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Abstract

Based upon a framework of time-frequency analysis, a pathrids systematic and comprehensive im-
plementation of condition based maintenance (CBM), or tea@nce only upon evidence of need, is out-
lined for both electrical and mechanical systems. Spedtificaetrics are proposed for helicopter drivetrain
systems and electrical cable. Using principles of timepfiEncy analysis, metrics for health assessment in
non-destructive and non-invasive tests provide a basidiégnostic and prognostic analysis. A form of Rényi
entropy or Rényi information based mutual information mea is proposed for comparing vibration data
from multiple sensors toward the creation of new conditiodidators for use in rotorcraft. Using similar
methodology, a process for non-invasively assessing ta&hhef low voltage instrumentation cables and
medium to high voltage feeder and transmission cables jzogex by way of Joint Time-frequency Domain
Reflectometry (JTFDR).

From this starting point of derived health indicators fopate systems, research is proposed to facili-
tate the practical implementation of such technology. A rewcept of hon-parametric signal detection and
classification technique is proposed using mutual infolwnateasures in the time-frequency domain. The
time-frequency based self and mutual information is definetrms of the cross time-frequency distribu-
tion. Based on time-frequency mutual information theohys fpaper presents applications of the proposed
technique to real-world vibration data obtained from a datdid condition based maintenance experimental
testbed. Baseline, unbalanced, and misaligned experingeitings of helicopter drive train bearings and
shafts are quantitatively distinguished by the proposeldrigues. With unbalance quantifiable by variance in
the in-phase mutual information and misalignment quabliidy variance in the quadrature mutual informa-
tion developed and presented herein, machine health fatasigin can be accomplished by use of statistical
bounding regions.

Electrical, reflectometry-based methods of health evalnatre proposed and will be compared to existing
methods of high voltage test such as high voltage withstawldpartial discharge, which can be destructive
when applied to cables. Surface wave insulation healthsassmnt is proposed as a means of connecting
to a cable under test in a noninvasive manner. Also, towaremastandard of smart grid active condition
based maintenance strategies, joint time-frequency doraflectometry is proposed for monitoring the health
of high temperature super- conducting (HTS) cable. Coonfitiof localized impedance fluctuation due to
coolant leak have been simulated with the reflectometrysassent properly detecting minute changes in
cable impedance and indicating location and severity dfddisegments.
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1 Introduction

1.1 Preventative Maintenance Concept and Analysis

Standard maintenance practices in most industries inveplacing existing parts after a certain time period or a
certain number of operational hours. This practice is dail@e-based maintenance (TBM) and can lead to un-
expected failures in critical parts due to unexpected wedneforeseen physical stresses, causing operational
downtime and potential safety hazards [1]. Thereforegi$tof TBM, it is desirable to consider use-based
maintenance practices so that critical parts are replacezgpaired before their full lifetimes on a variable basis
balancing and optimizing both economic and safe operatmglitions [2]. Concepts of condition-based main-
tenance will be applied to health monitoring of rotorcraftlaotational electromechanical systems as well as
power instrumentation and distribution, or to generalingtfer, cable systems.

A new practice of condition-based maintenance (CBM) is psagl for military aviation fleet management
which fits within the existing framework of vibration managent presented by the army’s Vibration Manage-
ment Enhancement Program (VMEP) and Health Usage Mong@&ystem (HUMS) infrastructure or could be
separated into its own stand-alone product. For healtlsassnt and management of cable systems, new the-
ory and applied examples are posited for Joint Time-FrequBomain Reflectometry (JTFDR) to help realize
a practical implementation of the technology. The overaglgoal of both research topics is advancing the
time- and reaction-based maintenance schedules typiziédlsed in electrical and mechanical systems toward
ones that are predictive and proactive [3, 4].

A typical course of action toward this overarching goal ofigelized condition-based maintenance is pre-
sented herein to establish the background for unified cimmdifased maintenance strategies which could be
used in systems with complicated electrical and mechagysiéms such as helicopter drivetrain systems, wind
farm systems, nuclear instrumentation and control fuelsystems, and high voltage, high temperature super
conducting (HTS) generation/distribution systems. Taeahthis innovative maintenance practice, data must
be collected from vital operational components and andlyzerder to determine the current (diagnostic) state
of the baseline case and later the future (prognostic)theéthese same critical components. Further, aging or
conditioning must be simulated in a controlled testbed anditared to identify progressive degradation trends
using heath assessment metrics. These testbed trends campared to existing historical component data
from active articles, where such data is available, to foharacteristic prognostic functions. Once effective
diagnostic and prognostic health assessment monitorirdelmare created condition indicator (CI) or health
indicator (HI) single or multiple dimensional metrics camdmthered and packaged into a monitoring unit. The
proposed research will focus on developing metrics forthessessment of rotational components in helicopter
drivetrain systems from an existing testbed and develogingccelerated aging testbed for instrumentation and
medium voltage distribution systems with a practical inmpdatation of non-invasive insulation health monitor-

ing.

1.2 Health Monitoring of Rotorcraft Drivetrain

In order to monitor the health status of drivetrain systeagariety of signals are collected, including vibra-
tion [5, 6], acoustic [7], and temperature. Over the pasadegreat advancements have been made in health
diagnostics and vibration management in military helieopin terms of both progression of metric indicators
and cost benefits to the US Army helicopter fleet maintaingfr$4]. The successes to date have resulted in
the large-scale deployment of increasingly useful heatthitoring systems such as HUMS (Health and Usage
Monitoring Systems) using Vibration Management Enhancerieogram (VMEP) hardware, which have gen-
erated a wide range of benefits from increased safety to eedmaintenance costs.

Most CBM tools such as HUMS for Apache and Blackhawk helieaptassist machinery maintainers in
identifying faulted components through the use of simpseial interfaces and indicators. The most commonly



utilized functions are condition indicators (CI), whichtput a dimensioned or dimensionless single scalar value
to monitor key factors most frequently related to frequegmeglysis of vibration signature. Condition indicators
need not be based upon vibration analysis alone and maydemclomponent temperatures or acoustic data for
separate or fused Cls. Examples of common indicators in maahagnostics and prognostics include: spec-
tral peak analysis, envelope analysis, energy ratio, &esir, sideband index, and kurtosis of residual signals
[8]. These ClI values are typically compared with pre-esshled thresholds in a simple decision tree classifier
which assign the Cl some form of ranked class such as “Go@aution,” or “Exceeded,” and these classes are
then utilized by maintainers in vital decision-making peeses. A given component can have several Cls which
may additively form a health indicator (HI). Typically, Cés His are not fault-specific; multiple fault types can
affect the value of a single CI, and a single fault could dffealtiple Cls.

While various condition and health indicators do exist, piheposed work improves their effectiveness by
developing new general methods for fault analysis basednartime-frequency analysis that could be used
in existing or new Cls for indication of machinery failurereRious studies on CBM from diverse applica-
tions [9, 10] have shown that abnormality of the system isattarized by transient precursors in the signals.
Through their use in detecting transient precursors, amb@usignal processing techniques have contributed
to develop diagnostics and prognostics algorithms for@gircraft [11]. The classical methods for vibration
analysis such as spectral analysis or time-frequencylalisivns represent frequency- or time- and frequency-
localized energy, however, it is not expedient to analyz#ipie signals that have been simultaneously collected
from systems under test. In particular, time-frequencylyaimis extremely useful to analyze the transient
signature of the abnormality and its precursors [12]. Pneviconvention dictated that time-frequency based
applications were difficult to implement in real-time, hoxee methods [14] have been proposed to accomplish
time-frequency algorithms feasible for the constant naimig required for CBM [15]. We present a path to-
ward using time-frequency analysis and specified metrissdban time-frequency representations for condition
and health monitoring, advancing the analysis of data fristiag condition monitoring systems without the
use of additional hardware.

We propose a new concept of non-parametric detection arssifitation of signals. We define time-
frequency based self and mutual information in order tosifiaghe health status of the system components
in Section 2.5-2.7. Other methods [6], [16], [17] have berppsed to use either classical methods or neoclas-
sical methods moving toward the use of both time- and frequelmased information. The proposed method
takes advantage of both time- and frequency- domain tratssie establish a complexity measurement for po-
tential assessment of component health. The experimeattgd and data description are provided in Section 3.
The results and discussions are provided in Section 3.4candusions of the paper are drawn in Section 5.
Based on the time-frequency based mutual information thétwis paper presents applications of the proposed
technique to the real-world vibration data and a path farreitesearch in Section 6.1.

1.3 Health Monitoring of Electric Cable

The state of the art for non-destructive detection of defecttviring and cable is divided into two categories:
time-domain reflectometry (TDR) and frequency-domain otflmetry (FDR). Although these techniques can
successfully assess hard defects, they fall short in trectieh and location of soft defects, an essential prog-
nostic capability. The limitations of both TDR and FDR are®ed by ineffective design of reference signal and
inappropriate processing of the reflected signal in TDR dbR Fin that these methods refer to only the time or
frequency domains, but not both. We seek an innovativerradtiype of reflectometry that simultaneously uses
the time and frequency domains: Joint Time-Frequency DofRaflectometry (JTFDR). The JTFDR technique
exhibits its efficacy in cable diagnostics and prognostichsas communication, electric power, and nuclear
control and instrumentation (C and I) cables [32].

