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Abstract: This paper discusses modifications made to the Natural Language Toolkit, a well-known 
natural language processing software package, to achieve improved information extraction 
results when applied to helicopter maintenance records.  In doing so, it will also attempt to 
elaborate the components of a tool under development to allow for machine analysis of the free-
text fields of V-22 Osprey maintenance records.  The authors have found that by adapting 
existing natural language processing software to suit peculiarities of the language found in 
maintenance records, substantive improvements can be made in the accuracy of information 
extraction.  In particular, by modifying an existing text pre-processor to 1) take in multiple-
sentence inputs, 2) treat all code tokens as the same, and 3) ignore distinctions in punctuation, 
part-of-speech tagging accuracy has improved from 92.49% to 96.59%; subsequently, entity 
chunking precision has improved from 91.5% to 92.3%. 
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Introduction 

Condition-Based Maintenance (CBM), the practice of 
using vibration data, engine oil debris measurements, 
and other potential indicators of the health of 
complex machinery as guides in determining 
maintenance scheduling and procedures, 
distinguishes itself by its reliance on immense 
amounts of data both to study and understand the 
significance of different indicators as well as to collect 
accurate and meaningful information relevant to 
those indicators.  In many cases, this data exists in 
the form of digital signals collected by sensors; in 
other cases, however, there is a large store of 
potentially valuable data in the form of hand-entered 
text.  For the most part, the size of text archives, and 
the huge labor costs of going through them record by 
record, render such data sources entirely inaccessible 
to all but the most determined (and well-heeled) of 
institutions.  Techniques of natural language 
processing (NLP), however, offer potential avenues 
into such data sources using machine processing to 

extract relevant information in a timely and cost-
effective manner. 

The Condition-Based Maintenance Research 
center at the University of South Carolina is currently 
developing a tool for the V-22 Osprey project 
management team that will allow for machine 
analysis of free-text fields from a large corpus of the 
aircraft’s maintenance records.  This work developed 
from a similar tool developed at USC to perform 
information extraction from maintenance records of 
a fleet of US Army Apache helicopters, and which 
achieved promising results by using “off the shelf” 
NLP software packages [1].  The focus of this 
discussion is a group of modifications made to that 
software in an effort to adapt it to the awkward 
language that is often used in maintenance records. 

 Figure 1 shows a graphical outline of the 
evolution of USC’s efforts related to the V-22 project, 
including completed components (in green), 
discarded ideas that shaped the original design (in 
obfuscated grey), components currently under 
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development (in blue), and ideas for where the 
project might head in the future.  The remainder of 
this paper will follow a similar outline: it looks first at 
the reasons for which textual analysis of maintenance 
records is a project worth pursuing for the V-22 
project managers; it then gives an overview of the 
data and its characteristics that complicate normal 
NLP techniques; it then presents USC’s current 
information extraction tool in its component stages – 
text pre-processor, part-of-speech tagger, and entity 
chunker – in the context of what modifications have 
been made to the tool and what results these have 
returned; finally, it concludes with a brief overview of 
where USC sees the project going in the immediate 
future. 

Motivation for Examining Text Data 

On a general level, maintenance records contain 
maintainers’ observations of problems as they occur 
on an aircraft, symptoms associated with these 

problems, actions taken to correct the problems, and 
(sometimes) the degree of success of these actions; 
they also contain observations from when there are 
no problems reported, such as their notes made 
during a regular inspection.  Relative to other sources 
and types of information able to be tapped for CBM 
research, this information is unique in nature, not 
only because it comes from a human source, but also 
because in many cases it is not channeled through a 
specific medium, measuring a specific indicator, 
drawn at a specific time.  That is, a maintainer is able 
to record whatever draws his or her attention and 
seems, by his/her judgment, to be relevant.  The 
information in maintenance records, then, has the 
potential to add a dimension to CBM data that digital 
sensor data cannot. 

