Electrochemistry at a glance Chem 112 Fall 2013 – Andrew B. Greytak, Univ. South Carolina Reger, Goode, & Ball 3rd Ed. Chapter 18

Oxidation numbers

Know how to determine oxidation numbers for atoms in typical molecules & ions.

- This is how we will determine if a redox reaction is happening.
- On the exam, your ability to determine oxidation numbers may be tested directly through short-answer questions

Balancing redox reactions

Know how to balance a redox reaction as a sum of two half-cell reactions

As with any chemical equation, total charge and total number of each type of atom must be same on both sides For a half-reaction, electron(s) appear as a reactant or product

Balance half-reactions in "acidic solution" first – if hydroxide (OH⁻) appears in overall reaction, convert to basic half-reaction

- \rightarrow This is how we will determine n, the number of electrons exchanged per mole reaction, in the problems below.
- This is how we identify which standard reduction potentials we can consult to express the standard cell potential.
- \bullet We can also make sure we have the right coefficients in the overall equation, to use in determining Q, below.

Voltaic cells

Know how to draw a basic picture of a voltaic cell: two half-cells with the **reduction** (in the chemical equation as written) appearing on the **right**

• This will help you get the right signs for cell potential E and for ΔG .

Standard cell potential

 E_{cell} or just E is the **cell potential** – a measurement of the "electromotive force" created by the chemical reaction; measured as voltage difference between right and left electrodes: Volts = Joules / Coulomb

 E_{cell}° or E° is the **standard cell potential**: the value of E when reactants & products are at standard concentrations -1 atm or 1 M or pure substances. Does not imply a particular temperature.

Standard reduction potential (or standard electrode potential)

Standard reduction potentials $E_{\rm red}^{\circ}$ are tabulated for a series of reduction half-cell reactions, usually at 298 K.

$$E_{\text{cell}}^{\circ} = E_{\text{red}}^{\circ} + E_{\text{ox}}^{\circ}$$
 (standard cell potential as sum of half-cell electrode potentials)

But since $E_{ox}^{\circ} = -E_{red}^{\circ}$ for any half-cell reaction, and the species on the **right** is being **reduced** & left oxidized,

$$E_{\text{cell}}^{\circ} = E_{\text{red}}^{\circ}(\text{right}) - E_{\text{red}}^{\circ}(\text{left})$$
 (standard cell potential as difference of two half-cell reduction potentials)

- E_{red}° and E_{ox}° do not change when half-cell reaction is multiplied by a coefficient don't need *n* to get E° !
- → You must look up reduction potentials for half-cell with right phases and oxidation states for the problem at hand
- → $E_{\rm red}^{\circ}$ for (2 H⁺(aq) + 2e⁻ \rightarrow H₂(g)) defined as 0.000 Volts

Expect to have to find E_{cell}° for a balanced (or not-yet-balanced!) redox reaction based on tabulated values, or a variation on this.

Electrochemistry & thermodynamics

One essential relationship, the rest follows from Chpt. 17. For all of these, you must know the number of electrons **n**, which means you must have a balanced chemical equation expressed as a sum of two half-reactions!!

$$\Delta G = -n F E$$
 $F = \text{Faraday's constant}$, Coulombs per mole of elementary charge

E is the voltage at which the free energy change available from the chemical reaction and the electrical work are exactly balanced. E > 0 for spontaneous chemical reactions ($\Delta G < 0$).

$$E = E^0 - \frac{RT}{nF} \ln Q$$
 Nernst equation – cell potential as function of concentration Q is **reaction quotient** for overall reaction – make sure you know how to calculate it!

Three cases

1) Standard conditions (1 atm, 1 M):
$$Q = 1$$
, $\ln Q = 0$. $\Rightarrow \Delta G^{\circ} = -n F E^{\circ}$
2) Equilibrium: $Q = K$, $\Delta G = 0$, $E = 0$. $\Rightarrow E^{0} = \frac{RT}{nF} \ln K$ Go between E° , ΔG° , and K

3) For all other conditions just use the Nernst equation. Several flavors but the first will always work.

$$E = E^{0} - \frac{RT}{nF} \ln Q$$

$$E = E^{0} - \frac{RT}{nF} \ln(10) \log Q = E^{0} - \frac{RT}{nF} 2.303 \log Q$$

$$E = E^{0} - \frac{0.059 \text{ Volts}}{n} \log Q$$
If you don't like natural logarithms
$$At T = 298 \text{ K only}$$

 \rightarrow Typical problems: Determine E given all concentrations; determine missing concentration given E.