

You can make a difference

- Energy production & use
- Environmental impacts (including of energy)
- Water purification
- Management of chronic health issues & disease

The energy challenge

Energy production & use

(quadrillion Btu)

1 Btu = 1055 J

Source: US Energy Information Administration: www.eia.gov

2015 2020 2025 2030

The energy challenge

Andrew B. Greytak

<u>All that stuff</u>

- Energy production & use
- Environmental impacts (including of energy)

12 gigatons C = 44 gigatons CO_2 per year

The solar energy challenge

Solar energy is plentiful, but diffuse and intermittent

- Insolation: 9000x energy demand
- 200 W / m²
 - 1 barrel of oil = 6 GJ
 - 1 acre = 4000 m²
 - 1 b.o.e./day/acre at 10% eff.

 $2H_2O \rightarrow 2H_2 + O_2$ Water splitting $H_2 + CO_2 \rightarrow H_2O + CO$ Reverse Water-gas shift $H_2 + CO \rightarrow C_nH_{2n+2}$ Fischer-Tropsch

Energy: Why you care

- Personal interest and environmental stewardship
- Scientific opportunities
 - Solar and nuclear energy materials
 - Energy storage chemistry: mobile and stationary
 - Efficient energy use
 - Reductive synthetic chemistry
 - Earth-abundant materials and catalysts
- Business opportunities
 - Changes in energy use
 - Export market
 - Demographic, thermodynamic constraints
 - Political and regulatory environment
- Educational opportunities
 - Educate: basic chemistry knowledge, scientific method ... (as well as tomorrow's innovators)
 - Educate: to create an environment receptive to changes in practice

In the chemistry classroom

- Energy transactions in chemistry
 - 1. Thermal power vs. electrical power: 1 MW wind turbine replaces several MW of thermal (fossil or nuclear) energy

 $\eta < 1 - T_{\rm c}/T_{\rm h}$

2. ΔG = work required *at* constant temperature ΔH = energy required to *maintain* constant temperature

 $2H_2O \leftrightarrow O_2 + 4H^+ + 4e^- \quad E_{ox} = 1.23 - 0.059 \times pH (V \text{ vs. NHE})$ $4H^+ + 4e^- \leftrightarrow 2H_2 \qquad E_{red} = 0 - 0.059 \times pH$ $2H_2O \leftrightarrow 2H_2 + O_2 \qquad E_{rxn} = -1.23 \text{ V} = -\Delta G^\circ/nF$

- Catalysis
- Challenge yourself

In the lab

- Become an expert in your field ... <u>and</u> in some techniques
- You are <u>not</u> looking to be "just" a set of hands

More broadly

- Science ... Check the hotsheets!
 - C & E News
 - NYT Science ... Tuesdays ... also business
 - Nature Wednesday afternoons
 - Science Thursday nights

More broadly

- Business
 - Forums on campus?
 - Apply your chemical common sense no H_2 economy without H_2
- Where to get info
 - Energy Information Administration
 - Google energy use model
 - World Bank database of economic information
 - International initiatives: www.cleanenergyministerial.org
 - NIST Chemistry WebBook

