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ABSTRACT 

Condition-based maintenance (CBM) is a valuable tool to any industry looking to improve productivity, product 

quality and overall effectiveness of critical systems. Based on the University of South Carolina’s (USC) experience 

and research partnerships, USC’s vision of a smart predictive system involves a comprehensive integrated 

methodology that involves a two prong approach: i) CBM analysis involving gathering experimental data from 

mechanical systems on test stands; ii) theoretical analysis involving modeling and simulation. A theoretical 

framework based on component, subsystem, and integrated system models is presented to understand the physics of 

the failure modes. The two approaches provide complementary information that can be used to enhance CBM. The 

correlation of these two data fusion approaches will allow the implementation of predictive tools to capture the 

condition of a component, subsystem and system to maximize useful life and minimize cost and risk. In addition, the 

predictive tools can be used to inform the next generation of system design. 

 

 

INTRODUCTION  

Condition-based maintenance (CBM) is a valuable 

instrument in improving productivity, product quality and 

overall effectiveness of critical systems for any industry. 

Since 1998 the University of South Carolina (USC) and the 

South Carolina Army National Guard have participated in a 

number of important projects that were directed at reducing 

the Army aviation costs and increasing operational readiness 

(Ref. 1-9). This joint effort succeeded in higher operational 

readiness using fewer, more capable resources, provided 

commanders with relevant maintenance-based readiness 

information at every level, demonstrated millions of dollars 

in operational costs savings, and shifted the paradigm from 

preventative and reactive practices to proactive analytical 

maintenance processes, now commonly known as CBM.  

 

The transition to CBM requires a set of maintenance 

processes and capabilities derived primarily from real-time 
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assessment of component, subsystem or system condition 

obtained from embedded sensors and external test and 

measurements. Even more critical, the transition to CBM 

involves the construction of data-centric, platform-operating 

capabilities built around robust algorithms. This will give 

soldiers in the field, support analysts, and engineers the 

ability to simultaneously, and in real-time, translate aircraft 

sensor data and proactively respond to maintenance needs 

based on the actual aircraft condition.  

 

USC has supported the U.S. Army by conducting research to 

enable timely and cost-effective aircraft maintenance 

program enhancements. Research emphasis has been to 

collect and analyze data and to formulate requirements 

assisting in the transition toward CBM. The research 

program at USC seeks to deliver tangible results which 

directly contribute to CBM efforts and objectives such as: 

link and integrate maintenance management data with on-

board sensor data and test metrics, and to quantify the 

importance of each data field relative to CBM; understand 

the physics and the root causes of faults of components, 

subsystems and systems; explore the development of models 

for early detection of incipient faults; develop models to 
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predict remaining life of components, subsystems and 

systems. 

 

USC has continued to refine its CBM roadmap and vision 

and has arrived at what is now referred to as a smart 

predictive system. This vision incorporates the integration of 

mechanical systems with that of simulation suites to produce 

a set of predictive tools that will enable the pro-active 

planning of future maintenance schedules and actions 

needed to maximize component life while minimizing risk 

and cost. It will also inform the design of future components 

by eliminating the root causes found in current systems. This 

integration of mechanical systems and simulation suites will 

transform CBM into a smart predictive system. 

.  

BACKGROUND 

Condition-based maintenance is an information-driven 

process used to better maintain systems. CBM uses data 

from the actual operating condition of system components to 

determine maintenance needs. This is accomplished by 

optimizing system operation by maximizing the interval 

between repairs and minimizing the frequency and costs of 

unscheduled repairs and downtime. This allows the 

transformation from reactive maintenance procedures to 

proactive ones. CBM also advances the design of new and/or 

existing components and subsystems. 

  

Two typical maintenance strategies are run-to-failure 

management and preventive maintenance practices. Run-to-

failure management entails waiting to perform maintenance 

actions after the component has failed. An example would 

be a stereotypical teenager with their first car who chooses 

to ignore maintenance needs until something breaks down 

that makes the car undriveable. While possibly saving 

money in the short-term, it always turns out to be more 

expensive in the long-term with higher repair costs and 

longer downtimes. Preventive maintenance is a time-based 

or a usage-based scheduled maintenance. Engine oil is a 

good example of both time-based and usage-based since 

recommendations for scheduled maintenance is based on 

either the time since the last oil change (time-based) or 

mileage (usage-based); whichever event occurs first. 

Preventive maintenance can be more costly if the scheduled 

maintenance takes place before it is actually needed 

resulting in additional unnecessary maintenance actions and 

costs. 