 Used by itself or in conjunction with sensor 
data, maintenance record information can be 
exploited to draw strong connections between what 
is observable to the human eye and what is 

Figure 1: Proposed context of NLP Tools and results. 
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happening in the interior of an aircraft.  From there, it 
can be used to identify patterns involving problems 
and maintenance actions, or help to augment 
troubleshooting techniques and guidelines available 
to the maintainers.  Furthermore, the algorithms that 
process sensor data can be refined given the 
perspective of the maintainers.  Nonetheless, all of 
these potential applications of this important source 
of information are contingent upon the ability to 
organize and store the information as data in 
electronic format, and to query it easily and reliably 
by machine. 

 Information extraction (IE) is a subset of NLP 
techniques developed to isolate meaningful data 
pieces from unstructured text sources.  By far the 
majority of information extraction research has been 
done on standard English texts, such as news articles 
or literary texts.  What work has been done on 
shorthand-style language has focused on medical 
records [2-5].  There has been very little research 
done in the domain of maintenance records.  Thus, 
for the most part, the task of rendering free-text 
maintenance record entries into machine-utilizable 
CBM data remains undone. 

Raw Data and the Task at Hand 

The data that serve as the basis of this discussion are 
XML exports of past Maintenance Action Form (MAF) 
records extracted from the Decision Knowledge 
Programming for Logistics Analysis and Technical 
Evaluation (DECKPLATE) system, the NAVAIR data 
warehouse for aircraft maintenance, flight, and usage 
data.  Every time a maintainer does work on an 
aircraft, whether  it be for repair or for inspection, 
this action must be documented with a complete 
MAF.  There is considerable data in these MAFs that 
is in structured form (either selected from drop-down 
lists or, more likely, entered automatically by the 
information system).  Structured data presents no 
complications for machine processing, since it is all 
regular in form and content.  Yet a MAF also contains 
two fields for the maintainer to note down 1) the 
problem encountered and 2) the action taken to fix 
the problem, in unstructured text.  The field for the 
problem description is labelled “descrepnarr;” the 
field for the corrective action description “corract.”  

USC’s data is 82 XML files, each representing 
anywhere from two weeks’ to two months’ worth of 
MAF records.  The total number of records in these 
files is 414,893, of which 385,680, or %92.96 of the 
total records, contain corract and descrepnarr fields.  
Since this project is concerned with the corract fields 
specifically, this paper will pay more attention to 
these. 

With respect to MAF records, the intent of 
the V-22 team is to be able to match a corrective 
action recorded in a record with a corrective action 
recommended in the electronic maintenance manual 
in order to determine to what extent the work 
actually being done on an aircraft aligns with what is 
called for in the maintenance documentation.  The 
work of correlating one piece of text to another can 
be quite complex.  It should come as no surprise that 
the technique of simply matching strings1 will yield 
very unsatisfactory results – rare are the occasions 
when the same meaning is expressed in exactly the 
same combination of words!  A more promising 
approach is IE, which identifies meaningful sequences 
of tokens, then determines a linguistic relationship 
between them.  By comparing, for example, a noun 
phrase and verb phrase from one string to a noun 
phrase and verb phrase from another string, the 
working hypothesis is that there is a better likelihood 
of drawing a positive and accurate correlation 
between the two.  From the beginning, USC’s project 
with maintenance records has been geared toward 
IE. 

The tools used have been primarily from the 
Natural Language Toolkit (NLTK) package, an open-
source set of software freely available for download 
and study.  The NLTK is written in Python, a 
programming language that lends itself well to text 
processing because of the built-in ease of handling 
words as entities that it provides; a Python 

                                                           
1
 A bit on terminology: a character is any letter, space, 

punctuation mark, etc. that can be individuated as a basic 
linguistic symbol.  A string is a series of characters taken 
together as a grouping: strings can be anything from single 
letters, to words, to sentences, to multiple paragraphs.  A 
token is the building block of a sentence; usually, ‘token’ is 
synonymous with ‘word,’ but there are many possible 
exceptions to this rule. 
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programmer can more naturally issue instructions to 
the computer to view textual data in much the same 
way that a human reader views it, circumventing 
many of the contortions needed for processing text 
data in a language such as C. 