In searching for a more universal method of signal injectanmeflectometry-based assessment, particularly
in cases of prognostic remaining useful life indicators,ssaght a method that could couple to the cable in
guestion (1) without requiring removal of the cable undet feom a given system, (2) without damaging
instrumentation or transmission cables, and (3) sens#ihv@ugh to enable assessment of impedance of the
cable by reflectometry. In surveying options of implementatn these three key areas, we desired a means
to further adjust the optimal reference to account for raemslities in the frequency response of the injection



method. In this report we will focus on the theory of surfacverinjection of reflectometry signals, a method
for optimizing a reflectometry signal in time and frequenoytins, and practical optimizations in narrowband
segments or slices of a larger bandwidth. These effortsauithulatively add to the assessment of health
assessment of insulation materials in the real-world Btegbwer systems.

2 Theory of Joint Time-Frequency Analysis

The goal of this section is to establish some necessaryatealrbackground for the time-frequency applica-
tions addressed in this proposal. Time-frequency analydii®e addressed as it applies in the following two
applications: the time-frequency cross correlation whazins the base for JTFDR reflectometry which will be
applied in the health monitoring of electric cables and theetfrequency mutual information measure which
will be used in health monitoring of helicopter drivetrains

2.1 Joint Time-Frequency Domain Reflectometry Optimal Refeence

To produce an optimal reference signal we must optimize angal between time domain resolution and fre-
quency domain resolution. In order to optimize the resotuin both domains, we consider a signal that
satisfies the uncertainty principle (derived from the piidhf time and bandwidth variances and meeting the
Cauchy-Schwarz inequality). In this, case we have choseaus$an envelope due to its functionality as an
eigenfunction of the Fourier transform and its similar gade in both the time and frequency domain. This
Gaussian envelope encloses a chirp signal which providgeeified frequency bandwidth and the overall
equation is provided below:

a\ 14 ait-t9)? | . Bt-tg)? | .
st)=(5) e 2 e ()

Additionally, the use of the Gaussian envelope providestted benefit of having well-established back-
ground in general statistics and statistical signal preiogof jointly random bivariate distributions. In propdse
research Gaussian properties typically used for stagidtigpothesis tests will be used for identification of enve-
lope center and outer boundaries (used in detection oflfazdtion and automated determination of optimized
reference). In this study, we will work with the function werdhe simplifying assumption that time centgis
neglected (or centered at zero). This yields the followiggation:
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Figure 1: Time-frequency distribution of (a) optimal reface and (b) reference with sinusoidal modulation



2.2 Time-Frequency Distribution

All time-frequency distributions can be obtained from tledikition of Cohen'’s class:

TFDX(t,oo;(p)z4—1112///X*(u—%)x(u—ir%)(p(e,t)e*je"jmﬂe“dedtdu (3)

Wherex(t) is the analytic representation of a sign«l(t) is the complex conjugate oft), and@(6,1) is
a two-dimensional function known as a kernel. The choicearh&l has an effect on marginals, total energy,
realness, time shift, frequency modulation, scaling imrere, and cross term minimization [22]. Among the
various types of time-frequency distributions, the wigviée (WV) distribution, Choi-Williams (CW) distribu-
tion, and reduced interference distribution (RID) haverb&®own to exhibit the most suitable properties for the
analysis of the time-varying frequency characteristica dfsturbance or provide the most common solution to
the time frequency kernel selection. For this preliminarmglgsis we will consider the selection of these three
kernels along with Zhao-Atlas-Marks (ZAM) kernel to see @fhkernel performs the best for vibration signal
analysis. The kernels for the distributions are given ds\i:

(p(G,T)WV =1 (4)
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Where@(0, \)wv, @6, T)cw, and@(6,1)zam are kernels for WV, CW, and ZAM distributions, respectively
These Choi-Williams and Zhao-Atlas-Marks kernels may lassified generally as reduced interference dis-
tributions (RID) designed with the intent of reducing thedgs-terms” or inter-harmonic noise introduced by
computation of the time-frequency distribution on mubirgponent signals. To obtain the time-frequency dis-
tribution of the optimal reference we take the Wigner Transf defined for a generic time-domain function,
s(t), as follows:

W(t,w) = %_[/_m s'(t— %T) -s(t+ %T)e‘“‘*’dr (7)

We will consider the simple transform pair:

s(t) =W(t,w) (8)

Time and frequency shift properties as provided by Coheh @tow that for a time domain signai(t),
from 2 with a Wigner Transform given as the following bivaealistribution,W(t,w), a shift in time and
frequency given by:

s(t) — ets(t —tg) 9)

A subsequent shift in time and frequency is seen in the Widnisribution:
W(t,w) — Wi (t —to, 0— ) (10)

Using this simplified assumption we can take the Wigner fans of the simplified optimal reference and
form a derivation of this distribution:
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The improper integral can be manipulated into the followfiorgn for an express solution:
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Reexpressing the improper integral we obtain:

Ws(t, w) = 2];_[ (—)1/2/00 e—(%GTZH(w—Bt—mo)r+ut2)dT (14)
Further simplifying, we obtain:
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Now we will consider the same simplified signal in (2) and addnaisoidal modulation component to the
signal. The signal becomes:
Bt2
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With the following derivation for the Wigner transform
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2.3 Numerical Approximation of Reference Signal for Embedeéd Implementation

For further background regarding the equation given in Z8can further analyze the Bessel function described
in 22. The Bessel function is the solution to the differdrdguation given in
d’y dy
2 2 2
_ 24
xdx2+xdx+(x a)y=0 (24)
And can be described by the following integral relation :

J (X) _ i n efi(nrfx-sint)dT (25)
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This equation presents a set of problems in that no closed-fepresentation exists for express solution.
Operations such as cross-correlation (further describ&ection 2.4) require numerical solutions and numer-
ical approximations. Similarly in the case of the Fouriemsform, a temporal integration is required. This
allows for a number of different approximation methods whgan be used in combination with an embedded
sensor for constant or periodic health measurement andsmmsat. The simplest of the approximations is
shown below:

2 1 cog2ndw)
Jo(x) =~ = / £03.4n0%w) 26
o(X) =~ — Y T (26)

Further potential methods for Bessel function approxiorainclude Taylor series approximation, polyno-
mial approximation, and exponential approximation. Thgldieseries approximation [36] fal,(x) is given by
the following summation:

= % tpm<@™ P (27)
m=0

22mpml (m+ p)!

To truncate the Taylor series to a given orgéwe can express the Taylor series as:

nep
T
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Alternatively a polynomial approximation [37] can be usedisthat:

n
X) S Cumx™ (30)
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Lastly, an exponential approximation can be made. Due tm#od#latory nature of the Bessel function,

for an exponential approximation to be made, the Besseltifumenust be represented as a set of complex
exponentials [36]. This provides the following relatioish

(31)
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wherean, s, are complex parameters such that= anr + jani, S» = Sar + jSni andanin = &5, SN = S5
The zero order expansion is then given as:

1 2N
Jo( Z ane™ (33)

These approximations can be used to make a simplified appabixin of the optimized reference for im-
plementation on smaller scale waveform generation andhkigjection embedded systems toward eventual
continuous or periodic health assessment monitoring lreeitable insulation assessment or structural health
monitoring.



2.4 Time-Frequency Cross Correlation

JTFDR computes the time-frequency cross correlation tetwan incident signal and the reflected signal
through a propagating medium with the following equation:

t=t4Ts
/ / W (1, o)W(t' — t, co)deodt! (34)
t

I=t—Ts

&=~ g
whereW (t, w) is the Wigner distribution of the reflected signék(t, w) is the Wigner distribution of incident
signal; andEs andE; (t) are normalization factors.
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2.5 Time-Frequency Renyi Information Measure

This section has been adapted from a previously submittpdrgaroduced by the author [19]. The classical
information measure of a continuous stochastic processawik as Shannon information [20] given as:

—_ [ " f(x)log, f (x)dx (36)

where the continuous functioh(x) is a probability density function which is positive and bded between 0
and 1. Williams, Brown, and Hero proposed a measure of tiragufency information by use of the generalized
Rényi information [20]. The definition of the generalize@ryi information [21] of a continuous bivariate
distributionP(x,y) is defined as follows:

//P“ (x,y)dxdy
——log, (37)
- //P (x,y)dxdy

The definition of the generalized Rényi information can kerded by replacing the bivariate distribution
P(x,y) with a Cohen'’s class [23] time-frequency distributigyt, w) of signals(t) with the following definition:

HQ(P ==

Cst,w, ) = 4n2/// u—— (U+ = ) @(0,1)e 18- IT@riBugadrdy (38)

