figure 10(a). Forlonger or more dispersive cable media, we make
use of an RF amplifier (120W ouput) to provide increased rangeof detection while keeping a l meter or better
resolution for the JTFDR method. This helps stabilize against instrumentation noise for the AWG and oscil-
loscope while also providing sufficient resolution for detection multiple reflections of the incident reference
signal.

4.3 Diagnostics and Prognostics

4.3.1 The Modified Arrhenius Equation

Typically aging of a cable is defined as any process electrical, mechanical, thermal, or environmental which
might reduce the overall effectiveness of the cable for power or signal transmission. An alternative, and broader,
definition of aging would describe the process as any condition over the duration of cable life that leads to
increased susceptibility to hardware faults or that might otherwise lead to premature failure. In our case, actual
aging is represented broadly by a simulation of thermal stress and in particular by uniform heating of a section
of cable at a constant temperature above the normal thermal capacity. As defined by IEEE 1064 standard, aging
is the occurrence of irreversible deleterious changes thatcritically affect performance and shorten useful life
[27].

The well known Arrhenius model is used to determine the agingtest parameters such as thermal stress and
time duration. The Arrhenius model is based on chemical ratetheory and has been verified to be effective for
many solid materials. The equation of the Arrhenius model describes the relationship between the reaction
rate and the temperature of a chemical reaction [13]. One keypoint to remember is that this reaction rate and
temperature correlation only applies to a single reaction,while insulation degradation is not a single chemical
process, but rather more complicated with multiple reactions and often nonlinear deleterious effects. This model
has however become accepted as an indicator and metric for cable aging as outlined in the IEEE standard. The
modified Arrhenius equation for an accelerated aging test follows:
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ts
ta

= e[Ea/B(1/Ts−1/Ta)] (54)

where the following hold true:
Ts is the service temperature;
Ta is the accelerated aging temperature;
ts is the aging time at service temperature;
ta is the aging time at acceleration temperature;
Ea is the activation energy of the material;
B is the Boltzmann’s constant (given below),

B = 8.617×10−5[eV/K] (55)

This equation equates the heating of a material at temperature Ta for time ta to the aging of the material at
the service temperatureTs over a timets.

4.3.2 Accelerated Aging Test with Various Low Voltage Insulation Types

Using the previously described modified Arrhenius equationas a guide for accelerated aging, and utilizing
standard activation energy values for various cable types,tests were performed on low voltage control and
instrumentation cable to simulate 120 years of service lifeat 50 degrees Celsius, nearly double the expected
service life of a typical cable. During the accelerated aging tests, JTFDR is employed to assess the various
states of the cables during the aging process and growth in measured time-frequency cross correlation peak
value growth. Before any external thermal stresses are applied, the waveforms are acquired multiple times
to account for noise and acquisition error and processed foreach cable sample to obtain the time-frequency
cross-correlation baselines for future comparison. Only alocalized segment (typically 1 m) is aged to simulate
non-uniform aging along the length of a cable sample (10-20mfor verifying tests). A certain number of hours
(ta), is computed depending on how long, (ts), the cable is to be aged. When the cables are to be measured
using the time-frequency cross correlation metric at regular intervals, the ”hot spot,” or aged segment, is cooled
to ambient temperature to ensure that all metric increases are related to actual simulated aging and not simple
geometry changes within the cable samples. The waveforms are acquired and processed after this cooling
process is verified with a thermometer to obtain an updated time-frequency cross-correlation plot. The program
then calculates the peak value corresponding to the aged segment and records this new value for comparison
with previously collected and future health assessments.

4.3.3 Accelerated Aging Test with Medium-High Voltage Cable

In the case of XLPE cable, an activation energyEa of 1.33 eV [15] was used with an acceleration temperature
of 140◦C. The typical maximum operating temperature of MV-90 cableis 90◦C. With a an acceleration
temperature of 140◦C and a simulated service temperature (Ts) of 90◦C over 90 years (ts), the simulated aging
time can be found to be 24 hours.

