
1

Application of Natural Language Processing Techniques to Marine V-22 Maintenance Data

for Populating a CBM-Oriented Database

Huston Bokinskyac, Amber McKenziea, Abdel Bayoumibc, Rhea McCaslinac,
Andrew Pattersonc, Manton Matthewsa, Joseph Schmidleyd, Major General Lester Eisnere

a
Department of Computer Science,

b
Department of Mechanical Engineering,

c
Condition-Based Maintenance Center

University of South Carolina, Columbia, South Carolina, USA
d
United States Navy,

e
South Carolina Army National Guard (United States Army)

Abstract: This paper discusses modifications made to the Natural Language Toolkit, a well-known
natural language processing software package, to achieve improved information extraction
results when applied to helicopter maintenance records. In doing so, it will also attempt to
elaborate the components of a tool under development to allow for machine analysis of the free-
text fields of V-22 Osprey maintenance records. The authors have found that by adapting
existing natural language processing software to suit peculiarities of the language found in
maintenance records, substantive improvements can be made in the accuracy of information
extraction. In particular, by modifying an existing text pre-processor to 1) take in multiple-
sentence inputs, 2) treat all code tokens as the same, and 3) ignore distinctions in punctuation,
part-of-speech tagging accuracy has improved from 92.49% to 96.59%; subsequently, entity
chunking precision has improved from 91.5% to 92.3%.

Keywords: Natural language processing, Information extraction, Data preprocessing

Introduction

Condition-Based Maintenance (CBM), the practice of
using vibration data, engine oil debris measurements,
and other potential indicators of the health of
complex machinery as guides in determining
maintenance scheduling and procedures,
distinguishes itself by its reliance on immense
amounts of data both to study and understand the
significance of different indicators as well as to collect
accurate and meaningful information relevant to
those indicators. In many cases, this data exists in
the form of digital signals collected by sensors; in
other cases, however, there is a large store of
potentially valuable data in the form of hand-entered
text. For the most part, the size of text archives, and
the huge labor costs of going through them record by
record, render such data sources entirely inaccessible
to all but the most determined (and well-heeled) of
institutions. Techniques of natural language
processing (NLP), however, offer potential avenues
into such data sources using machine processing to

extract relevant information in a timely and cost-
effective manner.

The Condition-Based Maintenance Research
center at the University of South Carolina is currently
developing a tool for the V-22 Osprey project
management team that will allow for machine
analysis of free-text fields from a large corpus of the
aircraft’s maintenance records. This work developed
from a similar tool developed at USC to perform
information extraction from maintenance records of
a fleet of US Army Apache helicopters, and which
achieved promising results by using “off the shelf”
NLP software packages [1]. The focus of this
discussion is a group of modifications made to that
software in an effort to adapt it to the awkward
language that is often used in maintenance records.

 Figure 1 shows a graphical outline of the
evolution of USC’s efforts related to the V-22 project,
including completed components (in green),
discarded ideas that shaped the original design (in
obfuscated grey), components currently under

2

development (in blue), and ideas for where the
project might head in the future. The remainder of
this paper will follow a similar outline: it looks first at
the reasons for which textual analysis of maintenance
records is a project worth pursuing for the V-22
project managers; it then gives an overview of the
data and its characteristics that complicate normal
NLP techniques; it then presents USC’s current
information extraction tool in its component stages –
text pre-processor, part-of-speech tagger, and entity
chunker – in the context of what modifications have
been made to the tool and what results these have
returned; finally, it concludes with a brief overview of
where USC sees the project going in the immediate
future.

Motivation for Examining Text Data

On a general level, maintenance records contain
maintainers’ observations of problems as they occur
on an aircraft, symptoms associated with these

problems, actions taken to correct the problems, and
(sometimes) the degree of success of these actions;
they also contain observations from when there are
no problems reported, such as their notes made
during a regular inspection. Relative to other sources
and types of information able to be tapped for CBM
research, this information is unique in nature, not
only because it comes from a human source, but also
because in many cases it is not channeled through a
specific medium, measuring a specific indicator,
drawn at a specific time. That is, a maintainer is able
to record whatever draws his or her attention and
seems, by his/her judgment, to be relevant. The
information in maintenance records, then, has the
potential to add a dimension to CBM data that digital
sensor data cannot.