Use of the Cohen’s class distribution permits a more gesetation allowing for variable kernel selection.
The kernel function of the distribution is described by t{®,1) term in (38). In other words, the theory
described in this section presents analysis for the genasal of the Cohen'’s class time-frequency distribution
while any distribution kernel could be selected when apmthe time-frequency mutual information measure
including, but not limited to, the general (Cohen’s claspgctrogram, Zhao-Atlas-Marks, Wigner-Ville, Choi-
Williams, or reduced interference distribution (RID) ketfi23]. We selected the spectrogram kernel for the
time-frequency information because it has the desiraldpgmnty of nonnegativity forwarded by Williams, et.al
in [20] for all time and frequency variables. To provide cistency of discussion with time-frequency analysis
in Section??, the spectrogram here is defined as a Cohen’s class digtritag seen in (38) where the kernel
function@(6, 1) is specified as the spectrogram kernel given by:

0(0,1) = / h* (u— %T)h(qu %t)e‘jeudu (39)
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The order of the generalized Rényi information determibggarameten for the time-frequency distri-
bution has been investigated in [24] so tlat 3 is a reasonable selection, with the exception of contrived
counterexamples [20]. Hence, the following informationasiere of time-frequency distribution will be uti-

lized:
//C“ (t, w)dtdw
log, (40)
1-a //Cst w)dtdw

2.6 Cross Time-Frequency Distribution

Ha (CS) =

The metricHq (Cs) defined in (40) measures the number of signal elemersg pbver the time and frequency
planes. The Rényi information measure is a meaningful oreasf time-frequency distribution, but it is only
defined for a single realization of signal, e.g. self-infatian. If we have a pair of signals closely related, how
can we define or quantify the interactions in terms of infaior® We will investigate a generalization of the
time-frequency information measure by introducing theuautime-frequency information.

In order to analyze the information of two closely spaced ponents, the classical mutual information of
two random processes is extended to two time-frequencsitalisibn functions. Let us consider the classical
definition of the mutual information that might be extendedte measure of mutual information of the time-
frequency distributions. The joint entropy(X,Y) of a pair of continuous random variables,Y) with a joint
probability density functiomp(x,y) is defined as:

H(X,Y) // p(x,y)log, p(x,y)dxdy (42)

By chain rule,

H(X,Y)=H(X)+H(Y|X) (42)
whereH (Y|X) is the conditional entropy. Under the same conditions, tikual informationl (X;Y) is the
relative entropy between the joint distributi@ix,y) and the product distribution of the individual marginal
distributionp(x) andp(y) as follows:

P(x.y)
1(X;Y) //p X,y)log, ———— 09 p) (43)
The relation of the mutual informatidriX;Y) and joint entropyH (X,Y) is defined as follows:
1X;Y) = H(X)—H(X]Y)
= H({Y)-H(Y[X)
= H(X)+H(Y)—-H(X)Y) (44)

Thus, it is necessary for us to define cross time-frequerstyilolitionJs s, (t, w; @) of the signal pair$; andS,
[25].

Jys (LW @) = 4112///31 u+ u——)(p(e 1)
x e 1% ”‘*’*Je“dedtdu (45)

The kernelp(6,1) is equivalent to the kernel given in Cohen’s class in (38) #m&dcross time-frequency
distribution satisfies time and frequency marginal propartder the same constraints given in Cohen’s class.
Consider a joint information of time-frequency distrilmrtiHq (Js;s,) in terms of cross time-frequency distribu-
tion Js;s, (t, w; @) as follows:

H(S,S)

Ha(Js;s,) =

//J (t,w)dtdw )

1 5 /0%
//Jsls2 (t,w)dtdw
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2.7 Time-Frequency Mutual Information Measure

However, one must be careful in defining the information mea®f the cross time-frequency distribution
which is a complex number. In addition, normalization of digtribution is important for a proper bound of the
information measure. Therefore, instead of direct appticaof the generalized Rényi information, consider
the normalized cross time-frequency distributlp, (t, w) as follows:

oo (tw) — Js;5, (1, )
VG 6,6 -Co (1,
_ Ry, (t, )
V/Ca(t,0) oyt )
b Qsys, (L, W)
V/Csi(t.00) - Coy(t,0)
= Rys(t, )+ jQgs, (t,w) (47)

We can define the time-frequency mutual information meastirephasd}(S;; S) = —Ha (Ry;s,) and quadra-
turelQ(Sy; S) = —Hq(Qgs,) as follows:

8SS) = poo100 [ [ Rt wdtde

— 5 {Ha(Co) T ()} (49
9(si%) = - log, [ [ @t wpdtceo

5 {He(Co) T Ha(Co)) (49)

Then, the mutual information measug€S;; S) of S; and S is defined in terms of in-phase time-frequency
mutual informatiod %(Sy; ) and quadrature time-frequency mutual informati@(s,; S) as follows:

(SLS) = I§(S1S)+IQ(SES)
= —Ha(Rss,) —Ha(Qs;s,)
= Ha(Cs) —Ha(Cs,[Cs,)
= Ha(Cs) — (Ha(Cs;,Cs;) — Ha(Csy))

Ha(C5,[Cs,)
= Ha(Cs) — Ha(Cs[Cs,) (50)

Therefore, the mutual time-frequency informatiiiCs, ;Cs,) is the sum of individual time-frequency infor-
mationHq (Cs, ), Ha(Cs,) and joint informatiorHq (Cs, ,Cs, ). For example, iy (t) = sp(t), thenCs, = Cs, and

Qs,s, = 0 such that
1a(Cs;5Csy) = 1a(Cs;:Cs,) = Ha(C;) or Ha(Cs,) (51)

Based on the mutual time-frequency information measurenvestigate the efficacy of the proposed technique
with real-world data sets. The experimental setup and degergbtions are provided in Section 3.
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Figure 2: Schematic representattion of AH-64 helicoptiérdaor drivetrain test stand (a) and actual test stand
(b) with labeled components for comparison.

3 Health Monitoring of Rotorcraft Drivetrain by Mutual Info rmation

3.1 Introduction

3.2 Experimental Setup

The CBM center at The University of South Carolina has an AH-&licopter tail rotor drivetrain test stand
for on-site data collection and analysis [1]. The test siactludes an AC input motor (Fig. 2(a)) rated at 400
horsepower to provide input drive to the configuration, atirsiiaft drive train supported by hanger bearings,
flex couplings at shaft joining points, two gearboxes, andt@sorption motor of matching rating to simulate the
torque loads that would be applied by the tail rotor bladédm fEst stand, with picture provided in Figure 2(b),
was used to collect data to be used in conjunction with histalicopter vibration data to develop the baseline
of operation for the systems under test. The signals areatell during the operational run of the apparatus
included vibration data measured by accelerometers, teaype measured via thermocouples, and speed and
torque measurements. The measurement devices were ptabedfarward and aft hanger bearings and both
gearboxes. This paper focuses on the application of tieguEncy techniques to the forward and aft hanger
bearing vibration signals denoted §sand$; in Figures 2(a) and (b). The physical separation of between
accelerometers (which will further be referred to more galieas sensors) on the bearings is 3.43 m.

3.3 Data Acquisition

The data acquisition software collects data from the habgarings once every two minutes during the course
of the thirty minute baseline runs, with the exception of tdulitional collection periods at the start of the run,
a total of 17 measurements. An experimental run consists @itarmediate speed ramp from 0 to 600 RPM
followed by a ramp from 600 to 4863 RPM. The measurementsdeeline characterization were then taken
during operation of the test stand at a constant rotatigpe¢d of 4863 RPM from the prime mover with a
simulation of output torque at 111 ft-lbs from the secondé@rgummary of test conditions is given in Table 1
given a few conventions. Rotational speed is the speed dfithe shafts and hanger bearings. Output torque is
given by the torque at the output of the tail rotor gearboxsating rotor operation while the torque applied to
the input shafts and hanger bearings is equal to 32.35 ft-Ibs

Data collection yielded 65,536 point at a sampling rate 0k88 per scheduled sampling period, which
results in a data collection time of roughly 1.31 sec per &itijpn. For each run, data was acquired 17 times on
these 1.31 sec intervals: twice at the beginning and thea ewery two minutes until the end of the run. With
individual data files containing 65,536 samples each, atiprn results in over one million data points per set,
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Table 1: Loading profile for a 30 minute baseline test run

Rotationa]] Output| Input .
Duration

Speed Torque| Torque (min)

(RPM) (ft-Ib) | (ft-Ib)

0-600 0 0 7.5

4863 111 32.35 | 30

600-0 0 0 7.5

which is too intensive for many processors to handle duiimg{frequency analysis. In order to resolve this
computational issue and decrease computation time, eaatseiaunder test was divided into 17 experimental
frames to correspond to each time the sensor was activatedllezt data. Each of the 17 experiments was
then divided into 16 windows comprised of 4096 points eaclthiwthese subdivided windows, spectrogram
measurements were made on b8thandS,; while the mutual information measure was applied to 409@tpoi
segments 0§, andS,.

Additional windows can determined by an overlap percentegjeh layers additional 4096 point windows
within the main 16 in a given experimental frame at intenafld096 multiplied by the overlap percentage in
order to create additional effective mutual informationasierements from the given data. An overlap of 33
percent was determined to provide adequate clusteringramehee the probability density for implementation
of predictive confidence levels.