 

RATIONALE FOR A CBM SYSTEM 

(PRODUCT) 

CBM is typically viewed only as a maintenance 

management tool used to prevent unscheduled downtime and 

catastrophic failures. However, it can also be utilized as a 

system optimization tool. CBM can be used to significantly 

improve maintenance procedures and practices for all critical 

systems. Moreover, it can act as a reliability improvement 

tool to measure deviations from nominal operating 

parameters allowing personnel to plan and schedule minor 

modifications to prevent further degradation of the 

component or system thus eliminating the need for major 

repairs and downtime in the future. Used correctly, CBM 

can eliminate unnecessary downtime, both scheduled and 

unscheduled; eliminate unnecessary corrective and 

preventive maintenance actions; extend the useful life of 

critical systems; and reduce the total life-cycle costs of these 

systems (Ref. 10). 

 

IMPLEMENTING CONDITION-BASED 

MAINTENANCE METHODOLOGY 

CBM is dependent on the collection of sensor data, and the 

processing, analysis and correlation of that data to 

maintenance actions. The initial investigation phase involves 

gathering historical data from maintenance records and 

Health Usage Monitoring System (HUMS) units to correlate 

the two disparate data sources. Maintenance records contain 

qualitative data such as maintainers’ observations of 

components, diagnosis of component health, any necessary 

corrective actions taken and (sometimes) the degree of 

success of these maintenance actions. This information is 

unique in nature and is not measureable by any sensor. 

HUMS contain quantitative data such as condition/health 

indicator values calculated from sensor readings taken 

during flight. Combining qualitative and quantitative data 

together into an analytical form for data mining is a non-

trivial process. Manual processing would be time-consuming 

and cost-prohibitive for any large data source and be 

susceptible to transcription errors. Tools such as natural 

language processing are needed to process and transform 

maintenance records into a data format that can easily be 

processed by data mining algorithms (Ref. 11). This will 

enable the development of relationships between the 

condition/health indicators and maintenance actions to help 

identify failure modes, symptoms of known faults and root 

causes (Figure 1 - background investigation stage). 

 

Smart Predictive System 

USC’s vision of integrating mechanical systems with that of 

simulation suites leads to the creation of a comprehensive 

integrated methodology that utilizes a smart suite of sensing, 

control and data fusion for the next generation of A Smart 

Predictive System or “CBM+” (Figure 2). It involves a two 

prong approach including i) CBM analysis involving 

gathering experimental data from mechanical systems on test 

stands; ii) theoretical analysis involving modeling and 

simulation. The following sections discuss the two 

approaches in more detail. 
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Figure 2. USC’s vision of integrating mechanical systems with that of simulation suites
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CBM Analysis 

The testing phase is an iterative process that involves using 

the failure modes identified from the initial investigation 

phase. The failure modes are used to create new or verify 

existing condition/health indicator signatures. Testing is 

used, in turn, to characterize or refine these CIs. The testing 

of faulted versus unfaulted components allows the definition 

of boundaries separating nominal operating condition with 

abnormal conditions (Figure 1 - CBM testing stage). 

Moreover, fault testing allows validation and refinement of 

existing CIs. More specifically, seeded fault testing allows 

the examination of possible fault progression and severity in 

a controlled reproducible environment. Test data from fault 

testing and failures, along with the qualitative data gained 

from inspections or tear down analysis is used to correlate 

the CIs with faults and degree of severity for diagnostic 

purposes. This enhances understanding of the underlying 

problem and relates CIs to physical parameters (e.g. bearing 

failure). This iterative process produces fault-correlated 

condition indicators based on historical knowledge and 

failure modes. 

 

In addition, during the CI development phase, the CIs can in 

turn be combined using data fusion/signal processing 

techniques to create an overall integrated condition indicator 

(Figure 2 – Condition Indicators block). The benefits include 

a potentially richer source of information from an integrated 

sensor suite that a single sensor/condition indicator could not 

provide by itself. This data-fused CI would lead to a health 

indicator based on an integrated sensor suite.  

 

The aeronautical design standard recommends that the 

seeding of faults concentrate on the actual failure modes 

regardless of the root cause. Test articles should be chosen 

based solely on the expected failure modes (Ref. 12). 

However, determining the root cause of failures can prove 

difficult. The actual failure modes can be informed from 

system models and simulations to address this deficiency by 

examining both experimental and model based simulation of 

root causes and failure modes.  

 

Theoretical Analysis 

To monitor the health of components and detect failures 

requires an understanding of the physics of the failure 

mechanisms. This understanding requires that data collected 

from the system be correlated with specific component 

condition-based usage. Historically, these correlations were 

developed based on costly instrumentation, physical tests 

and empirical relationships.  

 

Using a theoretical framework based on component, 

subsystem, and integrated system models can be used to 

understand the physics of the failure modes (Figure 3). This 

helps determine root causes of failure, the type of sensor to 

measure data and where to strategically place the sensor. 