 Used by itself or in conjunction with sensor
data, maintenance record information can be
exploited to draw strong connections between what
is observable to the human eye and what is

Figure 1: Proposed context of NLP Tools and results.

3

happening in the interior of an aircraft. From there, it
can be used to identify patterns involving problems
and maintenance actions, or help to augment
troubleshooting techniques and guidelines available
to the maintainers. Furthermore, the algorithms that
process sensor data can be refined given the
perspective of the maintainers. Nonetheless, all of
these potential applications of this important source
of information are contingent upon the ability to
organize and store the information as data in
electronic format, and to query it easily and reliably
by machine.

 Information extraction (IE) is a subset of NLP
techniques developed to isolate meaningful data
pieces from unstructured text sources. By far the
majority of information extraction research has been
done on standard English texts, such as news articles
or literary texts. What work has been done on
shorthand-style language has focused on medical
records [2-5]. There has been very little research
done in the domain of maintenance records. Thus,
for the most part, the task of rendering free-text
maintenance record entries into machine-utilizable
CBM data remains undone.

Raw Data and the Task at Hand

The data that serve as the basis of this discussion are
XML exports of past Maintenance Action Form (MAF)
records extracted from the Decision Knowledge
Programming for Logistics Analysis and Technical
Evaluation (DECKPLATE) system, the NAVAIR data
warehouse for aircraft maintenance, flight, and usage
data. Every time a maintainer does work on an
aircraft, whether it be for repair or for inspection,
this action must be documented with a complete
MAF. There is considerable data in these MAFs that
is in structured form (either selected from drop-down
lists or, more likely, entered automatically by the
information system). Structured data presents no
complications for machine processing, since it is all
regular in form and content. Yet a MAF also contains
two fields for the maintainer to note down 1) the
problem encountered and 2) the action taken to fix
the problem, in unstructured text. The field for the
problem description is labelled “descrepnarr;” the
field for the corrective action description “corract.”

USC’s data is 82 XML files, each representing
anywhere from two weeks’ to two months’ worth of
MAF records. The total number of records in these
files is 414,893, of which 385,680, or %92.96 of the
total records, contain corract and descrepnarr fields.
Since this project is concerned with the corract fields
specifically, this paper will pay more attention to
these.

With respect to MAF records, the intent of
the V-22 team is to be able to match a corrective
action recorded in a record with a corrective action
recommended in the electronic maintenance manual
in order to determine to what extent the work
actually being done on an aircraft aligns with what is
called for in the maintenance documentation. The
work of correlating one piece of text to another can
be quite complex. It should come as no surprise that
the technique of simply matching strings1 will yield
very unsatisfactory results – rare are the occasions
when the same meaning is expressed in exactly the
same combination of words! A more promising
approach is IE, which identifies meaningful sequences
of tokens, then determines a linguistic relationship
between them. By comparing, for example, a noun
phrase and verb phrase from one string to a noun
phrase and verb phrase from another string, the
working hypothesis is that there is a better likelihood
of drawing a positive and accurate correlation
between the two. From the beginning, USC’s project
with maintenance records has been geared toward
IE.

The tools used have been primarily from the
Natural Language Toolkit (NLTK) package, an open-
source set of software freely available for download
and study. The NLTK is written in Python, a
programming language that lends itself well to text
processing because of the built-in ease of handling
words as entities that it provides; a Python

1
 A bit on terminology: a character is any letter, space,

punctuation mark, etc. that can be individuated as a basic
linguistic symbol. A string is a series of characters taken
together as a grouping: strings can be anything from single
letters, to words, to sentences, to multiple paragraphs. A
token is the building block of a sentence; usually, ‘token’ is
synonymous with ‘word,’ but there are many possible
exceptions to this rule.

4

programmer can more naturally issue instructions to
the computer to view textual data in much the same
way that a human reader views it, circumventing
many of the contortions needed for processing text
data in a language such as C.

