THEORIES OF ACIDS AND BASES

Nirmal Lamsal

The Department of Chemistry and Biochemistry

INTRODUCTION

Early Ideas: Based on Characteristics Properties of Acids and Bases

Acid: - hydrogen containing compound which neutralizes base

- turns litmus red
- has sour taste (lemon juice, vinegar etc.)
- Base: oxide or hydroxide of metal which neutralizes acids
 - turns litmus blue
 - has bitter taste (baking soda, soap etc.)

Arrhenius Definition of Acids and Bases

Svante Arrhenius first proposed the formal definition of acids and bases in 1884

◆<u>Acid</u>: A compound which dissociates in aqueous solution to give hydrogen ions, H⁺

Example:HCl,H₂SO₄ etc

HCl \longrightarrow H⁺ (aq) + Cl⁻ (aq)

◆<u>Base</u>: A compound which ionizes to give hydroxide ion, OH⁻, when dissolved in water.

Example:NaOH,Ca(OH)₂ etc

NaOH \longrightarrow Na⁺ (aq) + OH⁻ (aq)

Neutralization reaction:

Acid + Base -----> Salt + Water

Bronsted-Lowry theory of acids and bases

J.N. Bronsted and T.M. Lowry developed this more general acid-base theory in 1923

An acid is a proton, H⁺, donor

A base is a proton, H⁺, acceptor

Example: HCl is an acid in water solution because HCl donates a proton and water accepts it. Here water is a base as it accepts proton.

Applicable to even non aqueous solvent system

 $HCl + NH_3 \longrightarrow NH_4Cl$

Practice Questions

1. Classify the following compounds into acids and bases:

 $HNO_3 \longrightarrow H^+ + NO_3^-$

 $Fe(OH)_3 \longrightarrow Fe^{3+} + 3OH^{-}$

2.According to Bronsted-Lowry concept an acid is a proton _____