This overlap selection helps eliminate data outliers anprawve the visualization of the clustering when
applying the time-frequency mutual information describe8ection 2.7 to multiple data points. Therefore the
total number of mutual information measure points for theegidata is equal to the number of experimental
frames (17) multiplied by the number of window signal subgé6) and the inverse of the fractional overlap
percentage (3), for a total of 816 mutual points or 272 mytoaits when neglecting overlap components. The
data format of the time series is also provided in [15].

The configuration of the test stand uses balanced drivdssalined in a straight assembly as a baseline
for normal operations. After performing test runs in theddim® condition, intentionally faulted configurations
are tested to expand the baselines to include combinatiomésaligned and unbalanced shafts. The goal of
the time-frequency analysis is to establish metrics forltaseline conditions using the original data set and
produce a set of metrics to diagnose each of unbalanced asadignied conditions. The data presented for
analysis included five sets of thirty minute runs of the appear each taken with different alignment and bal-
ancing conditions. Table 2 displays these conditions aeid tlesignations.

The primary physical fault conditions characterized ekpentally are bearing unbalance and shaft mis-
alignment. While these conditions will be described momrdkighly in Section 3.4, an overview of these
settings helps in gaining a familiarity with the experimadrget up. The nomenclature of the baseline sets is
dictated by numbered segments of the drive-train. Each eegaf concern in experimentation is designated
by a number (1 through 5) and coupled by flex couplings at ttegigs locations to hanger bearings. Un-
balance is related to drive shafts which exhibit geomdtdcanass centerlines that do not coincide with axes
of shaft rotation (UB/A and UB/MA cases). These will be regerto as the unbalanced-aligned (UB/A) and
unbalanced-misaligned (UB/MA) cases respectively. Nigsmhent (MA/B, UB/A and MA/UB cases) in the
test configuration is characterized by a change in bearidghaft placement that moves the number 3, 4, and
5 shafts from straight alignment to produce an angle of 1g8ekes. Either a 3-5 unbalance (unbalance of three
consecutive drive shafts) or a 4-5 unbalance (unbalancelpfwo drive shafts) differentiates two experimental
settings. The aforementioned settings will be referredsttha misaligned-balanced (MA/B) and unbalanced-
misaligned (UB/MA) 3-5 and 4-5 cases. These settings preduditional wear on drive-train components
while also presenting additional transients in harmorties tan be measured for health classification purposes.
For the purposes of this paper we will simply refer to thessesas baseline (A/B), misaligned (MA/B), un-
balanced (UB/A), and misaligned-unbalanced (MA/UB) asashin the nomenclature of Table 2. Instances of
ambiguity between the misaligned-unbalanced cases wipkeified as 3-5 misaligned or 4-5 misaligned.
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Table 2: Tail Rotor Driveshaft Experimental Settings
| Shaft Status]| Balanced| Unbalanced |
Aligned A/B UB/A

Misaligned MA/B MA/UB 3-5, 4-5

Unbalance vibrations are generated when geometricaldieeter mass centerline of a shaft do not coin-
cide with the rotational axis of the shaft, for example inesasf bearing looseness or due to manufacturing
imperfections. This inconsistency between rotationas @axid geometrical or mass centerline creates a radial
bow forceF, at a fixed relative phase angle, which varies in magnitude along the length of the shaft as
shown in Figure 3-(b). The unbalance condition creates baitally varying vibrations, D, on a hanger bear-
ing housing, which are registered by dedicated accelemmnethese varying vibrations consistxdndy axis
radial vibrationsz axis axial vibrations, and torsional vibrations of a shafaibearing (Figure 3-(b)) as well as
additional vibration signal contributions coming from @ded bearings, gearboxes, power units, airframe, and
other components. Each hanger bearing on a helicoptemnsyests only one dedicated accelerometer in current
settings, which can pick only laterabxis component of the vibrations (Figure 3-(c)) of the form:

Dy = Ax - coS(wt + W) (52)
Dy = Ay - sin(ot + yy) (53)

whereDyy andAyy are displacements and amplitude of displacements in x anisydaections,w - angular
velocity, andyyy - phase angles.
Vibrations caused by unbalance will be in-phase on bothibgaiacceleromete andS, when(¢py — dx =
0), and will vary only in magnitude depending on the magnitufierdalancef,. The drive shaft supported
by the hanger bearings at sensor locatiBnand S, is not a uniform shaft but rather a sectionalized shaft as
previously described. Therefore, misalignment canndtglly be avoided. It should be noted that as shown in
Table 1 the experimental data is gathered under conditibosrstant or near constant torque load and speed.
Misalignment in our case is considered as an angular misakgt when the shaft centerlines of the two
shafts meet at angle with each other. This, on the contramghalance, causes axial preloads on the shaftin the
z axis direction, and can be decomposex sggnal component based on angle of misalignnignt Fsin(om).
This force will have the greatest impact on the bearing dosethe shafts’ coupling point, and will have a
phase difference in reference to force registered at adulticated sensdqpy — ¢x # 0) (Figure 3-(c)) because
of finite stiffness and dampening in the system. In indulstritaration monitoring one would use shaft
diagnosis techniques such as shaft centerline orbit mamgtowhich requires two andy sensors at a single
location, and a skilled human operator, which make suchnigcie inapplicable in our case and justifies the
need for an advanced diagnostic measure. Mutual informatieasure takes advantage of two accelerometer

z

Ay ;
M Bearing

(@) (b)

Figure 3: Unbalance force distribution over the shaft supgabat theS; and S, accelerometers locations (a)
cross-section of a bearing and the shaft at3haccelerometer location (b) shaft centerline orbits atShand
S accelerometer locations, and (c) displacement or vibmat@mponents in the x and y axis directiomy,(
Dm orbits whendy — ¢x = 90°, Dy Whendy — ¢x = 120°)
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Figure 4: Spectrogram &, for (a) baseline (B/A), and (b) misaligned-unbalanced (MB/3-5).

signals located at different locations, simultaneouslgrgifiying all frequency and phase components of the
mechanical vibrations signals.

3.4 Vibration Analysis

In the predictive maintenance practices of CBM, metricdlainto the simpler total harmonic distortion (THD)
or root mean squared (RMS) classical methods are used asodifzs. These provide comparisons of a signal
harmonic component (such as the fundamental) to other hdosiin weighted algorithms. These metrics
provide good indications of vibration characteristics @nthe condition that the frequency components under
test are stationary, or remain unchanged with the progresditime.

Unfortunately, this classical approach inherently assthe disturbance is of a periodic nature. In fact, not
all real life disturbance events result in periodic waveafsrand transient frequency variations are common in
the event of faulted components. Often events such as dacaage disturbances that can best be character-
ized as transient in nature. In such cases it is necessatydgp the time-varying frequency components of a
disturbance. This can be accomplished with time-frequaneyysis.

The motivation to use time-frequency analysis is to havetiikty to represent and analyze non-stationary
signals whose spectral characteristics change in time. appsach to time-frequency analysis is to take the
time-frequency distribution of a signal.

The problem with WV distribution is that it introduces aatit when a signal is multicomponent between
existing components (on auto terms) at non-linear spadicrgss-frequencies). This artifact can be reduced
with CW, RID, and ZAM distributions, shown in Figure 5(a)-(The ZAM kernel was selected for this project
for its its general capability to represent a fair tradeafftime and frequency resolution. The window for
this function is selected based on the number of frequeney (N = 1024) with the Hamming window being
selected in both time and frequency smoothing. The time seguency window lengths are given as N/10 (or
103) and N/4 (or 255) respectively with rounding to the nstaoeld number. Looking at the time-frequency
distributions of the two signals, we can see that the firstaigadvanced state) has four frequency bands while
the second signal (damaged state) has two frequency comigamith increased energy in the second harmonics
and decreased energy in the first harmonics. However, tlimdesignal seems to have more transient variation
among the frequency bands. We will search for a way to defiigetthnsient variation. The metridq (Cs)
defined in (40) measures the number of signal elemerdd pbver the time and frequency planes.

Figure 7 is a metric derived from the Rényi information of time-frequency distribution. In Figure 7(a),
the Rényi information or entropy of the of Wigner-Ville kel is compared to that of the reduced interference
distributions. From the metric, we can see a higher valu¢ghfieramount of information as represented by the
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Figure 5: Time-frequency distributions of vibration sig;&rom (a) data set 1, and (b) data set 2 with WV
distribution, illustrating the potentially negative ingiaf cross terms in vibration analysis.

reduced interference distribution. This can be intergrsieilarly to visual inspection of the time-frequency
distributions for the respective kernels. By visual ingmecof the reduced interference distributions, we see
more of the information represented in the transient viariatof the signals and less of the cross-terms. The
values of these test points (1-10) are randomized withinviiek long duration of testing approaching failure in
our case study, so we will now view the sorted version of teesdata and consider the metric for a sequential
interpretation approaching failure. This will help us vidhee Rényi information as a metric for condition
assessment.