At the outset, USC’s objective was to remain
domain-independent; that is, to develop a tool that
could be applied to any sort of input data – not
specifically maintenance record data. Thus, every
effort was made not to alter any of the original NLTK
tools to suit maintenance texts specifically. However,
there are substantial differences in the nature of the
language used in maintenance records and the
language for which the NLTK tools were written. An
exact characterization of the vocabulary and style in
which a corract string is composed is elusive; hence
so is a comprehensive set of rules for parsing and
interpreting any given string. In maintenance record
data, 1) critical words are often abbreviated or
misspelled, eg. “PLOACES” or “PRGB;” 2) non-critical
words are often omitted, and words run together, eg.
“CONSUMABLESRECIEVED;” 3) confusing lexica that
thwart the use of standard English dictionaries for
parsing, eg. “TROUBLESHOT L ABCV FADEC A TO BAD
VALVE IAW IETMS 7325;” 4) frequently abbreviated
words and use of acronyms, eg. “R L/H NLG TIRE
ASSY. IAW SSS 3240 ATAF APAF AREA FOD FREE;” 5) a
great deal of inconsistency in the use of abbreviations
and acronyms, eg. “LEFT HAND,” “LEFTHAND,”
“LEFT,” “L/H,” “LH,” and “L” are all used
interchangeably from one record to another. The
NLTK (as well as all other readily-available language
processing tools) is written to handle standard,
edited, grammatically-correct English input.
Consequently, the results of running some NLTK tools
on the V-22 data are not as good as they would be
when applied to standard English texts -- a number of
the difficulties encountered during USC’s initial work
were related not to the difficulty of applying NLTK’s
toolset, but rather to the incompatibility of this
toolset and the data at hand.

Text Pre-Processor

Presented with a text file, a computer only sees a
single string of characters, including spaces and
newline characters. A pre-requisite step of IE is to

break this single string into segments that can be
processed individually, in a fashion similar to the way
in which a human reader would. Hence, pre-
processing is the conversion of a collection of digital
characters into a series of items that can be
processed as language. Most of pre-processing is the
individuation of words and punctuation called
‘tokenizing,’ though there are other features that can
be added to a pre-processor.

 The native NLTK tokenizer takes as input a
single sentence, which it first splits around white
space. Next, each resulting token is subjected to
further processing. Any tokens are broken around
punctuation marks, excepting periods which, since
the tokenizer is only accepting single sentences, are
all assumed to have significance as abbreviation
points or decimal points. Also excepted is the ‘/’
symbol to allow for occurrences such as ‘w/in.’
Significantly, contractions such as “won’t,” “pilot’s,”
or “they’ll” are broken around the apostrophe. The
tokenizer then returns a list of tokens -- a structure in
which each word, punctuation mark, symbol, or
contraction piece which was separated from the
others is an element by itself.

There are several features of the native NLTK
tokenizer that were considered for modification to
better fit the V-22 data:

1) The NLTK native tokenizer was made to
break up tokens around hyphens; for most English
texts this is sensible, since most often an analysis is
more concerned with what is“blue” and “green” than
with what is “blue-green.” In the V-22 maintenance
data, though, hyphens frequently occur in the middle
of entities that should be processed as individual
tokens. These include part codes such as as “901-
060-857-114” and references to outside manuals
such as “NA16-30PRQ7-2” or “4270NWA57-01.” For
example, the native NLTK tokenizer would break
“NA13-1-6.1-1” into seven tokens: “NA13,” “-,” “1,” “-
,” “6.1,” “-,” and “1.” Consequently, the POS-tagger
and named entity chunker (IE steps that follow pre-
processing) would have to process seven tokens
rather than just one. USC’s hypothesis was that
changing this standard behavior of the NLTK pre-
processor could reduce the number of tokens to

5

process in later steps, reducing the statistical
variation in tokens and hence improving IE accuracy.

2) The NLTK tokenizer does not tokenize any
arbitrarily large sequence of characters; it only
tokenizes one sentence at a time. Thus, before text
can be tokenized it must first be broken into
individual sentences (“sentence tokenizing” in NLTK’s
terminology), which NLTK does simply by finding
terminating characters such as question marks and
exclamation points. Periods present the only
significant difficulty in this process, since the same
character can also be used to abbreviate a word
(“Mr., Mrs.”), mark decimal places (“$10.91”), or
construct ellipses (“...”). Each sentence is then fed to
the tokenizer and is converted into a series of words
and punctuation.

