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ABSTRACT 

Improper and unnecessary maintenance actions can result in a waste of resources, time, and money. Training and 

education play a vital role in maintenance implementation and can be used to prevent improper maintenance 

procedures. The Center for Predictive Maintenance (CPM) has developed a demonstration framework and tool that 

can be used to educate and train users extending from maintainers to leadership on the maintenance process from 

fault to maintenance action. This demonstration tool will walk an audience through the maintenance process starting 

with the collection of sensor and historical data, and how it is then integrated to create predictive models. Finally, 

the data and results are displayed in unique dashboards that provide personnel with the information needed to make 

educated decisions on the condition and maintenance of their system. 

 

INTRODUCTION 

 

Predictive maintenance (PM) is a maintenance process in 

which tasks are performed based on evidence of need, 

integrating reliability, availability, and maintainability 

(RAM), reliability-centered maintenance (RCM), and 

condition-based maintenance (CBM) analyses. These 

processes, technologies, and capabilities enhance the 

readiness and maintenance effectiveness of systems and 

components. PM uses a systems engineering approach to 

collect data, enable analysis, and support the decision-

making processes. The main objectives of PM are to reduce 

maintenance burden, prevent unnecessary maintenance 

actions, increase safety, increase system readiness, refine the 

maintenance process, and ultimately improve component 

design. Analysis and predictions include, but are not limited 

to, predicting remaining useful life (RUL), determining 

failure points, assessment of component design, materials 

behavior, tribological properties, and design and 

manufacturing properties. 

An optimal maintenance practice logically starts with robust 

data collection and storage infrastructure. This enhances 

current health monitoring systems by providing controlled 

fault conditions for diagnostics development and condition 

indicator (CI) threshold level adjustment[10, 11, 12, 13]. 
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This paper focuses on the usage of these techniques in 

rotorcraft systems. A maintenance demonstration framework 

was established based on diverse data collection, statistical 

modeling, and user interfaces. These tools were utilized to 

develop a tool to help educate users and prevent unnecessary 

maintenance procedures. 

BACKGROUND 

For nearly 20 years the University of South Carolina (USC) 

has been collaborating with the South Carolina Army 

National Guard (SCARNG), Army, and DoD to help fully 

develop the needed capabilities pertaining to condition-

based maintenance (CBM) and now PM.
 
This effort has 

resulted in the CPM within the USC Department of 

Mechanical Engineering which hosts several aircraft 

component test stands in support of PM objectives. Since its 

inception, the center has strived to take on new tasks and 

responsibilities in order to satisfy the needs of defense 

aviation. Activities at the center include, but are not limited 

to, researching and testing aircraft components for the U.S. 

Army in order to increase time between overhauls, increase 

mission availability and readiness, create new diagnosis and 

prognosis algorithms in order to improve the operations of 

various aircraft (Apache (AH-64), Osprey (V-22), Black 

Hawk (UH-60) and Chinook (CH-47)), improving and/or 

creating new sensors to advance the onboard HUMS. These 

new enhancements also reduce improper and unnecessary 

maintenance tasks which can account for 33% of total 

maintenance costs. Since the US industry spends over $260 

billion each year on maintenance, improper maintenance 

results in a loss of over $85 billion annually [15]. Other 

benefits include, improved safety, increased morale, and 

eventually save lives. To enable this practice, a high priority 
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should be placed upon current sensor data as well as 

historical data including those coming from digital source 

collectors (DSC) and maintenance records. 

Sensor Data Collection 

Sensor signals are the starting points to any PM program. 

Optimal placement of the sensor on the component (gearbox, 

rotor blade, transmission, etc.) is necessary to provide the 

highest quality of collected data. The next challenge is to 

determine the rate of data collection to ensure no faults go 

undetected. After collection from the component, all data 

should be properly stored for easy readability. By properly 

implementing this framework, data originating from multiple 

sensors on the component can be integrated using tools like 

data fusion. This allows the health of the entire structure to 

be determined and monitored (Figure 1). After the health of 

the component has been determined, sensor data needs to be 

evaluated to ensure that the correct parameters are being 

collected. When integrated with historical data, the PM 

process can be used to its fullest capacity to determine items 

such as remaining useful life and the proper maintenance 

action to repair a fault. 