Aging was simulated using a heating chamber with two throughports for cable access separated by 0.6
meters. A meter long ”hot spot” was desired for localized aging, however, in the case of thicker MV-90 un-
derground cable, minimum bend radius along with cable stiffness and thickness allowed only 0.6 meters, or
the separation between cable through ports, for hot spot consideration. Both XLPE insulated cable samples
(Rockbestos Firewall III XHHW, low voltage and MV-90, medium voltage) were heated for one hour at a time
at 140◦C. The cables were then cooled to ambient temperature (25-27◦C) as measured by an infrared surface
thermometer before measurement. Cooling time, varying from 40 to 50 minutes, was allowed to prevent re-
sults from being obfuscated by other potential sources of reflectometry variation such as geometric changes of
insulation and conductor materials.

Measurements were taken using an 8 GSa/s digital oscilloscope to record the raw data of each acquisition
of sampled signals (incident and reflected) along with the initial reference signal. These signals were then
evaluated using the JTFDR method.
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Figure 11: Comparisons of low voltage cables with cross-linked polyethylene (XLPE), ethylene propylene
rubber (EPR), and silicone rubber (SIR) insulation types totree-resistant medium voltage cable (TR-XLPE)

5 Conclusions From Completed Work

In this project, two sets of vibration signals have been analyzed with four different kernels - WV, CW, RID,
and ZAM distributions. For these vibration signal analysesin time-frequency domain, WV shows some cross
terms which are reduced with CW, RIDB, and ZAM distributions. We have shown which frequency components
are responsible for the vibration introduced by the mechanical components in the test bed system as well. In
addition to this, comparison of time-frequency distributions it is possible to identify which component is in
an advanced stage and which component is potentially damaged. Moreover, from Rényi information it can be
concluded which time-frequency distribution provides more information for the vibration signal analysis. Based
on all the analyses provided in this project, necessary steps can be taken for health improvement of components
in order to avoid premature failure.

Drawing from Rényi complexity measures and mutual information theory, baseline, unbalanced, and mis-
aligned experimental settings are quantitatively distinguished by the proposed mutual information technique.
Statistical analysis of the time-frequency information measure from Table 3shows a variance in the proposed
in-phase and quadrature information measures of 0.0070 (STD of 0.0837) and 0.0054 (STD of 0.2324) re-
spectively for baseline testbed conditions in opposition to an increased in-phase information measure variance
of 3.33 (STD of 1.8258) in repeated unbalanced test cases andincreased quadrature information measure of
1.7497 (STD of 1.3228) in repeated misaligned cases. With unbalance quantifiable by variance in the in-phase
mutual information and misalignment quantifiable by variance in the quadrature mutual information, machine
health classification can be accomplished using statistical bounding regions. In summary, the baseline can be
characterized with a constant separation on a per-time instance basis of the mutual information measure. The
misaligned case may be characterized by its quadrature component. This component shows the misalignment
in a relatively large, increased number of bits from the information measure. However, similarity still remains
in the in phase component whether the case is aligned or misaligned.
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(a) (b)

Figure 12: Medium voltage MV-90 cable time-frequency crosscorrelation peak growth index growth shown by
(a) cross correlation peak curves at progressive aging values and (b) summary of peak growth over time

6 Proposed Work

6.1 Mutual Information Based Condition Indicator for Drive tain Health Monitoring

Included in Table 3 is reference for the statistics related to both spectra of the mutual information measure
proposed. Future studies of this indicator method could focus on varying states of misalignment and unbalance
to determine a quantifiable relation between the x-y distribution shift and part health. Differences in this mutual
information measure could be further developed into an increased precision statistical indicator of part or system
health status.