The sequential time-series to failure is shown in Figure.7{be bars correspondingto 1, 2, and 4 showcase
approximately the same complexity by our metric and allespond to the start of an experiment run. However,
bar number 7 corresponding similarly to the start of an @rpemtal run, shows a significantly higher complexity
value while actually decreasing in the number of frequeraryds (as seen from Figures 4-6). This corresponds
to high amount of frequency transient information causedhgyimpending failure. Extensive damage was
likely caused during the previous runs at the values inditaty high Rényi metric and failure occurred soon
after the measurement used for bar 10. Constant increaseisfiom bar 3 to 5 to 6 leading up to failure,
and it will be interesting in the future to consider sectitimat have been completely matched in terms of the
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Figure 6: (a) Rényi metric comparison, and (b) sequentidireg of metric for the CW.

test sequence (both loading and rotational speed). Witlgithen results, we would suggest using the Rényi
metric derived previously to confirm that a part is failinfitHe second harmonic of the gear mesh frequency
measured here were increasing, we could measure the Risgd Imetric and confirm that while the number of
frequency bands from 1x of mesh to 4x of mesh frequency isedsang, the Rényi information is increasing.
This would indicate a high number of transient variationd athow for rejection of some false positives based
on the previous metrics of first and second harmonics of geshrfrequency.

3.5 Comparison of Renyi Derived Self Information to Time-Frequency Methods

The first step of analysis and discussion uses the self Réfoymation measure defined in (40) of Section 2
to describe the individual time series. The self Rényiinfation measures @& andS; for baseline and mis-
aligned cases are provided in Figure 7. Sign&;1and Signhal 2%, in both the baseline (A/B) and misaligned
(MA/B) cases are processed by applying the 8-point moviregage filtering followed by Rényi information
calculation to obtain the self information measure. Thasgfery time instance of every experiment window
of the data, a Rényi calculation of each auto-correlatgaadiwas gathered. As shown in Figure 7, a total of 272
self information measures were gathered for each signahdi ease. Additional overlapping is used for x-y
coordinate mapping used in visualizing part health. In otdédentify the tendency of the measure, an 8-point
moving average filter was applied to each signal with therfidtevering half of the time instances provided in
each experiment window. The results of this self informatioeasure are compared side by side in Figure 7
for each signal. The referenced time instance (15th of fdm& at 5th experiment window) is marked on each
graph to show a consist reference point based on the desorgitSection 2.

Notable difference from the side by side comparison in Fguris a sizable increase in the self infor-
mation measure of the misaligned case over the baseline ddse could be a characteristic signature of a
misaligned case. The self information measure shows a gkinerease at the given samples when comparing
the balanced-aligned case with the misaligned case andesrase on the average of measured frames. The av-
erage self information value of the baselffesignal is reported at 6.72 bits while the average value oftmee
signal in the misaligned-balanced case was 7.68 bits. Congpthe second signal sef,, we obtain a value
of 6.78 bits compared to 7.31 bits for the same cases. Howiwar this derived metric, the interpretation is
yet unclear. This self-information measure can be verifi@dgithe spectrogram example discussion in Figure
4. From this data, there is little other indication of charfigen the baseline case to another “faulty” status
of the shaft. Moreover, the self Rényi information&fin the balanced case in Figure 7(a), as well as both
signals in the misaligned case, oscillate more comparetktsdlf Rényi information o, of the baseline case
(A/B). This could be attributed to more high frequency comgats shown in the time-frequency spectrogram
of Figure 4(b).
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Figure 7: Self Rényi information measure $f and S, for baseline in (a}(b), and self Rényi information
measure of; andS, for misalignment in (c)-(d)

While this self information proves useful and shows a nadialsis by which to compare data sets, it lacks
potential for comparison of closely related signals anchis instance shows an increase when compared on
average while not for localized comparison. This only pyastipports the desired qualities of a condition indi-
cator while further information can be gathered from theuatinformation measure. This mutual information
measure is a complex value and can be further subdividedvirtaonstituent values: an in-phase mutual time-
frequency informationl§(Rs;s,)) and a quadrature mutual time-frequency informatiti@s;s,)) defined in
(48) and (49).

3.6 In-Phase and Quadrature Components of the Time-Frequazy Mutual Informa-
tion Measure

Mutual information measures of baseline and misaligneeé<ase provided in Figure 8. An interesting
trend can be seen in the baseline case in Figure 8(a). Oviralin-phase mutual time-frequency informa-
tion (la(Rs;s,)) Stays mostly at a constant separation from the quadratuteahtime-frequency information
(la(Qgs,)). Both thelg(Rss,) andlq(Qgs,) of the baseline case in Figure 8(a) remain relatively cartsta
throughout all windows of the experiment. However, towdre €énd of the sequence outlined in Figure 8(a),
the in-phase and quadrature mutual information measuvesddegin to experience a larger separation. These
characteristics are all important to note while considgrimat truly characterizes the baseline physics of the
system.

A glance at the mutual information from the misaligned cas€igure 8 (b) draws attention to two dis-
tinctive signatures. First, like the baseline case, themeetral mutual time-frequency informatidg (Rs;s,))
remains relatively constant throughout all experimentdeins with a large trough around experiment window
10 corresponding to a minimum value of the quad-spectraliaitime-frequency information{(Qs;s,)). Sec-
ond, the quadrature component has a larger average valuéhevength of the experiments than was seen in
the quad-spectral component in the baseline case. Alsauhd-spectral component in the misaligned case
fluctuates greatly, showing greater amounts of local miram@émaxima. Though the quad-spectral information
in the misaligned case revealed a significant rise in the murabbits in the mutual information measure, the
co-spectral portion showed little increase over the expenit windows measure. By comparing the results in
Figure 8 with other results by classical spectral analysigaiitional spectrogram, one can find the useful-
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Figure 8: Mutual Rényi information measure &f and$; for (a) Baseline-Aligned, (b) Aligned-Unbalanced,
(c) Misaligned-Balanced, and (d) Misaligned-Unbalanced

ness of the proposed technique for a quantitative healttiton assessment of the experimental setup. Further
analysis is underway to understand the relationship bettrestime-frequency mutual information method and
other confounding factors such as speed and torque, isgltite sources of transient changes in the vibration
signatures.

3.7 Time-Frequency Mutual Information Measure Visualization

The mutual information measure currently in developmedtstrown in Figure 9 provides a graphical interpre-
tation of part condition by analyzing the amount of mutuabdshared between two vibration signals received
from separate accelerometers. The mutual information umeas comprised of a quadrature component and
an in phase component which, by observation seem to indiiffi¢eences in the actual physics of the system.
Figure 9 shows the scatter plot distribution of the in phasmmonent of the measure on the x-axis and the
quadrature component of the measure on the y-axis. In theitgmmof system unbalance, as seen in Figure 9
(a), (c), and (d), which compare misaligned and unbalangpdramental settings to the standard baseline, the
in-phase component shows a potential trend toward a decieagormation bits.

Similarly, misalignment can be observed to decrease thébruwf information bits of the measure con-
tained in the quadrature component, provided in Figure @ufld)(d). As a distribution these values can be seen
to shift along the x-y plane indicating a shift in part or gststatus. Additional studies should be analyzed and
compared to determine if these trends are truly linear asdppear to be from observation. It would appear
that Figure 9 (c) and (d) which were tested under both misalignt and unbalance conditions, as well as com-
bination settings, have differing degrees of misalignnas unbalance yielding different distributions which
follow the established trends along the quadrature andas@bomponents.

4 Health Monitoring of Electric Cable

4.1 Introduction

In order to prevent electrical outages and to save maintenexpenses, a prognostic technique is needed which
can quantify the degradation of the insulation of a cableredligt the remaining life of the cable. Ideally,
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Figure 9: Baseline comparisons of the mutual informatioasoee (a) Aligned-Unbalanced, (b) Misaligned-
Balanced, (c) Misaligned-Unbalanced 3-5, and (d) Misaipnbalanced 4-5 with the Aligned-Balanced Case

the technique should be non-destructive, non-intruspplieable to cable types and insulation materials com-
monly used. Furthermore, the ideal scenario is to be abledarately monitor the health status of cable in
real-time and continuously. Recently, the NRC and BrookhadVational Laboratory have been working on the
diagnostics and prognostics of electric cables with theaBband Impedance Spectroscopy (BIS) technique de-
veloped by Boeing [31]. On an international scale, the OEGIEIN Reactor Project in Norway is researching
similar issues in monitoring the condition of electric aaltheir method is known as Line Resonance Analysis
(LIRA) [32]. The purpose of these techniques is to detectlandte defects before they cause a component
to fail. Although BIS and LIRA have different names, thes® tmethods both monitor impedance of faults
caused by insulation degradation using frequency-dongdiaatometry (FDR), primarily due to the extreme
challenges involved in accurately measuring fault impedan the time domain.