One reason NLTK does this is to preserve the
meaning of punctuation. In the natural English for
which the NLTK was written, periods, colons,
semicolons, and commas all have specific uses and
meanings; in maintenance data, however,
punctuation is often used interchangeably -- these
marks all generally serve to separate one complete
idea from another. USC’s second hypothesis was that
by no longer giving sentence-ending periods a
functional role different from that of semicolons,
colons, or even commas, statistical variation of input
tokens could be further reduced. As an added
benefit, the step of sentence tokenizing required by
the NLTK tokenizer could be obviated.

3) For standard language processing, every

word has a particular meaning; the perceptible
difference between two tokens such as “read” and
“lead” is slight (one letter). However, it is a
difference that has enormous consequences for the
results of information extraction and must at all costs
be preserved. On the other hand, in processing
maintenance records, there is no semantic difference
between two manual references such as “NA16-
30PRQ7-2” and “4270NWA57-01.” For the purposes
of information extraction, until it comes time to
display extracted data items to the user, these can be
treated as one and the same without any loss of
efficacity. USC’s third hypothesis was that by treating
any tokens that act like code references as the same
token, statistical variation of input tokens could be
reduced further.

The ideas behind these three hypotheses
were implemented with changes made directly to the
NLTK tokenizer code and through the added step of a
token “sterilizer.” This latter takes in a series of
tokens and outputs the same series with any
punctuation mark replaced by ‘<punc>’ and any
token containing numerals replaced by ‘<code>’.
Sentence-ending periods are the only punctuation
mark that were left intact. Periods used inside
numeric tokens (“1.23 psi”) and as abbreviating
marks (“a.c.”) were not distinguished from their
context. As an example, the string “ED/W IAFC-0044;
INCORP OF NACELLE COOLER BLOWER PAN
REINFORCEMENT MOD.,” after tokenization and
sterilization, is shown in Table 1.

Consequent to the evident changes made to

Original Token
ED/W
IAFC-0044
;
INCORP
OF
NACELLE
COOLER
BLOWER
PAN
REINFORCEMENT
MOD
.

Sterilized Token
ED/W
<code>
<punc>
INCORP
OF
NACELLE
COOLER
BLOWER
PAN
REINFORCEMENT
MOD
.

Table 1: example text tokenized and sterilized

6

the tokens themselves, token sterilization also
changes the demographics of the tokens being
processed. The vocabulary of a collection of text data
is the number of distinct tokens encountered; this
number can be divided by the total number of tokens
to give a measure of the variety of tokens used
throughout a collection. The total number of tokens
counted in the data’s corract strings is 6,327,420.
The vocabulary of the corract strings before
sterilization is 110,141; after sterilization, this figure
becomes 26,240. Thus the variation in tokens as
measured by vocabulary / total tokens encountered
goes from 0.017407 to 0.004147 -- a reduction by a
factor of over 4.

Part-of-Speech Tagger

After the tokens in a record have been individuated
comes the task of selecting those of interest in
analysis. One possible method would be, for
example, to pick out all nouns. However, there are
several complexities of English that make computer
processing of natural language difficult, and this task
in particular inefficient. One such complexity is the
way in which a same word can have multiple
meanings depending on context. Thus, to identify
the word ‘pilot’ has limited use, since it isn’t clear if
that instance of ‘pilot’ occurs as a noun or as a verb,
or even an adjective. Part-of-Speech (POS) taggers

can reduce this area of doubt.