This metric could be used in the fusion of other types of sensors in order to obtain extended information for
more accurate assessment of the health status of components. Data could be gathered from vibration, acoustic,
and temperature sensors and correlated to present a single,more robust, health indicator [28], [29]. Furthermore,
analysis of these values can yield great insights into the physics behind systems such as the system under study
which provided the mechanical vibration data, providing either a simple summary of component health for an
operator or a complex interpretation from a knowledgeable engineer in order to fully achieve condition-based
maintenance. I have been seeking access to the Integrated Maintenance Data System (IMDS) through contacts
with the South Carolina Air National Guard for historical data from Apache aircraft and aim to provide historical
parameters and integrated statistical bounds to my Mutual Information Measure metric.

Table 3: Statistical Summary of Mutual Information Measure

Statistical Parameter Baseline
Aligned-
Unbalanced

Misaligned-
Balanced

Misaligned-
Unbalanced 3-5

Misaligned-
Unbalanced 4-5

Meanµ
In Phase 1.1202 -0.7424 0.4902 -0.9535 -0.1753

Quad 0.4535 -0.5509 -1.3691 -0.3268 -0.0726

STD σ In Phase 0.0837 1.8258 0.2147 1.0136 1.4344
Quad 0.2324 0.7107 1.3228 0.4852 1.2363

Correlationρ 0.2326 0.8732 0.0891 0.4005 0.3188
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6.2 Comparative Study of Aged Segments by Joint Time-Frequency Domain Reflec-
tometry

This section will serve as a method to introduce new proposedresearch pertaining to low voltage or instrumen-
tation and control cable health assessment. This topic has already been addressed to some degree in the previous
research, however, a number of advances could be made to aid in making JTFDR a feasible and practical method
of either continuous or periodic monitoring of cable systems. Key problems with the current methodology for
this subset of reflectometry are (1) the direct electrical connection that requires removal of tested cable samples
from service and additional labor, (2) additional time and effort for determining the proper optimal reference
for a given cable sample, (3) the ideal conditions of the laboratory which do not account for common oper-
ating conditions of generation facilities and industrial centers, and (4) the accelerated aging process for cable
health tests which can be seen as somewhat preliminary in status. As a means of addressing these points,
first discussion will be presented for an alternate means of injecting a reflectometry signal for insulation health
assessment by surface wave. An optimal reference has been developed for such conditions and will be further
developed in proposed work. Next, an automatic algorithm will be proposed to find the best reference signal for
JTFDR based on weighted factors such as size of time-frequency cross correlation peaks. Also, improvements
to the laboratory experimental design will be suggested to take into account potentially confounding factors and
more realistic aging. The ultimate goal of these updates would be to promote progress for areas of research in
smart grid or networked power systems where a non-invasive in-situ monitoring device for cable would be of
great benefit.

6.2.1 Implementation of Time-Frequency Domain Reference in Dispersive Environments

In order to counter the dispersion properties of the antennae based surface wave signal injection methods,
a secondary sinusoidal modulation is explored relative to the existing reference signal that can further tune
the optimal reference to a given set of narrowband slices within a larger bandwidth. A numerical simulation
will now be derived to explain concepts of the surface wave optimal reference signal. In this simulation, two
different impedance zones exist: a characteristic impedance region (before and after fault) and a faulted region
represented by a change in impedance. This simulation was performed in MATLAB to emulate a 10 m cable
with a fault at 6 m along the simulated sample. Figure 13(b) shows the surface wave optimal reference (topmost
graph) injected into a cable with subsequent reflections at afault segment at 6 meters and at the cable open
end at 10 meters (middle graph). The time-frequency cross correlation algorithm (bottom) then compares the
incident and reflected signals. The JTFDR metric is obtainedfrom the peak of these cross-correlation values
and will further be evaluated with experimental verification before addition work is proposed.