 

Figure 1. A PM concept based on measurement 

Historical Data Collection 

Historical data plays a critical role in PM by allowing a 

program to capture the human factor, including operational 

experience from working on the component and knowledge 

of how a component will react when a certain maintenance 

practice is performed. Historical data can come from a 

variety of different sources in the form of maintenance 

records and OEM technical manuals. Historical data can also 

include collected sensor data during previous operation 

hours. Data collected should be regularly reviewed to ensure 

that all parameters being recorded are being utilized. If 

certain parameters are deemed unnecessary, the recording 

scheme should be adjusted accordingly. Effective capturing 

of this knowledge could provide a novice maintainer access 

to the wisdom of a multi-year veteran. 

Data Integration 

Data can be integrated from multiple sources to gain a better 

understanding of how a component operates and behaves in 

the field.  Better predictions can be made by utilizing all data 

sources possible, including multiple sensor signals and 

historical data. Differing sensor signals will be processed 

through appropriate feature mapping tools and analyzed to 

create sets of CIs.  These CIs will then be integrated through 

fault and diagnosis classifiers that correspond to specific 

faults or fault classifiers for specific components (spall, 

cracks, etc.). This process is known as diagnosis fault 

classifying. These classifiers will then be fused for prognosis 

and prediction purposes: health indicators, failure modes, 

remaining useful life, etc. (Figure 2). The results from this 

data fusion will be used to 1) find the optimal combination 

of sensors to give the best results, 2) to detect new faults that 

they could not individually, and 3) educate personnel how to 

respond in the case of a sensor failure and what course of 

action to take. 

 

Figure 2. Fault detection with data fusion 

Figure 3 shows collection of sensor data from a component, 

integration with historical data, comparison with models, the 

predicted state of the component, and then how it is 

presented in a dashboard for the user to then make a decision 

based on the status of the component. 

 

Figure 3. Demonstration of data flow 
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Figure 4. A simplified predictive maintenance demonstration framework

Figure 4 shows a simplified representation of the PM 

demonstration framework which can be divided into four 

main steps. These steps include collecting and integrating 

data from a different of sources, creating models for various 

types of data analysis, predicting critical factors, presenting 

results in dashboards, and optimizing and acting based on 

the results of data analysis. 

DEMONSTRATION FRAMEWORK 

Currently, new maintainers are expected to obtain their 

knowledge about current maintenance procedures from the 

flight line while their peers may not have been properly 

trained on the subject. Personnel may also have different 

viewpoints on the status and operation of PM practices based 

on their assignment and rank. If personnel, at all levels 

including management, are not properly trained and 

educated on how to utilize new tools and technologies then 

the full benefits of using PM will not be realized. Improper 

training can result in a piece of equipment designed to 

improve readiness being considered a failure only because it 

wasn’t used properly. This lack of education could be helped 

by more tools being taught like this demonstration.  This will 

require an upfront investment, but if properly implemented, 

would have a positive long-term effect on maintenance 

culture. 

Users not only need to be trained on how to implement these 

maintenance actions but also need to be educated on it. If a 

maintainer does not fully understand the purpose of a 

requested action or how it positively impacts their 

maintenance routine, then he or she may be less likely to 

perform that action. This results in the neglect of simple 

tasks such as downloading HUMS data and sending it in for 

evaluation. Routine neglect of this action greatly hinders the 

development process of condition indicators (CIs) because 

engineers cannot validate the theoretical models on which 

they are based. Like maintainers, other groups of users may 

not be fully educated on how PM can improve their 

decision-making. Leadership can utilize this process to 

determine an aircraft’s mission profile and supply chain 

personnel can determine whether to replace a component, 

dependent on its condition, before its time before overhaul 

(TBO) [4]. 