In practice however, there are no condition monitoring teghes available that have all the above attributes.
The capability of joint time-frequency domain reflectometiTFDR) to monitor the status of cable insulation
is evaluated in an effort to predict the remaining life of gowables. JTFDR captures the advantages of both
TDR and FDR while avoiding some of their limitations by usiadvanced digital signal processing [30]. A
distinct advantage of this reference signal is its confilgility; the user can select appropriate parameters of
the reference signal, including frequency bandwidth, eefrequency, and time duration, by considering the
frequency characteristics of the wire being tested. JTFB&HWeen proven to be able to accurately and sensi-
tively detect both hard and incipient defects on coaxialemf81]. The unique features of the time-frequency
cross-correlation function employed by JTFDR also allotoimonitor the minor changes in cable insulation
which indicate the health status of the cable with a high eéegf sensitivity.

4.2 Experimental Setup

Shown in Figure 10(b) is the system function diagram thatudess the configuration and function of the ex-
perimental devices of the JTFDR wiring test bed. The com@€) instructs the arbitrary waveform generator
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to produce the Gaussian-chirp incident signal designeeidbagon the input center frequency, bandwidth, and
time duration with optional variations in reference siges$cribed such as sinusoidal modulation. This incident
signal propagates into the target cable via the RF amplifieases of longer cable lengths, is reflected at the
fault location, and travels back to the signal launcheerazr. The signal launcher/receiver should be seen as
a general implementation with a circulator or switch beisgdifor this task in laboratory settings while future
work would implement a wireless sensor for insulation assest. The reflected signal is redirected to the dig-
ital oscilloscope. The computer program acquires bothrtbielent and reflected signals from the oscilloscope,
calculates the time-frequency distribution of the incidemd reflected signals, and executes the time-frequency
cross-correlation algorithm to detect, locate, and asaegslefects on the cable. The heat chamber used for
accelerated thermal aging is also shown in Figure 10(a)ldrger or more dispersive cable media, we make
use of an RF amplifier (120W ouput) to provide increased rarigietection while keeping a | meter or better
resolution for the JTFDR method. This helps stabilize agfaimstrumentation noise for the AWG and oscil-
loscope while also providing sufficient resolution for deten multiple reflections of the incident reference
signal.

4.3 Diagnostics and Prognostics
4.3.1 The Modified Arrhenius Equation

Typically aging of a cable is defined as any process elettmeachanical, thermal, or environmental which
might reduce the overall effectiveness of the cable for pawsignal transmission. An alternative, and broader,
definition of aging would describe the process as any camdibver the duration of cable life that leads to
increased susceptibility to hardware faults or that migheowise lead to premature failure. In our case, actual
aging is represented broadly by a simulation of thermasstead in particular by uniform heating of a section
of cable at a constant temperature above the normal theapatiy. As defined by IEEE 1064 standard, aging
is the occurrence of irreversible deleterious changesdtfiéatally affect performance and shorten useful life
[27].

The well known Arrhenius model is used to determine the atgsgparameters such as thermal stress and
time duration. The Arrhenius model is based on chemicaltreery and has been verified to be effective for
many solid materials. The equation of the Arrhenius modstdkes the relationship between the reaction
rate and the temperature of a chemical reaction [13]. Onepkéyt to remember is that this reaction rate and
temperature correlation only applies to a single reactidnile insulation degradation is not a single chemical
process, but rather more complicated with multiple reastand often nonlinear deleterious effects. This model
has however become accepted as an indicator and metrictfler @aging as outlined in the IEEE standard. The
modified Arrhenius equation for an accelerated aging telsis:
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L olEa/B(1/Ts~1/Ta)] (54)
a

where the following hold true:
Ts is the service temperature;
T, is the accelerated aging temperature;
ts is the aging time at service temperature;
ta is the aging time at acceleration temperature;
E; is the activation energy of the material;
B is the Boltzmann’s constant (given below),

B=28.617x 10 eV/K] (55)

This equation equates the heating of a material at tempgergfdior time t, to the aging of the material at
the service temperatuilg over a timets.

4.3.2 Accelerated Aging Test with Various Low Voltage Inswdtion Types

Using the previously described modified Arrhenius equatiera guide for accelerated aging, and utilizing
standard activation energy values for various cable tyfeests were performed on low voltage control and
instrumentation cable to simulate 120 years of servicedif60 degrees Celsius, nearly double the expected
service life of a typical cable. During the accelerated gdasts, JTFDR is employed to assess the various
states of the cables during the aging process and growth &suned time-frequency cross correlation peak
value growth. Before any external thermal stresses ardeafythe waveforms are acquired multiple times
to account for noise and acquisition error and processeddoh cable sample to obtain the time-frequency
cross-correlation baselines for future comparison. Ontcalized segment (typically 1 m) is aged to simulate
non-uniform aging along the length of a cable sample (10-ffimaerifying tests). A certain number of hours
(ta), is computed depending on how long),(the cable is to be aged. When the cables are to be measured
using the time-frequency cross correlation metric at regatervals, the "hot spot,” or aged segment, is cooled
to ambient temperature to ensure that all metric increasesetated to actual simulated aging and not simple
geometry changes within the cable samples. The waveforema@quired and processed after this cooling
process is verified with a thermometer to obtain an updatee-frequency cross-correlation plot. The program
then calculates the peak value corresponding to the agedese@nd records this new value for comparison
with previously collected and future health assessments.

4.3.3 Accelerated Aging Test with Medium-High Voltage Cal#

In the case of XLPE cable, an activation enekgyof 1.33 eV [15] was used with an acceleration temperature
of 140°C. The typical maximum operating temperature of MV-90 cabl®0°C. With a an acceleration
temperature of 140C and a simulated service temperatufg 6f 90°C over 90 yearst), the simulated aging
time can be found to be 24 hours.

Aging was simulated using a heating chamber with two thropgits for cable access separated by 0.6
meters. A meter long "hot spot” was desired for localizechgghowever, in the case of thicker MV-90 un-
derground cable, minimum bend radius along with cablers&# and thickness allowed only 0.6 meters, or
the separation between cable through ports, for hot spdideration. Both XLPE insulated cable samples
(Rockbestos Firewall 11l XHHW, low voltage and MV-90, mediwoltage) were heated for one hour at a time
at 140°C. The cables were then cooled to ambient temperature (263234 measured by an infrared surface
thermometer before measurement. Cooling time, varyingn fd® to 50 minutes, was allowed to prevent re-
sults from being obfuscated by other potential sourcesftdatometry variation such as geometric changes of
insulation and conductor materials.

Measurements were taken using an 8 GSa/s digital oscilbestmrecord the raw data of each acquisition
of sampled signals (incident and reflected) along with thalreference signal. These signals were then
evaluated using the JTFDR method.
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Figure 11: Comparisons of low voltage cables with croskdihpolyethylene (XLPE), ethylene propylene
rubber (EPR), and silicone rubber (SIR) insulation typesde-resistant medium voltage cable (TR-XLPE)

5 Conclusions From Completed Work

In this project, two sets of vibration signals have beenyae with four different kernels - WV, CW, RID,
and ZAM distributions. For these vibration signal analyiseime-frequency domain, WV shows some cross
terms which are reduced with CW, RIDB, and ZAM distributioiée have shown which frequency components
are responsible for the vibration introduced by the meatem@omponents in the test bed system as well. In
addition to this, comparison of time-frequency distribas it is possible to identify which component is in
an advanced stage and which component is potentially dadndgereover, from Rényi information it can be
concluded which time-frequency distribution provides eimiformation for the vibration signal analysis. Based
on all the analyses provided in this project, necessarygstap be taken for health improvement of components
in order to avoid premature failure.

Drawing from Rényi complexity measures and mutual infaioratheory, baseline, unbalanced, and mis-
aligned experimental settings are quantitatively distisged by the proposed mutual information technique.
Statistical analysis of the time-frequency informationasiere from Table 3shows a variance in the proposed
in-phase and quadrature information measures of 0.007D (&10.0837) and 0.0054 (STD of 0.2324) re-
spectively for baseline testbed conditions in oppositmar increased in-phase information measure variance
of 3.33 (STD of 1.8258) in repeated unbalanced test casesharehsed quadrature information measure of
1.7497 (STD of 1.3228) in repeated misaligned cases. Willalamce quantifiable by variance in the in-phase
mutual information and misalignment quantifiable by vaci&im the quadrature mutual information, machine
health classification can be accomplished using statisiimanding regions. In summary, the baseline can be
characterized with a constant separation on a per-timannstbasis of the mutual information measure. The
misaligned case may be characterized by its quadraturemoamp. This component shows the misalignment
in a relatively large, increased number of bits from the iinfation measure. However, similarity still remains
in the in phase component whether the case is aligned orignsall
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Figure 12: Medium voltage MV-90 cable time-frequency crosselation peak growth index growth shown by
(a) cross correlation peak curves at progressive agingsand (b) summary of peak growth over time

6 Proposed Work

6.1 Mutual Information Based Condition Indicator for Drive tain Health Monitoring

Included in Table 3 is reference for the statistics relatethdth spectra of the mutual information measure
proposed. Future studies of this indicator method coulddam varying states of misalignment and unbalance
to determine a quantifiable relation between the x-y distidmn shift and part health. Differences in this mutual
information measure could be further developed into areiased precision statistical indicator of part or system
health status.