At the outset, USC’s objective was to remain 
domain-independent; that is, to develop a tool that 
could be applied to any sort of input data – not 
specifically maintenance record data.  Thus, every 
effort was made not to alter any of the original NLTK 
tools to suit maintenance texts specifically.  However, 
there are substantial differences in the nature of the 
language used in maintenance records and the 
language for which the NLTK tools were written.  An 
exact characterization of the vocabulary and style in 
which a corract string is composed is elusive; hence 
so is a comprehensive set of rules for parsing and 
interpreting any given string.  In maintenance record 
data, 1) critical words are often abbreviated or 
misspelled, eg. “PLOACES” or “PRGB;” 2) non-critical 
words are often omitted, and words run together, eg. 
“CONSUMABLESRECIEVED;” 3) confusing lexica that 
thwart the use of standard English dictionaries for 
parsing, eg. “TROUBLESHOT L ABCV FADEC A TO BAD 
VALVE IAW IETMS 7325;” 4) frequently abbreviated 
words and use of acronyms, eg. “R L/H NLG TIRE 
ASSY. IAW SSS 3240 ATAF APAF AREA FOD FREE;” 5) a 
great deal of inconsistency in the use of abbreviations 
and acronyms, eg. “LEFT HAND,” “LEFTHAND,” 
“LEFT,” “L/H,” “LH,” and “L” are all used 
interchangeably from one record to another.  The 
NLTK (as well as all other readily-available language 
processing tools) is written to handle standard, 
edited, grammatically-correct English input.  
Consequently, the results of running some NLTK tools 
on the V-22 data are not as good as they would be 
when applied to standard English texts -- a number of 
the difficulties encountered during USC’s initial work 
were related not to the difficulty of applying NLTK’s 
toolset, but rather to the incompatibility of this 
toolset and the data at hand. 

Text Pre-Processor 

Presented with a text file, a computer only sees a 
single string of characters, including spaces and 
newline characters.  A pre-requisite step of IE is to 

break this single string into segments that can be 
processed individually, in a fashion similar to the way 
in which a human reader would.  Hence, pre-
processing is the conversion of a collection of digital 
characters into a series of items that can be 
processed as language.  Most of pre-processing is the 
individuation of words and punctuation called 
‘tokenizing,’ though there are other features that can 
be added to a pre-processor. 

 The native NLTK tokenizer takes as input a 
single sentence, which it first splits around white 
space.  Next, each resulting token is subjected to 
further processing.  Any tokens are broken around 
punctuation marks, excepting periods which, since 
the tokenizer is only accepting single sentences, are 
all assumed to have significance as abbreviation 
points or decimal points.  Also excepted is the ‘/’ 
symbol to allow for occurrences such as ‘w/in.’  
Significantly, contractions such as “won’t,” “pilot’s,” 
or “they’ll” are broken around the apostrophe.  The 
tokenizer then returns a list of tokens -- a structure in 
which each word, punctuation mark, symbol, or 
contraction piece which was separated from the 
others is an element by itself. 

There are several features of the native NLTK 
tokenizer that were considered for modification to 
better fit the V-22 data:  

1) The NLTK native tokenizer was made to 
break up tokens around hyphens; for most English 
texts this is sensible, since most often an analysis is 
more concerned with what is“blue” and “green” than 
with what is “blue-green.”  In the V-22 maintenance 
data, though, hyphens frequently occur in the middle 
of entities that should be processed as individual 
tokens.  These include part codes such as as “901-
060-857-114” and references to outside manuals 
such as “NA16-30PRQ7-2” or “4270NWA57-01.”  For 
example, the native NLTK tokenizer would break 
“NA13-1-6.1-1” into seven tokens: “NA13,” “-,” “1,” “-
,” “6.1,” “-,” and “1.”  Consequently, the POS-tagger 
and named entity chunker (IE steps that follow pre-
processing) would have to process seven tokens 
rather than just one.  USC’s hypothesis was that 
changing this standard behavior of the NLTK pre-
processor could reduce the number of tokens to 
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process in later steps, reducing the statistical 
variation in tokens and hence improving IE accuracy. 