The objective is to address these problems of training and 

education by utilizing the demonstration presented in the 

previous sections. This tool can be used as an enabler to 

promote the advancement of technology in aviation. It can 

also be used to help the Army move forward in 

implementing PM by furthering the understanding of how all 

items work together to help improve maintenance practices 

in aviation. 
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Approach 

The overall goal is to construct a demonstration based on 

this framework for educating users on the practice of PM 

from fault to maintenance actions. The development of the 

demonstration tool has been divided into three phases, each 

phase building on the phase before it.  These are: 

• Phase I – Develop and implement demonstration 

framework from fault to action on a single 

component 

• Phase II – Demonstrate signal source diversity from 

sensors or historical data by utilizing data 

integration techniques and tools 

• Phase III – Develop and implement the 

demonstration framework on a complete system 

Phase I: Phase I is the development and implementation of 

the demonstration framework on a single component, 

starting with a fault and ending with an action. For this 

purpose a component would be a single part of a system (i.e. 

gearbox, hanger bearing, driveshaft etc.). The goal of this 

phase is to establish the basic hardware and software 

fundamentals needed to demonstrate PM on a single 

component, outlined in Figure 5. In this phase, the 

component is fitted with a native sensor and tested in near 

real conditions. Sensor data is collected and integrated with 

historical sensor data from the component and compared 

against a model. This model then makes a prediction of the 

current state of the component is displayed on a dashboard. 

The necessary software is developed for data collection, 

integration, and analysis. These include a set of preliminary 

tools and algorithms that include statistical models, health 

predictions, and dashboards.  

 

 

Figure 5. Phase I data flow 

Phase II: Phase II is a demonstration of multiple faults on a 

single component by introducing a full suite of sensors and 

technologies (Figure 6). This includes exploring the viability 

of new sensors that are currently not installed on the 

component. Data integration is used to analyze the signals 

from multiple sensors to determine the overall health of the 

component. Figure 4 shows this process of combining 

information gained from different sensors to detect faults 

that they could not detect individually. Building upon Phase 

I, where a single sensor was used to make a prediction of 

component health, Phase II uses multiple sensors to 

determine possible system faults. Sensor data is collected 

and integrated with historical sensor data from the 

component. Like Phase I, this is compared against a model. 

The software developed for Phase I remains the same, with 

the exception of expanding the data collection and 

integration interface to allow for the addition of more 

sensors to the demonstration.  

 

Figure 6. Phase II data flow 

Phase III: Phase III is a development and implementation of 

the demonstration framework on a system (Figure 7). The 

definition of a system for this demonstration would be a 

drivetrain, consisting of hanger bearings, drive shafts, and 

gearboxes. This phase builds on the demonstration from 

Phase II and moves from a single component to multi-

component system. Tools developed in Phase II are used to 

apply a systems-level approach to data collection and 

analysis. Data integration, using data fusion, in this phase is 

performed at both the sensor data level and at the component 

data level in order to predict the overall health of the system 

by taking advantage of historical data. 

Figure 8 shows a representation of the demonstration setup 

consisting of an intermediate gearbox (IGB) instrumented 

with multiple sensors and a data acquisition (DAQ) system. 

The data collected by the DAQ system is transferred to a 

device that processes and pushes the data to cloud storage. 

There are various subscribers that have access to the cloud 

storage, including a server for offline analysis and backup 

storage, and different end-users for data analysis and 

decision-making. The offline analysis is performed using 

historical data to create predictive health models. A 
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statistical modeler retrieves new data and runs them against 

previously built models to detect if a fault exists. Other end 

users will be able to retrieve the data and send critical 

information to other dashboards about maintenance actions, 

fleet management, supply chain, etc. 

 

Figure 7. Phase III data flow 

 

 

Figure 8. The completed demo data accessibility 

This tool will be a multi-component system capable of 

simulating and detecting a variety of faults, providing 

logistics information, and creating maintenance decisions 

based on historical trends. The demonstration is an easy to 

use platform that demonstrates how maintenance data and 

predictions can be analyzed and applied to the strategic, 

tactical, and operational management of an aircraft. 

Ultimately, the outcomes of this demonstration are to help 

leadership, decision-makers, and users achieve their PM 

objectives. These objectives include: reducing maintenance 

burden on the solider, educating and training users on PM, 

reducing supply costs, improving safety, and changing the 

status quo of the maintenance process and culture. 