This metric could be used in the fusion of other types of senisoorder to obtain extended information for
more accurate assessment of the health status of compobetiscould be gathered from vibration, acoustic,
and temperature sensors and correlated to present a sir@kerobust, health indicator [28], [29]. Furthermore,
analysis of these values can yield great insights into tlysipk behind systems such as the system under study
which provided the mechanical vibration data, providingei a simple summary of component health for an
operator or a complex interpretation from a knowledgeabtgreser in order to fully achieve condition-based
maintenance. | have been seeking access to the IntegraiateRkEnce Data System (IMDS) through contacts
with the South Carolina Air National Guard for historicata&om Apache aircraft and aim to provide historical
parameters and integrated statistical bounds to my Mutdiatrhation Measure metric.

Table 3: Statistical Summary of Mutual Information Measure

. . Aligned- Misalignedt Misaligned- Misaligned-
Statistical Paramete} Baseline Unbalanced Balanced | Unbalanced 3-5| Unbalanced 4-5
Meany In Phase || 1.1202 -0.7424 0.4902 -0.9535 -0.1753

Quad 0.4535 -0.5509 -1.3691 -0.3268 -0.0726
STDo In Phase || 0.0837 1.8258 0.2147 1.0136 1.4344
Quad 0.2324 0.7107 1.3228 0.4852 1.2363

| Correlatonp || 0.2326 [ 0.8732 | 0.0891 | 0.4005 | 0.3188 |
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6.2 Comparative Study of Aged Segments by Joint Time-Frequey Domain Reflec-
tometry

This section will serve as a method to introduce new propossearch pertaining to low voltage or instrumen-
tation and control cable health assessment. This topicliesdy been addressed to some degree in the previous
research, however, a number of advances could be made torasking JTFDR a feasible and practical method
of either continuous or periodic monitoring of cable sysiedey problems with the current methodology for
this subset of reflectometry are (1) the direct electricahaztion that requires removal of tested cable samples
from service and additional labor, (2) additional time affdré for determining the proper optimal reference
for a given cable sample, (3) the ideal conditions of the fatoyy which do not account for common oper-
ating conditions of generation facilities and industriahters, and (4) the accelerated aging process for cable
health tests which can be seen as somewhat preliminarytirssta As a means of addressing these points,
first discussion will be presented for an alternate meansjetiing a reflectometry signal for insulation health
assessment by surface wave. An optimal reference has beelopled for such conditions and will be further
developed in proposed work. Next, an automatic algorithihbgiproposed to find the best reference signal for
JTFDR based on weighted factors such as size of time-freyuernss correlation peaks. Also, improvements
to the laboratory experimental design will be suggestedke into account potentially confounding factors and
more realistic aging. The ultimate goal of these updatedavoe to promote progress for areas of research in
smart grid or networked power systems where a non-invasigitil monitoring device for cable would be of
great benefit.

6.2.1 Implementation of Time-Frequency Domain ReferencaiiDispersive Environments

In order to counter the dispersion properties of the anterbased surface wave signal injection methods,
a secondary sinusoidal modulation is explored relativehtexisting reference signal that can further tune
the optimal reference to a given set of narrowband sliceBinvel larger bandwidth. A numerical simulation
will now be derived to explain concepts of the surface waviinogd reference signal. In this simulation, two
different impedance zones exist: a characteristic impeelaggion (before and after fault) and a faulted region
represented by a change in impedance. This simulation wésrped in MATLAB to emulate a 10 m cable
with a fault at 6 m along the simulated sample. Figure 13(bj\sthe surface wave optimal reference (topmost
graph) injected into a cable with subsequent reflectionsfatith segment at 6 meters and at the cable open
end at 10 meters (middle graph). The time-frequency crosglation algorithm (bottom) then compares the
incident and reflected signals. The JTFDR metric is obtafnem the peak of these cross-correlation values
and will further be evaluated with experimental verificatlefore addition work is proposed.

6.2.2 Implementation of Cable Health Assessment by Surfad¥ave Injection

Shown in Fig. 13(a) is the system function diagram that diessithe configuration and function of the exper-
imental devices of the JTFDR wiring test bed for non-invasiurface wave injection methods. The signal is
then reflected at the fault location, and travels back to itpeas launcher/receiver. A prototype surface wave
launcher/transducer pair (pictured in Fig. 13)(a) wasquiaat each end of a 7 ft (2.1336m) cable sample and
coupled to the cable using a concentrically wrapped lenfjttonductive tape. This conductive tape was con-
nected to the signal connector of the coaxial input by a tlkamfént and separated from the input coaxial return
by a polystyrene spacer. The coaxial return was in turn cttedeo the ground plane. Initial tests were per-
formed to evaluate the utility of the surface wave signal EMDunshielded cable samples (600V low voltage,
LSTSGU-9, SIR insulated) and a shielded sample (15kV medhiitage, TR-XLPE insulated cable).

The first step of practical implementation of surface wa¥iectometry for non-invasive diagnostic coupling
is detection of an open end. Further work must be accommighéully characterize the frequency response
and dispersion characteristics of the broadband monopdiace wave launcher before implementation of the
methodology described previously, therefore, these tdsise a JTFDR reference signal of a chirp signal in
time-localized Gaussian envelope. The Gaussian chir@kiged in these tests has a center frequency at 350
MHz over a 100 MHz bandwidth for a 0.9 s time duration.
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Figure 13: (a) Experimental setup for Surface Wave Optichized (b)Simulated defect on 10m segment of
cable using the surface wave optimized reference showmia diomain (top)and by comparison using JTFDR
(bottom).

Using the surface wave injection configuration of Fig. 13(@ tested the unshielded, low voltage and
shielded, medium voltage cable samples using the JTFDRitdgoand the results are shown in 14a and 14b
for 2 meter segments of each cable type. In each figure, tloe@uelation peak of the reference signal is
represented by the peak with the most energy, which displeystart of the cable or reference point of the
incident signal. A time-frequency cross-correlation of tleference and reflected signals is then shown by
further corresponding peaks with the difference betweerio peaks (reference and first reflection), scaled by
the propagation velocity and signal lengths, providing stimeate of the length of the cable.

By use of the described metric for the LSTSGU-9 SIR cable émated cable length to open circuit fault
was described as 1.9822 m, a 7.1 percent difference fronttbhaldength of 2.1336 m. Similarly for the MV-90
TR-XPLE cable, a length to open circuit fault of 2.2489 m watineated by optimized surface wave, a 5.4037
percent difference from the same length. These results ginomise for a potential fault location algorithm

and further tests in proposed work will explore the adjusttea¢o JTFDR metrics while testing longer lengths
of cable.

6.2.3 Improvements of Experimental Set-up

Having recently begun collaboration with the Internatioftomic Energy Agency (IAEA), improvements to
the testing setup at the University of South Carolina areralepbefore receiving additional cable samples
from participants in the combined research project. As stiehfirst step in applying JTFDR is optimizing the
reference signal used in reflectometry for the given cableés i done by first performing a frequency sweep
with a network analyzer or similar measurement configunagiod then running a loop through time duration,
bandwidth, and center frequency properties of the optiefakence to obtain the raw data and cross correlation
peak data for a range of references. From there, an operasimarse through a table of values collected from
the looping operation and visual inspection of waveformddtermine a proper selection.

A proposed task for improvement of this process is to basenaptreference selection around key para-
meters identified by visual inspection to provide a gooddation of spatial resolution in fault location and
sensitivity to changes in the metric. Parameters to opéntie reference include the width of peak pulses,
where shorter width typically indicates better spatiabteson. Additionally, minimal noise between peaks
and a higher number of reflections along with a higher swegfpeguency typically indicate better accuracy in
measurement. From these factors, an algorithm can thenrbedalong with optimizing equations relating
the bandwidth and sweeping frequency of the referencelsigna

In seeking guidance from sponsors in both the Nuclear Regyl€ommission (NRC) and IAEA, further
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Figure 14: Time-frequency cross correlation metric forropad measurement on 2 meter segment of (a) cable
in low voltage unshielded case and (b) cable in medium velsddelded case with stripped injection point.

experimental upgrades have become apparent. From cotiwass@ith nuclear plant specialists, suggestions
were offered towards a more robust testbed for cable tesiés dpdated configuration includes cable tray
sections, stressing bends in the test cable, feeding seagimeconduit, and more realistic heating models for
advanced aging. The updated configuration, taking intowattcall previously described changes except for
improved heating models, is summarized in Figure 6.2.3.1&3abill be tested with advanced aging protocol
under this industrial settings testbed regime as well ds avitontrol group tested without added stresses.
Initial accelerated aging tests focused on testing a widgeaf instrumentation cables quickly enough
to produce results and facilitate comparison of JTFDR t@&othore established methods. However, certain
fallacies exist in this short time test. As explained in (5 )mathematical relationship exists between an ac-
celerated aging time and a service life time based uponrgetmperature and the activation energy. From
further research, it has been determined that previousiastins of cable activation energy for cross-linked
polyethylene (XLPE) at 1.33eV may be too high and a value 25&V was deemed suitable. Similarly, the
aging temperature may be too high to provide an accuratéemated aging model. As such, a new set of
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Figure 15: Experimental setup for Surface Wave OptimizeeDR
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parameters for accelerated aging for instrumentatior talde, such as a sample received from Swedish man-
ufacturer Habia Cable, is presented in Figure 4. As furtladalec samples are received from IAEA member
manufacturers in the United States and internationallypmdgenized or normalized baseline can be devel-
oped for nuclear instrumentation and future standardsddoelldeveloped around JTFDR-based metrics where
previously TDR or FDR metrics dominated.