While there are a number of tagging
algorithms that have been developed, the ones best
suited to this context are N-gram tagging algorithms.
An N-gram tagger builds a statistical model from
hand-tagged training data by examining the tokens
that appear before and after a given token and
judging the most likely tag based on what token
precedes and follows it, as well as what were the
parts of speech of the preceding and succeeding
tokens. This method is advantageous over some
other, more sophisticated methods because very
often tokens appear in the test data that were not
encountered in the training data; rather than grind to
a halt, an N-gram tagger can easily pass responsibility
for tagging an unknown token to a more
generalizable tagger. Such a series of POS taggers,
aligned from more to less refined, can be chained
together in a “back-off” system. A higher n N-gram
tagger has the advantage of bringing more
information to its tag decision; however, the scope of
what it can recognize and tag with confidence also
becomes more limited. A lower n N-gram tagger
makes less-informed tagging decisions, but it will tag
a greater range of vocabulary. At the bottom is a
default tagger which tags everything it sees with the
same tag. This latter is a last-resort tool to prevent
tokens unseen in the training data from going

ED/W
<code>
<punc>
INCORP

OF
NACELLE
COOLER
BLOWER

PAN
REINFOR…

MOD
.

Single
sterilized

token
Trigram Tagger Success?

Bigram Tagger

Unigram Tagger

Default Tagger

Success?

Success?

(ED/W, IAW)
(<code>, CO)
(<punc>, PN)
(INCORP, VB)

(OF, IN)
(NACELLE, NN)
(COOLER, NN)
(BLOWER, NN)

(PAN, NN)
(REINFOR…, NN)

(MOD, NN)
(., .)

No

Yes

No

Yes

No

Yes

NN

Figure 2: Flowchart for POS tagger.

7

untagged or breaking the system.

USC’s implementation chains together four
taggers. All tokens to be tagged are first sent to the
trigram (3-gram) tagger, which has built a statistical
model based on series of three tokens and parts of
speech found in the training data. If this tagger is
able to issue a tag for the token in question, it does
so; otherwise, it backs off to the bigram tagger. Since
the bigram tagger’s statistical model is less refined
than that of the trigram tagger, it is more likely to be
able to issue a tag. If not, it can back off to a unigram
tagger. If none of the taggers that have built models
from the training data are able to tag a token, the
token is tagged by a default tagger which simply gives
all tokens the same tag. Since most of the words
encountered in this maintenance data are nouns, this
tagger has been set to issue ‘NN’ tags.

The set of POS tags used is a modified version
of the commonly-used Penn-Treebank tagset. Since
entries in maintenance records are typically
straightforward grammatically, approximately twenty
POS tags from this tagset suffice to tag the data. The
following are five example tags from the tagset, what
they mean, and what sort of words they tag:

CD cardinal number (‘1,’ ‘one’)
JJ adjective (‘broken’)
NN noun (‘nacelle’)
RB adverb (‘inside’)
VB verb (‘install’)

The above example, after being part-of-
speech tagged, is shown in Table 2.

 The NLTK has a native POS tagger, which
uses a similar system of N-gram taggers placed in a
back-off cascade, and which has been trained on a
hand-tagged corpus of texts known as the Brown
corpus. This corpus is a collection of texts from
classic literature, newspapers, culture magazines,
scholarly journals, and stories, so represents the
English language at its most carefully constructed
level. Considering the vast differences between the
language on which the NLTK tagger was trained and
the language found in maintenance data, the need to
construct a new training set from hand-tagged was
immediately apparent.

For evaluation purposes, a file of hand-
tagged and hand-chunked corract data was prepared.
This file contains approximately 30,000 lines,
representing 1794 entries from the raw XML data.
Compared with the Brown corpus, this data set is
very small, especially considering that only one half of
it can be used for training a tagger model while the
other half is used for evaluating the performance of
the model. Still, even being trained on slightly less
than 17000 lines, the tagger achieved an accuracy
rate of 96.59%.2 This performance is considerably

2
 The accuracy of a part-of-speech tagger is a measure of

what percentage of the tags the system issues align with
the hand-assigned tags in the evaluation data. Accuracy =
correct tags / total # tags in data set.

Original Token
ED/W
IAFC-0044
;
INCORP
OF
NACELLE
COOLER
BLOWER
PAN
REINFORCEMENT
MOD
.

Sterilized Token
ED/W
<code>
<punc>
INCORP
OF
NACELLE
COOLER
BLOWER
PAN
REINFORCEMENT
MOD
.

POS
IAW
CO
PN
VB
IN
NN
NN
NN
NN
NN
NN
.