2) The NLTK tokenizer does not tokenize any 
arbitrarily large sequence of characters; it only 
tokenizes one sentence at a time.  Thus, before text 
can be tokenized it must first be broken into 
individual sentences (“sentence tokenizing” in NLTK’s 
terminology), which NLTK does simply by finding 
terminating characters such as question marks and 
exclamation points.  Periods present the only 
significant difficulty in this process, since the same 
character can also be used to abbreviate a word 
(“Mr., Mrs.”), mark decimal places (“$10.91”), or 
construct ellipses (“...”).  Each sentence is then fed to 
the tokenizer and is converted into a series of words 
and punctuation. 

One reason NLTK does this is to preserve the 
meaning of punctuation.  In the natural English for 
which the NLTK was written, periods, colons, 
semicolons, and commas all have specific uses and 
meanings; in maintenance data, however, 
punctuation is often used interchangeably -- these 
marks all generally serve to separate one complete 
idea from another.  USC’s second hypothesis was that 
by no longer giving sentence-ending periods a 
functional role different from that of semicolons, 
colons, or even commas, statistical variation of input 
tokens could be further reduced.  As an added 
benefit, the step of sentence tokenizing required by 
the NLTK tokenizer could be obviated. 

3) For standard language processing, every 

word has a particular meaning; the perceptible 
difference between two tokens such as “read” and 
“lead” is slight (one letter).  However, it is a 
difference that has enormous consequences for the 
results of information extraction and must at all costs 
be preserved.  On the other hand, in processing 
maintenance records, there is no semantic difference 
between two manual references such as “NA16-
30PRQ7-2” and “4270NWA57-01.”  For the purposes 
of information extraction, until it comes time to 
display extracted data items to the user, these can be 
treated as one and the same without any loss of 
efficacity.  USC’s third hypothesis was that by treating 
any tokens that act like code references as the same 
token, statistical variation of input tokens could be 
reduced further. 

The ideas behind these three hypotheses 
were implemented with changes made directly to the 
NLTK tokenizer code and through the added step of a 
token “sterilizer.”  This latter takes in a series of 
tokens and outputs the same series with any 
punctuation mark replaced by ‘<punc>’ and any 
token containing numerals replaced by ‘<code>’.  
Sentence-ending periods are the only punctuation 
mark that were left intact.  Periods used inside 
numeric tokens (“1.23 psi”) and as abbreviating 
marks (“a.c.”) were not distinguished from their 
context.  As an example, the string “ED/W IAFC-0044; 
INCORP OF NACELLE COOLER BLOWER PAN 
REINFORCEMENT MOD.,” after tokenization and 
sterilization, is shown in Table 1. 

Consequent to the evident changes made to 

Original Token 
ED/W 
IAFC-0044 
; 
INCORP 
OF 
NACELLE 
COOLER 
BLOWER 
PAN 
REINFORCEMENT 
MOD 
. 

Sterilized Token 
ED/W 
<code> 
<punc> 
INCORP 
OF 
NACELLE 
COOLER 
BLOWER 
PAN 
REINFORCEMENT 
MOD 
. 

  

Table 1: example text tokenized and sterilized 
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the tokens themselves, token sterilization also 
changes the demographics of the tokens being 
processed.  The vocabulary of a collection of text data 
is the number of distinct tokens encountered; this 
number can be divided by the total number of tokens 
to give a measure of the variety of tokens used 
throughout a collection.  The total number of tokens 
counted in the data’s corract strings is 6,327,420.  
The vocabulary of the corract strings before 
sterilization is 110,141; after sterilization, this figure 
becomes 26,240.  Thus the variation in tokens as 
measured by vocabulary / total tokens encountered 
goes from 0.017407 to 0.004147 -- a reduction by a 
factor of over 4. 

Part-of-Speech Tagger 

After the tokens in a record have been individuated 
comes the task of selecting those of interest in 
analysis.  One possible method would be, for 
example, to pick out all nouns.  However, there are 
several complexities of English that make computer 
processing of natural language difficult, and this task 
in particular inefficient.  One such complexity is the 
way in which a same word can have multiple 
meanings depending on context.  Thus, to identify 
the word ‘pilot’ has limited use, since it isn’t clear if 
that instance of ‘pilot’ occurs as a noun or as a verb, 
or even an adjective.  Part-of-Speech (POS) taggers 

can reduce this area of doubt. 