6.2.2 Implementation of Cable Health Assessment by SurfaceWave Injection

Shown in Fig. 13(a) is the system function diagram that describes the configuration and function of the exper-
imental devices of the JTFDR wiring test bed for non-invasive surface wave injection methods. The signal is
then reflected at the fault location, and travels back to the signal launcher/receiver. A prototype surface wave
launcher/transducer pair (pictured in Fig. 13)(a) was placed at each end of a 7 ft (2.1336m) cable sample and
coupled to the cable using a concentrically wrapped length of conductive tape. This conductive tape was con-
nected to the signal connector of the coaxial input by a thin filament and separated from the input coaxial return
by a polystyrene spacer. The coaxial return was in turn connected to the ground plane. Initial tests were per-
formed to evaluate the utility of the surface wave signal in OEM unshielded cable samples (600V low voltage,
LSTSGU-9, SIR insulated) and a shielded sample (15kV mediumvoltage, TR-XLPE insulated cable).

The first step of practical implementation of surface wave reflectometry for non-invasive diagnostic coupling
is detection of an open end. Further work must be accomplished to fully characterize the frequency response
and dispersion characteristics of the broadband monopole surface wave launcher before implementation of the
methodology described previously, therefore, these testsutilize a JTFDR reference signal of a chirp signal in
time-localized Gaussian envelope. The Gaussian chirp signal used in these tests has a center frequency at 350
MHz over a 100 MHz bandwidth for a 0.9 s time duration.
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(a) (b)

Figure 13: (a) Experimental setup for Surface Wave Optimized and (b)Simulated defect on 10m segment of
cable using the surface wave optimized reference shown in time domain (top)and by comparison using JTFDR
(bottom).

Using the surface wave injection configuration of Fig. 13(a), we tested the unshielded, low voltage and
shielded, medium voltage cable samples using the JTFDR algorithm and the results are shown in 14a and 14b
for 2 meter segments of each cable type. In each figure, the autocorrelation peak of the reference signal is
represented by the peak with the most energy, which displaysthe start of the cable or reference point of the
incident signal. A time-frequency cross-correlation of the reference and reflected signals is then shown by
further corresponding peaks with the difference between the two peaks (reference and first reflection), scaled by
the propagation velocity and signal lengths, providing an estimate of the length of the cable.

By use of the described metric for the LSTSGU-9 SIR cable an estimated cable length to open circuit fault
was described as 1.9822 m, a 7.1 percent difference from the actual length of 2.1336 m. Similarly for the MV-90
TR-XPLE cable, a length to open circuit fault of 2.2489 m was estimated by optimized surface wave, a 5.4037
percent difference from the same length. These results showpromise for a potential fault location algorithm
and further tests in proposed work will explore the adjustments to JTFDR metrics while testing longer lengths
of cable.

6.2.3 Improvements of Experimental Set-up

Having recently begun collaboration with the International Atomic Energy Agency (IAEA), improvements to
the testing setup at the University of South Carolina are in order before receiving additional cable samples
from participants in the combined research project. As such, the first step in applying JTFDR is optimizing the
reference signal used in reflectometry for the given cable. This is done by first performing a frequency sweep
with a network analyzer or similar measurement configuration and then running a loop through time duration,
bandwidth, and center frequency properties of the optimal reference to obtain the raw data and cross correlation
peak data for a range of references. From there, an operator must parse through a table of values collected from
the looping operation and visual inspection of waveforms todetermine a proper selection.

A proposed task for improvement of this process is to base optimal reference selection around key para-
meters identified by visual inspection to provide a good indication of spatial resolution in fault location and
sensitivity to changes in the metric. Parameters to optimize the reference include the width of peak pulses,
where shorter width typically indicates better spatial resolution. Additionally, minimal noise between peaks
and a higher number of reflections along with a higher sweeping frequency typically indicate better accuracy in
measurement. From these factors, an algorithm can then be derived along with optimizing equations relating
the bandwidth and sweeping frequency of the reference signal.