Table 2: example text tokenized, sterilized, and POS-tagged

8

better than it was on unsterilized data. To make a
comparison, a new tagger model was built from the
same training data, though this time the data was not
passed through the sterilization process. The same
evaluation tests were run on the same test data,
which also was not passed through the sterilization
process. The accuracy of this model fell to 92.49%,
indicating that the sterilization step of the
preprocessor adds significant value to the tool.

Chunker

Another complexity of English is that often-times one
word does not by itself correspond to one idea.
More often than not, combinations of words must be
read, or processed, all together in order to have
meaning. For example, V-22 records could refer to a
‘tail rotor swashplate.’ If a computer is unable to put
all three of these words together as representing a
single entity, it will fail to properly analyze the
sentence in which it finds them. Chunking is the task
of grouping together words that go together
meaningfully. Chunkers rely upon POS tags to
accurately identify where a word chunk begins and
ends and, like POS tagging, use tags to indicate when
such groupings begin and end. Also like POS taggers,
chunking algorithms work by building statistical
models from a hand-tagged data set, then make
chunking decisions based on the token encountered,
tokens preceding and succeeding it in order, the POS
tags of all environing tokens, and the chunk tags of
those preceding it. For this work, USC’s tool has been

using the NLTK NEChunkParser class which assigns
chunk tags based on an algorithm know as maximum
entropy. The intuition behind the algorithm is to use
features of a token (here, the token, its part of
speech, and its immediate context), to narrow the
possible tags which might be assigned to it, then
making a most-likely decision from there.3

Chunk tags are much simpler to understand
than POS tags. There are certain kinds of chunks that
interest us: noun phrases (‘NP’), verb phrases (‘VP’),
and references (‘RF’). Pieces that are not of direct
consequence may be tagged ‘O’ for ‘other.’ The USC
tool adds a chunk label to take advantage of a certain
feature of the maintenance data to help the chunker
identify specific references to the electronic
maintenance manual or to other documents. Very
often, such references are introduced either by the
acronym ‘IAW’ (short for “in accordance with”) or
some variation on this. Since the variation could use
multiple words (sometimes “IN ACCORDANCE WITH”
is spelled out in the data), USC introduced a chunk
tag just for these items -- ‘IAW.’ After this, any token
encountered either begins a chunk, in which case ‘B-’
is prepended to the chunk tag, or it is inside a chunk,
in which case ‘I-’ is prepended to the chunk tag.

3
 For a description of Maximum Entropy modeling in

general, see Chapter 6 of Jurafsky and Martin [6]. For a
description of the algorithm used by the NLTK tool
specifically, see Daumé’s paper on his Megam code [7].

Original Token
ED/W
IAFC-0044
;
INCORP
OF
NACELLE
COOLER
BLOWER
PAN
REINFORCEMENT
MOD
.

Sterilized Token
ED/W
<code>
<punc>
INCORP
OF
NACELLE
COOLER
BLOWER
PAN
REINFORCEMENT
MOD
.

POS
IAW
CO
PN
VB
IN
NN
NN
NN
NN
NN
NN
.

Chunk
B-IAW
B-RF
O
B-VP
O
B-NP
I-NP
I-NP
I-NP
I-NP
I-NP
O

Table 3: example text tokenized, sterilized, POS-tagged, and chunked

9

The above example, when run through the
chunker, is shown in Table 3. The output shown in
Table 3 means that the machine has taken the
original string and extracted from it two items of
interest: 1) a reference “IAFC-0044” and 2) “NACELLE
COOLER BLOWER PAN REINFORCEMENT MOD,” an
entity to correlate to the manual. As with the POS
tagger, sterilization of the input does contribute to an
improvement in chunker performance, though the
difference is much smaller here. On unsterilized
data, the chunker had 91.5% precision and 87.8%
recall.4 On the same data set sterilized, the chunker
had 92.3% precision and 88.3% recall.