While there are a number of tagging 
algorithms that have been developed, the ones best 
suited to this context are N-gram tagging algorithms.  
An N-gram tagger builds a statistical model from 
hand-tagged training data by examining the tokens 
that appear before and after a given token and 
judging the most likely tag based on what token 
precedes and follows it, as well as what were the 
parts of speech of the preceding and succeeding 
tokens.  This method is advantageous over some 
other, more sophisticated methods because very 
often tokens appear in the test data that were not 
encountered in the training data; rather than grind to 
a halt, an N-gram tagger can easily pass responsibility 
for tagging an unknown token to a more 
generalizable tagger.  Such a series of POS taggers, 
aligned from more to less refined, can be chained 
together in a “back-off” system.  A higher n N-gram 
tagger has the advantage of bringing more 
information to its tag decision; however, the scope of 
what it can recognize and tag with confidence also 
becomes more limited.  A lower n N-gram tagger 
makes less-informed tagging decisions, but it will tag 
a greater range of vocabulary.  At the bottom is a 
default tagger which tags everything it sees with the 
same tag.  This latter is a last-resort tool to prevent 
tokens unseen in the training data from going 

ED/W
<code>
<punc>
INCORP

OF
NACELLE
COOLER
BLOWER

PAN
REINFOR…

MOD
.

Single 
sterilized 

token
Trigram Tagger Success?

Bigram Tagger

Unigram Tagger

Default Tagger

Success?

Success?

(ED/W, IAW)
(<code>, CO)
(<punc>, PN)
(INCORP, VB)

(OF, IN)
(NACELLE, NN)
(COOLER, NN)
(BLOWER, NN)

(PAN, NN)
(REINFOR…, NN)

(MOD, NN)
(., .)

No

Yes

No

Yes

No

Yes

NN

Figure 2: Flowchart for POS tagger. 
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untagged or breaking the system. 

USC’s implementation chains together four 
taggers.  All tokens to be tagged are first sent to the 
trigram (3-gram) tagger, which has built a statistical 
model based on series of three tokens and parts of 
speech found in the training data.  If this tagger is 
able to issue a tag for the token in question, it does 
so; otherwise, it backs off to the bigram tagger.  Since 
the bigram tagger’s statistical model is less refined 
than that of the trigram tagger, it is more likely to be 
able to issue a tag.  If not, it can back off to a unigram 
tagger.  If none of the taggers that have built models 
from the training data are able to tag a token, the 
token is tagged by a default tagger which simply gives 
all tokens the same tag.  Since most of the words 
encountered in this maintenance data are nouns, this 
tagger has been set to issue ‘NN’ tags. 

The set of POS tags used is a modified version 
of the commonly-used Penn-Treebank tagset.  Since 
entries in maintenance records are typically 
straightforward grammatically, approximately twenty 
POS tags from this tagset suffice to tag the data.  The 
following are five example tags from the tagset, what 
they mean, and what sort of words they tag: 

CD cardinal number (‘1,’ ‘one’) 
JJ adjective (‘broken’) 
NN noun (‘nacelle’) 
RB adverb (‘inside’) 
VB verb (‘install’) 

The above example, after being part-of-
speech tagged, is shown in Table 2. 

 The NLTK has a native POS tagger, which 
uses a similar system of N-gram taggers placed in a 
back-off cascade, and which has been trained on a 
hand-tagged corpus of texts known as the Brown 
corpus.  This corpus is a collection of texts from 
classic literature, newspapers, culture magazines, 
scholarly journals, and stories, so represents the 
English language at its most carefully constructed 
level.  Considering the vast differences between the 
language on which the NLTK tagger was trained and 
the language found in maintenance data, the need to 
construct a new training set from hand-tagged was 
immediately apparent. 