In seeking guidance from sponsors in both the Nuclear Regulatory Commission (NRC) and IAEA, further
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(a) (b)

Figure 14: Time-frequency cross correlation metric for open end measurement on 2 meter segment of (a) cable
in low voltage unshielded case and (b) cable in medium voltage shielded case with stripped injection point.

experimental upgrades have become apparent. From conversations with nuclear plant specialists, suggestions
were offered towards a more robust testbed for cable tests. This updated configuration includes cable tray
sections, stressing bends in the test cable, feeding segments in conduit, and more realistic heating models for
advanced aging. The updated configuration, taking into account all previously described changes except for
improved heating models, is summarized in Figure 6.2.3. Cables will be tested with advanced aging protocol
under this industrial settings testbed regime as well as with a control group tested without added stresses.

Initial accelerated aging tests focused on testing a wide range of instrumentation cables quickly enough
to produce results and facilitate comparison of JTFDR to other more established methods. However, certain
fallacies exist in this short time test. As explained in (54), a mathematical relationship exists between an ac-
celerated aging time and a service life time based upon heating temperature and the activation energy. From
further research, it has been determined that previous estimations of cable activation energy for cross-linked
polyethylene (XLPE) at 1.33eV may be too high and a value of 1.25eV was deemed suitable. Similarly, the
aging temperature may be too high to provide an accurate accelerated aging model. As such, a new set of

Figure 15: Experimental setup for Surface Wave Optimized JTFDR
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parameters for accelerated aging for instrumentation level cable, such as a sample received from Swedish man-
ufacturer Habia Cable, is presented in Figure 4. As further cable samples are received from IAEA member
manufacturers in the United States and internationally, a homogenized or normalized baseline can be devel-
oped for nuclear instrumentation and future standards could be developed around JTFDR-based metrics where
previously TDR or FDR metrics dominated.

6.3 Verifying Joint Time-Frequency Domain Reflectometry byPartial Discharge and
High Voltage Assessment

6.3.1 Medium Voltage EPR and XLPE

Previously, a single sample of medium voltage tree-resistant cross-linked polyethylene cable (Prysmian/Pirelli
MV-90 at 15kV) was tested using preliminary strategies of accelerated aging for verification of JTFDR method-
ology. To verify the capability of JTFDR to measure the life assessment of medium voltage cable, additional
samples will be tested with longer and more involved accelerated aging processes. The aging temperature
will be greatly reduced, and the activation energy for calculation of Arrhenius aging curve has been reduced.
This results in a much longer experimental time, but the results should provide more realistic aging. Similar
procedure follows for the aging of medium voltage and high voltage cable samples as previously outlined in
Sections 4.3.1 and 4.3.3, including the cooling of cables after aging to verify that actual aging is measured
instead of simply measuring geometric changes of the cables. However, the interval between periodic JTFDR
metric assessment would likely be increased. Instead of performing periodic health assessments every hour of
testing, it is suggested that the interval be 6 to 8 hours to provide 50 to 60 health assessment time-frequency
cross correlation peak points. Higher voltage cable samples and additional samples with different insulation
types should also be obtained and a summarizing table is provided in Table 4 for example proposed acceler-
ated aging simulations. This table details additional tests for low voltage cable samples, represented here by
the Habia RG-58 sample, continued and expanded acceleratedaging tests for the previously tested tree-resistant
cross-linked polyethylene (TR-XLPE) cable, and additional acquisition of a sample of 35kV ethylene propylene
rubber (EPR) cable. Medium voltage cable samples from additional manufacturers may be tested as deemed
necessary and initial quick assessment tests for all cable samples may be performed before each longer test to
give a rough estimate of expected results.