Anticipated Application of Results

The two objectives of the V-22 project to which these
techniques are to be applied are both focused on
analysis of textual data. The first is to correlate the
corrective actions entered in MAF records to a
recommended action in the aircraft’s technical
manual. A tool that can accurately match, or give a
leveraged conjecture of, which maintenance actions
correspond to which recommended actions in the
manual would provide the basis for an analysis of the
program’s technical manuals and, more tangibly, a
basis for improving first-use rates. Yet answerable
questions include: once a maintainer in the field has
diagnosed a problem using methods enumerated in
the manual, is the action s/he takes to correct that
problem the same as what is recommended in the
manual? How often does this “first-use” occur? By
improving this rate, and by hence reducing the
number of times an aircraft goes in for maintenance
due to a single cause, costs represented by
maintenance man hours (MMH), parts expended in
replacements, and time an aircraft is unavailable for
service can all be reduced. This is especially true in
the area of unscheduled maintenance, resulting in
maintenance savings for the program.

4
 Precision and recall are two statistics to measure chunker

performance. Precision = # correct chunks given by system
/ total # chunks given by system. Recall = # correct chunks
given by system / total # actual chunks in data. Notice that
these formulae are measuring chunks, not chunk tags.
Thus to be correct, the sequence of tokens that is labelled
a chunk must share all of the same tags as the same
sequence in the hand-tagged ‘gold’ data.

 The second program objective also has
potential for savings in man hours both in the field
and in the support office. This is to analyze the
separate Alert and Text libraries from the aircraft
technical manual with the object of eliminating
redundant entries and information. Because the
manual is the result of many people writing entries
according to their expertise over a long period of
time, it contains many areas of duplication. Often
this duplication is not exact, word for word copies,
but only semantically similar entries, yet nonetheless
represents added cost in inefficiency of authorship
and of use time for a maintainer, and which it is
desirable to eliminate.

 As of this writing, a concrete implementation
to use the results of the above discussion for the
tasks of correlation of maintenance records to
manual entries or of manual entries to each other has
not been made (see Figure 1 above). The
implementation envisioned involves three more
loosely-defined steps: 1) taking the chunked results
of the techniques outlined above and fixing,
inasmuch as possible, misspellings as well as
expanding abbreviations to known equivalents; 2)
similarly deconstructing the technical manual entries
to which corrective action maintenance entries are to
be correlated and using these to build a database of
actions, noun phrases, and references that can be
queried by the statistical probability or proximity of
MAF chunks to database records; and 3) evaluation of
correlation results based on a limited-size, hand-
correlated “gold” set of data. Though these steps
remain loosely-defined, the first two are expected to
provide a blueprint for meeting the concrete
objectives of the V-22 project coordinators.

Acknowledgements

This project has been funded by grants from the
United States Navy and the Boeing Corporation.

References

[1] A. McKenzie, M. Matthews, N. Goodman, and A.
Bayoumi, “Information extraction from helicopter
maintenance records as a springboard for the future

10

of maintenance text analysis,” The Twenty Third
International Conference on Industrial Engineering
and Other Applications of Applied Intelligent Systems
(IEA-AIE 2010), June 1-4, 2010

 [2] Kraus, S., Blake, C., & West, S. L. (in press).
Information extraction from medical notes.
Proceedings of the 12th World Congress on Health
(Medical) Informatics -- Building Sustainable Health
Systems (MedInfo), Brisbane, Australia, 1661-1664.

[3] Gaizauskas, R., Harkema, H., Hepple, M., &
Setzer, A. (2006). Task-oriented extractions of
temporal information: The case of clinical narratives.
Thirteenth International Symposium on Temporal
Representation and Reasoning (TIME’06), 188-195.

[4] Irvine, A. K. (2008). Natural language processing
and temporal information extraction in emergency
department triage notes. A Master’s Paper.

[5] Han, B., Gates, D. & Levin, L. (2006).
Understanding temporal expressions in emails.
Proceedings of the Human Language Technology
Conference of the North American Chapter of the ACL,
136-143.

[6] Jurafsky, D. & Martin, J.H. (2009). Speech and
Language Processing (Second Edition),
Pearson/Prentice Hall, Upper Saddle River, NJ.

[7] Daumé, H. III (2004). Notes on {CG} and {LM-

BFGS} Optimization of Logistic Regression. Paper

available at

http://www.cs.utah.edu/~hal/docs/daume04cg-

bfgs.pdf.