The data from the model’s responses from energy inputs is 

used for the algorithm development of condition indicators 

that are sensitive to specific faults and failure modes. Model 

inputs can be velocity, forces, heat source, cracks etc. The 

model’s response would be in terms of stress, strain, 

temperature etc. The simulated system models would be 

used for data fusion where virtual sensors are used to sense 

and monitor system health in cases where a single sensor is 

not able to provide adequate information (Figure 2 – 

Algorithms’ Response block). The models would 

encapsulate the dynamic, acoustic, material (stress, strain), 

and thermal response of component and subsystem models 

and relate them to the overall system model (Figure 2 – 

Models block). The utilization of component, subsystem and 

system models allows for the identification and classification 

of fault and failure mechanisms that might not be possible or 

practical to create in a field or test environment.  

 

The integrated system model will be efficient through its use 

of data fusion and signal processing through the creation of 
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Figure 3. Theoretical framework based on component, subsystem, and integrated system models using a main 

transmission as an example. 
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additional CIs without the need for additional sensors. In 

addition, data fusion of different simulation models would 

take into account potential model interaction yielding a 

richer source of information than a single model by itself. 

An integrated model can ascertain the effect that a fault has 

on the functionality of the various elements of the system. 

  

This integrated system model will greatly accelerate the 

development of new condition indicators and algorithms 

while also helping to support and inform testing of the 

system (Figure 2 – Double Arrow connecting two analyses 

section). Also, assessing the CBM data to determine gaps in 

the data can provide insight into any additional modeling 

and simulation required to support algorithm development. 

Data gaps can be defined as missing information or data that, 

if existed, would significantly increase knowledge about the 

algorithm. This is where models and simulations can play an 

important role by filling in data gaps in testing data. 

Simulations will allow us to track the virtual condition 

indicators values as faults progress with time. The reliability 

and robustness of the modeling and simulation capability of 

the proposed algorithm can be demonstrated with sensor 

data from a test stand.  

 

In summary, the models and simulations can be used to 

determine strategic sensor resource utilization, develop new 

condition indicators, and capture the health of the complete 

system.  

 

Predictive Tools 

CIs from the simulation models can be correlated with 

existing CIs and sensor data. With the implementation of 

data fusion of CBM and theoretical analysis (Figure 2 – 

Predictive Tools section), predictive tools can be developed 

based on the current status of component and fault 

progression models from the analyses. Such tools can be 

used for predicting remaining useful life (RUL), predicting 

current and future health status of components under various 

flight conditions and to inform the design of future 

components by eliminating the root causes found in current 

systems. Prognosticating RUL will enable the pro-active 

planning of future maintenance schedules and actions 

needed to maximize component life while minimizing risk 

and cost. The data fusions of these integrated analyses are 

used to transform CBM into a smart predictive system or 

CBM+.  

 

University of South Carolina 

USC’s implementation of CBM has resulted in a reduced 

maintenance burden on personnel. This was achieved 

through a reduction in both corrective maintenance actions 

and required number of inspections and/or overhauls. 

Consequently, this increased system availability and 

operational readiness allows for a higher throughput. Supply 

chain efficiency was increased by decreasing the need to 

stock a large variety and/or number of parts since there were 

fewer unscheduled repairs. Future required maintenance 

actions will be predictable. Overall, the aforementioned 

items reduced operations and support costs while 

maintaining or enhancing safety. This leads to increased 

morale from the end user and increased confidence in the 

system (Figure 1 – Outcomes of CBM Implementation 

stage). These methodologies and techniques by themselves 

are necessary but not sufficient for an effective CBM 

program. It also requires extensive training and dedicated 

personnel with the support of management. 

 

Several cases of value added have been seen from the USC’s 

implementation of CBM. One case study is the cost-benefit 

analysis of an on-board vibration monitoring system that 

reduced costs of maintenance test flights by 80% over an 8-

year span. This cost-benefit analysis also helped to 

significantly reduce the incidence of unscheduled 

maintenance actions as a percentage of total maintenance 

actions (Ref. 13). Another case study is the component 

testing of the AH-64 tail rotor gearbox assembly which was 

frequently leaking grease (Ref. 14). Through seeded fault 

testing, USC managed to change the maintenance schedule 

of the tail rotor gearbox to reduce operation and support 

costs. As a result, several new maintenance awareness 

releases were issued changing future maintenance 

procedures 

 

CONCLUDING REMARKS 

USC’s vision of a smart predictive system involves the 

integration of CBM analysis and theoretical analysis with 

the use of data fusion. Models and simulations can be used 

to determine strategic sensor resource utilization, develop 

new condition indicators, and capture the health of the 

complete system. Data fusion of CIs and models creates a 

richer source of information from an integrated sensor suite 

and system model that a single CI or simulation could not 

provide by itself. The correlation of these two data-fused 

approaches will allow the implementation of predictive tools 

to capture the condition of a component, subsystem and 

system to maximize useful life and minimize cost and risk. 

Moreover, predictive tools can be used to inform the next 

generation of system design. 
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