Table 4: Summary of Cable Information and Experimental Duration

Insulation Type Types of Cable
Activation
Energy (eV)

Temp.
(0C)

Experimental
Duration (Hr)

Cross-linked polyethylene (XLPE) Habia, RG-58, 600 V 1.25 110 400
Tree-Resistant XLPE (TR-XLPE) Prysmian, MV-90, 15 kV 1.30 110 360
Ethylene Propylene Rubber (EPR) Prysmian, 35 kV 1.10 122 400

Additionally, a very low frequency (VLF), high voltage source has been acquired to perform additional
verifying tests of JTFDR methodology. This source was chosen to provide a simpler and more cost-effective
means of testing high voltage withstand and partial discharge than a comparable source at 50 or 60 Hz line
frequency and provides options to test at 0.1, 0.05 and 0.02Hz. A high voltage withstand test can be performed
on medium to high voltage cable with total capacitance between 0.1 to 6µF and a voltage up to 50 kV. For
additional verifying tests, a partial discharge generatorand acquisition system was purchased to monitor high
voltage partial discharges. This partial discharge unit operates within the same limits of the VLF source. Further
research in high voltage tests will analyze the feasibilityof using the acquired high voltage equipment to measure
partial discharges in insulation by means of time-frequency or time-scale (wavelet) analysis.

6.3.2 High Temperature Superconducting Cable (HTS)

In order to further expand the use of JTFDR, use of the optimalreference and time-frequency methodology
is suggested for an emerging cable type known as high temperature superconducting cable. High temperature
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(a) (b)

Figure 16: Very low frequency source (VLF) operates at frequencies from 0.02-0.1Hz, simulating line frequency
of 50 or 60 Hz, for high voltage tests up to 50kV with (a) controller, timer, and measurement unit and (b) high
voltage tank capacitor

superconducting cable presents itself as an emerging technology in next generation power transmission, capable
of high current capacity and reduced losses ideal for tie lines, DC bus interconnects, and general interchange
between power utilities [38]. Superconductingmaterials are typically classified as ”high temperature” due to low
resistivity at a critical temperature, TC, equal to or greater than the boiling temperature of liquid nitrogen (77K)
though no definite temperature range is defined for this designation. Most high temperature superconducting
implementations must be constantly cooled by a concentric coolant line [38, 39] to maintain low resistivity
below a certain critical temperature.

Coolant temperatures for longer lengths of cable must be maintained with complex control systems that take
hours or days to affect changes to overall coolant temperatures. Minor variations of temperature above the given
critical temperature on either a global or localized scale could affect the safe and effective operation of HTS
cable-based power transmission systems and increase the cable resistivity near the leakage inception point sig-
nificantly. Thus, joint time-frequency domain reflectometry (JTFDR) is presented as a means of monitoring vital
segments of such a cable technology or similar coolant fed emerging technologies. As such, non-destructive
in-situ monitoring techniques could prove particularly useful in identifying localized variations in resistivity
consistent with coolant leaks for implementation of real-time maintenance in smart grid applications.

Using example electrical properties from American Superconductor (AMSC), simulations have been ac-
complished to develop an optimal reference for HTS cable. These properties are used for simulation with aTC

equal to 91.2K. An amplified reference is then simulated for adistance up to 600 m using ADS transmission
simulation software with a fault at 400 m. This fault is a simulation of localized coolant loss for a 1 m segment
of cable accomplished by changing the impedance of this segment of cable with respect to the remaining cable
segment.

The simulated injection of optimal reference is shown in Figure 18(a) with the reflection at the cable end
point (600m). The cross correlation of the reference signalwith the reflected signal is also shown in Figure
18(b) from which the coolant loss faulted segment can be seenat 400m. The designed and simulated optimal
reference for HTS cable in transmission lengths of 600m should be 1.77MHz. Further research is proposed for
HTS cable while I will be studying at Yonsei University, Korea in the spring of 2013 with proposals to be made
to the Korea Electric Power Research Institute (KEPRI) and Korea Electric Power Corporation (KEPCO).
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Figure 17: High voltage filter and partial discharge generator and measurement unit

(a) (b)

Figure 18: (a) Optimal reference signal specified for HTS cable simulating a 600m segment faulted at 400m
and (b) Cross correlation peaks for increasing resistance values used as an indication of cable health.