6.3 \Verifying Joint Time-Frequency Domain Reflectometry byPartial Discharge and
High Voltage Assessment

6.3.1 Medium Voltage EPR and XLPE

Previously, a single sample of medium voltage tree-rasistass-linked polyethylene cable (Prysmian/Pirelli
MV-90 at 15kV) was tested using preliminary strategies akderated aging for verification of JTFDR method-
ology. To verify the capability of JTFDR to measure the lissassment of medium voltage cable, additional
samples will be tested with longer and more involved acedder aging processes. The aging temperature
will be greatly reduced, and the activation energy for caltton of Arrhenius aging curve has been reduced.
This results in a much longer experimental time, but theltesthould provide more realistic aging. Similar
procedure follows for the aging of medium voltage and higliage cable samples as previously outlined in
Sections 4.3.1 and 4.3.3, including the cooling of cablésrafging to verify that actual aging is measured
instead of simply measuring geometric changes of the cablesever, the interval between periodic JTFDR
metric assessment would likely be increased. Instead ddimeing periodic health assessments every hour of
testing, it is suggested that the interval be 6 to 8 hours dwige 50 to 60 health assessment time-frequency
cross correlation peak points. Higher voltage cable sasnghel additional samples with different insulation
types should also be obtained and a summarizing table isdan Table 4 for example proposed acceler-
ated aging simulations. This table details additionaktést low voltage cable samples, represented here by
the Habia RG-58 sample, continued and expanded accelegitegltests for the previously tested tree-resistant
cross-linked polyethylene (TR-XLPE) cable, and additi@tauisition of a sample of 35kV ethylene propylene
rubber (EPR) cable. Medium voltage cable samples from it manufacturers may be tested as deemed
necessary and initial quick assessment tests for all cabiples may be performed before each longer test to
give a rough estimate of expected results.

Table 4: Summary of Cable Information and Experimental Blara

. Activation Temp.| Experimental
Insulation Type Types of Cable Energy (V) | (°C) Duration (Hr)
Cross-linked polyethylene (XLPE]] Habia, RG-58, 600 V 1.25 110 400
Tree-Resistant XLPE (TR-XLPE)| Prysmian, MV-90, 15 kV 1.30 110 360
Ethylene Propylene Rubber (EPR) Prysmian, 35 kV 1.10 122 400

Additionally, a very low frequency (VLF), high voltage saerhas been acquired to perform additional
verifying tests of JTFDR methodology. This source was chdeeprovide a simpler and more cost-effective
means of testing high voltage withstand and partial disghaéinan a comparable source at 50 or 60 Hz line
frequency and provides options to test at 0.1, 0.05 and &0&Hhigh voltage withstand test can be performed
on medium to high voltage cable with total capacitance betw@1 to 6uF and a voltage up to 50 kV. For
additional verifying tests, a partial discharge generata acquisition system was purchased to monitor high
voltage partial discharges. This partial discharge urgrafes within the same limits of the VLF source. Further
research in high voltage tests will analyze the feasibilftysing the acquired high voltage equipmentto measure
partial discharges in insulation by means of time-freqyendime-scale (wavelet) analysis.

6.3.2 High Temperature Superconducting Cable (HTS)

In order to further expand the use of JTFDR, use of the opthefarence and time-frequency methodology
is suggested for an emerging cable type known as high tertopersuperconducting cable. High temperature
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Figure 16: Very low frequency source (VLF) operates at fezggies from 0.02-0.1Hz, simulating line frequency
of 50 or 60 Hz, for high voltage tests up to 50kV with (a) colig timer, and measurement unit and (b) high
voltage tank capacitor

superconducting cable presents itself as an emergingdéadyin next generation power transmission, capable
of high current capacity and reduced losses ideal for tieslidC bus interconnects, and general interchange
between power utilities [38]. Superconducting materiedstgpically classified as "high temperature” due to low
resistivity at a critical temperature, TC, equal to or gee#than the boiling temperature of liquid nitrogen (77K)
though no definite temperature range is defined for this dasign. Most high temperature superconducting
implementations must be constantly cooled by a concentridant line [38, 39] to maintain low resistivity
below a certain critical temperature.

Coolant temperatures for longer lengths of cable must bataiaied with complex control systems that take
hours or days to affect changes to overall coolant tempersitivlinor variations of temperature above the given
critical temperature on either a global or localized scalela affect the safe and effective operation of HTS
cable-based power transmission systems and increaseltleeresistivity near the leakage inception point sig-
nificantly. Thus, joint time-frequency domain reflectoryéiTFDR) is presented as a means of monitoring vital
segments of such a cable technology or similar coolant feergimg technologies. As such, non-destructive
in-situ monitoring techniques could prove particularlyefug in identifying localized variations in resistivity
consistent with coolant leaks for implementation of rélet maintenance in smart grid applications.

Using example electrical properties from American Supedctor (AMSC), simulations have been ac-
complished to develop an optimal reference for HTS cables&tproperties are used for simulation witfca
equal to 91.2K. An amplified reference is then simulated fdistance up to 600 m using ADS transmission
simulation software with a fault at 400 m. This fault is a slation of localized coolant loss for a 1 m segment
of cable accomplished by changing the impedance of this eagaf cable with respect to the remaining cable
segment.

The simulated injection of optimal reference is shown inurgy18(a) with the reflection at the cable end
point (600m). The cross correlation of the reference sigvitil the reflected signal is also shown in Figure
18(b) from which the coolant loss faulted segment can be aedf0m. The designed and simulated optimal
reference for HTS cable in transmission lengths of 600m lshioel 1.77MHz. Further research is proposed for
HTS cable while | will be studying at Yonsei University, Kargn the spring of 2013 with proposals to be made
to the Korea Electric Power Research Institute (KEPRI) aocel Electric Power Corporation (KEPCO).
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Figure 17: High voltage filter and partial discharge ger@rahd measurement unit
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Figure 18: (a) Optimal reference signal specified for HTSeabnulating a 600m segment faulted at 400m
and (b) Cross correlation peaks for increasing resistaaltees used as an indication of cable health.

7 Conclusions

The proposed research provides a path toward comprehemmsidition based maintenance for complex sys-
tems with interacting electrical and mechanical systemsh s motors, generators, wind turbine generators,
and rotorcraft or aerospace systems. A Rényi entropy bamgdal information metric is proposed for heli-
copter and general vibration-based health monitoring tighexpress goal of monitoring transient variations
in signal components and creating statistic conditiondattirs based on these changes. Research on Joint
Time-Frequency Domain Reflectometry in low voltage instemtation cable samples provided by the Interna-
tional Atomic Energy Agency will help establish baselines & variety of cables from manufacturers in the
United States and other countries towards a goal of perfecmaapability assessment in nuclear power plant
recertification while we will continue to test the high vataviability of the JTFDR method against verifying
methods of high voltage test. As verification methods arectmdy, further assessment will be made into the
use of JTFDR in measurement of partial discharge. This restrdctive reflectometry method has also been
proposed to identify and locate localized impedance defemtised by changes in temperature in coolant filled
high temperature superconducting (HTS) cable. These peape@orks sum to the creation of a viable and prac-
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tical implementation of non-invasive and non-destruatdfeectometry-based cable health assessment. As CBM
practices are implemented in both electrical cable systemdsnechanical systems using similar time-frequency
principles and metrics, a set of universal practices careleldped for health assessment.
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10 Graduate Coursework

Dept Prefix | Course Number Course Title Credit Hours Grade
Undergrad
MATH 544 Linear Algebra 3 A
ELCT 580 Audio Engineering 3 A
ELCT 564 RF Circuit Design for Wireless 3 A
Communications
ELCT 572 Power Electronics 3 A
Graduate
ELCT 551 Power System Design And 3 A
Analysis
ELCT 563 Semiconductor Electronic Devices 3 B
ELCT 772 Advanced Power Electronics 3 B
ELCT 891B Topic/Power and Energy Systems 3 A
ELCT 751 Advanced Power Systems Analysis 3 A
ELCT 837 Modern Control Theory 3 B
MATH 544 Wavelets 3 A
ELCT 752 Power Sys Grnd/Transients 3 A
ELCT 891A Grid Connected Power Electronigs 3 B+
ELCT 883 Power System Stability and 3 A
Control
ELCT 891Q Advanced Digital Signal 3 A
Processing
ELCT 891D Digital Controls 3 B
ELCT 797 Research 9 S
ELCT 899 Dissertation Preparation 3
Cumulative GPA
45 3.591
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