IMPLEMENTATION – PHASE I 

Demonstration Hardware 

The component chosen for the demonstration was an AH-64 

intermediate gearbox (IGB).  The IGB (Figure 9) is an 

important component of the aircraft that requires frequent 

maintenance actions. Some sensors monitoring the article 

are native to the aircraft’s IGB, including thermocouples, an 

accelerometer, and a tachometer.  The thermocouples are 

used to measure temperature and are placed in the same 

locations where they would be on the aircraft.  The 

accelerometer is used on the aircraft to measure vibration in 

a single axis and the tachometer is used to measure the 

rotational speed of the gearbox.  In order to replicate the data 

coming from a DSC the sensors used for USC’s DAQ 

system are placed in close proximity and orientation as the 

military devices. 

     
 

 

Figure 9. Picture of the IGB installed on the aircraft 

(top-left), CPM test stand (top-right), and demonstration 

(bottom) 

Additionally, a load washer was installed to accurately 

measure the amount of force being introduced on the system. 

Electrical power consumed by the demonstration is also 

monitored to ensure normal operation of the motor 

supporting the IGB (Figure 9).  This allows for the system to 

be shut down in the case of an emergency through the data 

collection interface. 

Three unique faults have been created to simulate a real-

world problem to show the user the potential utilization of 

each sensor. The effectiveness of a thermocouple is shown 

by using heat tape. This heat tape, when triggered, results in 

an increase in temperature simulating a thermal fault within 
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the gearbox. Another fault shown during the demonstration 

is a small motor with an imbalance to induce abnormal 

vibration in the component housing. This fault displays the 

capability of an accelerometer and how it can be fully 

utilized to detect an abnormality. A linear actuator was also 

installed to apply force on the input spline to simulate an 

over torque condition on the driveshaft and shows the 

effectiveness of accelerometers, amperage monitoring, and 

load cells. These three sensor signals can be used together 

through data fusion and allow the operator to exploit data 

streaming from multiple sensors in case one of them fails 

during collection. 

Data Collection and Integration 

Previously collected data,  sensor readings, are stored in a 

database located on a server. The database is periodically 

updated with new data coming from the demonstration. This 

data storage is done at a separate location from the 

demonstration, but houses all of the information collected 

and allows it to be accessed by users with the proper 

credentials. The data being collected comes in multiple 

forms from different sources. In order to integrate the data 

together, data processing tools are used including advanced 

signal processing. Security is a high priority therefore the 

information associated with this demonstration will not 

contain any sensitive information. After the data is processed 

and scrubbed of sensitive information, it is then integrated 

together using data fusion and stored in the database. 

During the demonstration, the operator collects data from the 

test stand using a DAQ with the proper modules for the 

different sensors. The data collection program has been 

written to retrieve data from the sensors and publish it to 

cloud storage. The collected data points are visualized on the 

front panel of the visual interface (VI) (Figure 10). This 

screen is similar to what an engineer might see when 

collecting data from a component that could later be 

analyzed to determine the validity of CIs and further 

improve the reliability of the component. The program also 

writes the sensor data to an output text file that can be 

accessed by other devices that have been granted permission. 

 

Figure 10. The data collection interface used for the 

demonstration 

Model and Predict 

There are different types of analysis that can be performed 

using the collected data including cost-benefit analysis, 

diagnosis and prognosis, life predictions, and failure mode 

and effects. Before starting the analysis the problem being 

solved needs to be defined. Once the problem is defined the 

type of analysis and data to be used can be assigned. 

The demonstration uses predictive modeling to assess the 

health of the component in order to diagnosis if a fault is 

occurring. For this type of analysis, models representing 

different faults were created. Figure 11 shows process for 

creating the model. Historical data containing baseline 

sensor readings and sensor readings from a component are 

collected and processed. The data is then analyzed using a 

statistical modeling program. This analysis establishes 

different models that represent the component at a baseline 

state and at the different fault states. The models are then 

stored to be used later for scoring new data. 