7 Conclusions

The proposed research provides a path toward comprehensivecondition based maintenance for complex sys-
tems with interacting electrical and mechanical systems, such as motors, generators, wind turbine generators,
and rotorcraft or aerospace systems. A Rényi entropy basedmutual information metric is proposed for heli-
copter and general vibration-based health monitoring withthe express goal of monitoring transient variations
in signal components and creating statistic condition indicators based on these changes. Research on Joint
Time-Frequency Domain Reflectometry in low voltage instrumentation cable samples provided by the Interna-
tional Atomic Energy Agency will help establish baselines for a variety of cables from manufacturers in the
United States and other countries towards a goal of performance capability assessment in nuclear power plant
recertification while we will continue to test the high voltage viability of the JTFDR method against verifying
methods of high voltage test. As verification methods are underway, further assessment will be made into the
use of JTFDR in measurement of partial discharge. This non-destructive reflectometry method has also been
proposed to identify and locate localized impedance defects caused by changes in temperature in coolant filled
high temperature superconducting (HTS) cable. These proposed works sum to the creation of a viable and prac-
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tical implementation of non-invasive and non-destructivereflectometry-based cable health assessment. As CBM
practices are implemented in both electrical cable systemsand mechanical systems using similar time-frequency
principles and metrics, a set of universal practices can be developed for health assessment.
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2. J. Wang, P.E.C. Stone, D. Coats, Y.J. Shin; R.A. Dougal; “Health Monitoring of Power Cable via
Joint Time-Frequency Domain Reflectometry,” IEEE Transactions on Instrumentation and Measurement,
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power-index spectrum and its application in condition based maintenance (CBM) of helicopter drive
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3. David Coats, Qiu Deng, Yong-June Shin; “Smart Grid Focused Joint Time-Frequency Health Assessment
for High Temperature Superconducting Cables”; IEEE International Conference on Electronics, Informa-
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4. David Coats; Hassan, M.A.; Goodman, N.; Blechertas, V.; Yong-June Shin; Bayoumi, A.; ,“Design
of advanced time-frequency mutual information measures for aerospace diagnostics and prognostics,”
Aerospace Conference, 2011 IEEE , vol., no., pp.1-8, 5-12 March 2011

5. David Coats, Jingjiang Wang, Yong-June Shin, Thomas Koshy, “Applications of Joint Time-Frequency
Domain Reflectometry for Health Assessment of Cable Insulation Integrity in Nuclear Power Plants,” Pro-
ceedings of the 7th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human
Machine Interface Technologies (NPIC and HMIT 2010), November, 2010.
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10 Graduate Coursework
Dept Prefix Course Number Course Title Credit Hours Grade
Undergrad

MATH 544 Linear Algebra 3 A
ELCT 580 Audio Engineering 3 A
ELCT 564 RF Circuit Design for Wireless

Communications
3 A

ELCT 572 Power Electronics 3 A
Graduate

ELCT 551 Power System Design And
Analysis

3 A

ELCT 563 Semiconductor Electronic Devices 3 B
ELCT 772 Advanced Power Electronics 3 B
ELCT 891B Topic/Power and Energy Systems 3 A
ELCT 751 Advanced Power Systems Analysis 3 A
ELCT 837 Modern Control Theory 3 B
MATH 544 Wavelets 3 A
ELCT 752 Power Sys Grnd/Transients 3 A
ELCT 891A Grid Connected Power Electronics 3 B+
ELCT 883 Power System Stability and

Control
3 A

ELCT 891Q Advanced Digital Signal
Processing

3 A

ELCT 891D Digital Controls 3 B
ELCT 797 Research 9 S
ELCT 899 Dissertation Preparation 3

Cumulative GPA
45 3.591
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