For evaluation purposes, a file of hand-
tagged and hand-chunked corract data was prepared.  
This file contains approximately 30,000 lines, 
representing 1794 entries from the raw XML data.  
Compared with the Brown corpus, this data set is 
very small, especially considering that only one half of 
it can be used for training a tagger model while the 
other half is used for evaluating the performance of 
the model.  Still, even being trained on slightly less 
than 17000 lines, the tagger achieved an accuracy 
rate of 96.59%.2  This performance is considerably 
                                                           
2
 The accuracy of a part-of-speech tagger is a measure of 

what percentage of the tags the system issues align with 
the hand-assigned tags in the evaluation data.  Accuracy = 
# correct tags / total # tags in data set. 

Original Token 
ED/W 
IAFC-0044 
; 
INCORP 
OF 
NACELLE 
COOLER 
BLOWER 
PAN 
REINFORCEMENT 
MOD 
. 

Sterilized Token 
ED/W 
<code> 
<punc> 
INCORP 
OF 
NACELLE 
COOLER 
BLOWER 
PAN 
REINFORCEMENT 
MOD 
. 

POS 
IAW 
CO 
PN 
VB 
IN 
NN 
NN 
NN 
NN 
NN 
NN 
. 

 

Table 2: example text tokenized, sterilized, and POS-tagged 
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better than it was on unsterilized data.  To make a 
comparison, a new tagger model was built from the 
same training data, though this time the data was not 
passed through the sterilization process.  The same 
evaluation tests were run on the same test data, 
which also was not passed through the sterilization 
process.  The accuracy of this model fell to 92.49%, 
indicating that the sterilization step of the 
preprocessor adds significant value to the tool. 

Chunker 

Another complexity of English is that often-times one 
word does not by itself correspond to one idea.  
More often than not, combinations of words must be 
read, or processed, all together in order to have 
meaning.  For example, V-22 records could refer to a 
‘tail rotor swashplate.’  If a computer is unable to put 
all three of these words together as representing a 
single entity, it will fail to properly analyze the 
sentence in which it finds them.  Chunking is the task 
of grouping together words that go together 
meaningfully.  Chunkers rely upon POS tags to 
accurately identify where a word chunk begins and 
ends and, like POS tagging, use tags to indicate when 
such groupings begin and end.  Also like POS taggers, 
chunking algorithms work by building statistical 
models from a hand-tagged data set, then make 
chunking decisions based on the token encountered, 
tokens preceding and succeeding it in order, the POS 
tags of all environing tokens, and the chunk tags of 
those preceding it.  For this work, USC’s tool has been 

using the NLTK NEChunkParser class which assigns 
chunk tags based on an algorithm know as maximum 
entropy.  The intuition behind the algorithm is to use 
features of a token (here, the token, its part of 
speech, and its immediate context), to narrow the 
possible tags which might be assigned to it, then 
making a most-likely decision from there.3 

Chunk tags are much simpler to understand 
than POS tags.  There are certain kinds of chunks that 
interest us: noun phrases (‘NP’), verb phrases (‘VP’), 
and references (‘RF’).  Pieces that are not of direct 
consequence may be tagged ‘O’ for ‘other.’  The USC 
tool adds a chunk label to take advantage of a certain 
feature of the maintenance data to help the chunker 
identify specific references to the electronic 
maintenance manual or to other documents.  Very 
often, such references are introduced either by the 
acronym ‘IAW’ (short for “in accordance with”) or 
some variation on this.  Since the variation could use 
multiple words (sometimes “IN ACCORDANCE WITH” 
is spelled out in the data), USC introduced a chunk 
tag just for these items -- ‘IAW.’  After this, any token 
encountered either begins a chunk, in which case ‘B-’ 
is prepended to the chunk tag, or it is inside a chunk, 
in which case ‘I-’ is prepended to the chunk tag. 

 

                                                           
3
 For a description of Maximum Entropy modeling in 

general, see Chapter 6 of Jurafsky and Martin [6].  For a 
description of the algorithm used by the NLTK tool 
specifically, see Daumé’s paper on his Megam code [7]. 

Original Token 
ED/W 
IAFC-0044 
; 
INCORP 
OF 
NACELLE 
COOLER 
BLOWER 
PAN 
REINFORCEMENT 
MOD 
. 