During the demonstration, the sensor data being collected is 

then scored against the premade models and the model that 

scores the highest is the output. The output of the program is 

the predicted fault state of the component. The newly 

created data is also stored to be used to refine the models at 

set increments.  

 

Figure 11. Data processing done by modeler 

Present 

After the analysis has been completed, the results need to be 

presented to the users. Each user will have different needs 

and can include personnel in leadership, engineers, 

maintainers, and operators. In order to address the needs of 

different users, the information displayed can be tailored to 

fit these needs. The data can also be displayed in different 

forms including dashboards and reports. To display the data 

coming from the modeler in a user friendly interface that 

everyone involved in the operation of the component can use 

a proper dashboard needs to be created (Figure 12). 

Depending on the user, this dashboard can have access to 

fleet data, temperature data, component replacement 

information, etc. The figure below shows different 

dashboard states during the demonstration. 
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Figure 12. The dashboard interface showing a normal 

state 

During the baseline (normal) portion of the demonstration, 

all indicators are green and there are no actions that need to 

be taken.  When a fault is initiated by the operator the screen 

with then transition from a normal state to an urgent 

inspection based on the incoming data. The audience can 

view the sensor readings on a graph at the bottom right-hand 

portion of the screen used to predict when a fault will occur.  

There they can see temperature, vibration, rpm, and other 

valuable readings. When a measurement trends towards a 

threshold, the component health will change and the status 

of the gearbox will be adjusted. 

Optimize and Act 

After a user is presented with the results from the analysis, 

they will need to use this information to perform an action as 

suggested by leadership. These actions can include 

maintenance recommendations, report creation, and work-

order generation. These actions need to be backed up with 

reliable data and analysis so leadership can feel confident 

with their decisions. Historical data, combined with the data 

currently coming from the component in the demonstration, 

can be easily displayed so that those in a leadership role can 

make timely decisions about a faulted component. 

To create a maintenance action for a crew chief or 

maintainer, a work order needs to be completed to notify the 

user that a component needs to be changed out at a desired 

interval. Once it has been determined by the modeler that a 

work order is be created, a program will fill in the proper 

fields and send it to the designated maintainer. 

HIGHLIGHTS – PHASE I 

Since its creation, this demonstration has been shown to 

different groups of people who would like to gain a greater 

understanding of PM. Breaking the stigma that PM is 

nothing more than a sensor collecting data and educating 

personnel properly from the beginning of life to the end of 

life for a component can result in a cost-avoidance on Army 

rotorcraft. This benefit will be seen if implemented with the 

proper technology along with proper use by soldiers that 

understand the power of the system and how to leverage the 

data coming from it. Through the utilization of data by 

properly collecting it, integration with historical data, 

inputting it into predictive models, and displaying these 

actions in user friendly dashboards, this educational tool can 

ultimately help progress the maintenance culture in Army 

aviation to PM. 

CONCLUSIONS AND FUTURE WORK 

There is still more work to be done on this demonstration in 

order to complete all three phases.  In its current state, only 

Phase I and some portions of Phase II have been completed.  

To finish Phase II, a wider variety of sensors need to be 

installed to allow data integration between signals. Phase III 

would take this framework one step further and apply it to 

multiple components to show users its implementation at a 

systems-level.  A dashboard for this phase can be seen below 

in Figure 13. The different stages are structured by no fault 

present as green, 10-100 hours till failure as yellow, and 10 

hours or less left to failure as red.  

 

Figure 13. A screen showing the health of multiple 

components on the airframe 

These distinctions are based on the Aviation Engineering 

Directorate’s Propulsion Division assigned color codes [2]. 

The predictions made in this stage will become more refined 

over time because of the various types of data being used to 

create the models.  The more data that is input into the 

system, the more reliable the level and threshold between 

predicted states can become. The dashboard for Phase III 

would include another level above the interface seen in 

Figure 12.  In Figure 13, all components on the aircraft are 
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displayed and the user could click on the individual item to 

obtain further information about a faulted article. Further 

phases show an additional layer up displaying the fleet view 

to inform leadership which aircraft are available to conduct 

certain missions. 
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