Sterilized Token 
ED/W 
<code> 
<punc> 
INCORP 
OF 
NACELLE 
COOLER 
BLOWER 
PAN 
REINFORCEMENT 
MOD 
. 

POS 
IAW 
CO 
PN 
VB 
IN 
NN 
NN 
NN 
NN 
NN 
NN 
. 

Chunk 
B-IAW 
B-RF 
O 
B-VP 
O 
B-NP 
I-NP 
I-NP 
I-NP 
I-NP 
I-NP 
O 

Table 3: example text tokenized, sterilized, POS-tagged, and chunked 
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The above example, when run through the 
chunker, is shown in Table 3. The output shown in 
Table 3 means that the machine has taken the 
original string and extracted from it two items of 
interest: 1) a reference “IAFC-0044” and 2) “NACELLE 
COOLER BLOWER PAN REINFORCEMENT MOD,” an 
entity to correlate to the manual.  As with the POS 
tagger, sterilization of the input does contribute to an 
improvement in chunker performance, though the 
difference is much smaller here.  On unsterilized 
data, the chunker had 91.5% precision and 87.8% 
recall.4  On the same data set sterilized, the chunker 
had 92.3% precision and 88.3% recall. 

Anticipated Application of Results 

The two objectives of the V-22 project to which these 
techniques are to be applied are both focused on 
analysis of textual data.  The first is to correlate the 
corrective actions entered in MAF records to a 
recommended action in the aircraft’s technical 
manual.  A tool that can accurately match, or give a 
leveraged conjecture of, which maintenance actions 
correspond to which recommended actions in the 
manual would provide the basis for an analysis of the 
program’s technical manuals and, more tangibly, a 
basis for improving first-use rates.  Yet answerable 
questions include: once a maintainer in the field has 
diagnosed a problem using methods enumerated in 
the manual, is the action s/he takes to correct that 
problem the same as what is recommended in the 
manual?  How often does this “first-use” occur?  By 
improving this rate, and by hence reducing the 
number of times an aircraft goes in for maintenance 
due to a single cause, costs represented by 
maintenance man hours (MMH), parts expended in 
replacements, and time an aircraft is unavailable for 
service can all be reduced.  This is especially true in 
the area of unscheduled maintenance, resulting in 
maintenance savings for the program. 

                                                           
4
 Precision and recall are two statistics to measure chunker 

performance.  Precision = # correct chunks given by system 
/ total # chunks given by system.  Recall = # correct chunks 
given by system / total # actual chunks in data.  Notice that 
these formulae are measuring chunks, not chunk tags.  
Thus to be correct, the sequence of tokens that is labelled 
a chunk must share all of the same tags as the same 
sequence in the hand-tagged ‘gold’ data. 

 The second program objective also has 
potential for savings in man hours both in the field 
and in the support office.  This is to analyze the 
separate Alert and Text libraries from the aircraft 
technical manual with the object of eliminating 
redundant entries and information.  Because the 
manual is the result of many people writing entries 
according to their expertise over a long period of 
time, it contains many areas of duplication.  Often 
this duplication is not exact, word for word copies, 
but only semantically similar entries, yet nonetheless 
represents added cost in inefficiency of authorship 
and of use time for a maintainer, and which it is 
desirable to eliminate. 

 As of this writing, a concrete implementation 
to use the results of the above discussion for the 
tasks of correlation of maintenance records to 
manual entries or of manual entries to each other has 
not been made (see Figure 1 above).  The 
implementation envisioned involves three more 
loosely-defined steps: 1) taking the chunked results 
of the techniques outlined above and fixing, 
inasmuch as possible, misspellings as well as 
expanding abbreviations to known equivalents; 2) 
similarly deconstructing the technical manual entries 
to which corrective action maintenance entries are to 
be correlated and using these to build a database of 
actions, noun phrases, and references that can be 
queried by the statistical probability or proximity of 
MAF chunks to database records; and 3) evaluation of 
correlation results based on a limited-size, hand-
correlated “gold” set of data.  Though these steps 
remain loosely-defined, the first two are expected to 
provide a blueprint for meeting the concrete 
objectives of the V-22 project coordinators. 
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