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This paper reframes Riemannian geometry (RG) as a Generalized Lie algebra (GLA). We be-
gin with an Abelian Lie algebra of n “position” operators, X, whose simultaneous eigenvalues, y,
define a real n-dimensional space R(n). Then with n new operators defined as independent func-
tions, X ′(X), we define contravariant and covariant tensors in terms of their eigenvalues, y, on a
Hilbert space representation. We then define n additional operators, D,whose exponential map is,
by definition, to translate X as defined by a noncommutative algebra of operators (observables)
where the “structure constants” are shown to be the metric functions of the X operators to allow
for spatial curvature which results in a noncommutativity among the D operators. The D operator
then has a Hilbert space position-diagonal representation as a generalized differential operator plus a
Christoffel symbol, Γµ(y), an arbitrary vector function Aµ(y), and the derivative of a scalar function

gµν ∂ϕ(y)
∂yν . One can then express the Christoffel symbols, and the Riemann, Ricci, and other tensors

as commutators in this representation, thereby framing RG as a GLA. This GLA provides a more
general framework for RG to support an integration of general relativity, quantum theory and the
standard model.
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I. INTRODUCTION

Lie algebras, and the Lie groups which they gener-
ate, have played a central role in both mathematics and
theoretical physics since their introduction by Sophius
Lie in 1888 [1]. Both relativistic quantum theory (QT)
and the gauge algebras of the phenomenological stan-
dard model (SM) of particles and their interactions are
framed in terms of observables which form Lie algebras
and are firmly established [2–5]. The Heisenberg Lie al-
gebra (HA) among (generalized) momentum and position
operators, [D,X] gives the foundational structure of QT
and has applications in mathematics in studies related
to Fourier transforms and harmonic analysis [6–9]. Like-
wise, in QT one has the Poincare symmetry Lie algebra
(PA) of space-time observables whose representations de-
fine free particles. But the theory of gravitation as ex-
pressed in Einstein’s general theory of relativity (GR), al-
though also firmly established, is formulated in terms of a
Riemannian geometry (RG) of a curved space-time where
the metric is determined by nonlinear differential equa-
tions from the distribution of matter and energy [10, 11].
In GR there are no operators representing observables,
and thus no commutation rules to define Lie algebras,
and thus no representations of such algebras. The observ-
ables in GR are (a) the positions of events in space-time,
and (b) the metric function of position in space-time (and
its derivatives) which define the distance between events,
and which define the curvature of space-time. Thus, QT
and GR are expressed in totally different mathematical
frameworks and their merger into a single theory has been
a central problem in physics for over a century. However,

the space-time events in QT are the eigenvalues of the
space-time operators which are an essential part of the
HA which also contains the Minkowski metric which de-
fines the associated translated distance when space-time
is not curved. If the associated space were curved, one
would have a metric that was a function of the position
in space-time. Such a generalized HA would no longer
allow closure as a traditional Lie algebra but rather clo-
sure in the enveloping algebra of analytic functions of
the basis elements of the Lie algebra. This led us to
consider a Generalized Lie Algebra (GLA) generalizing
the framework of a Lie algebra, with n space-time op-
erators, Xµ, and n corresponding operators Dµ, which
by definition are to execute infinitesimal translations in
the associated representation space of the Xµ eigenval-
ues, yµ (µ = 0, 1, n− 1). The Xµ are to form an Abelian
algebra whose eigenvalues can represent a “space-time”
manifold of four or a larger number of dimensions as the
associated X eigenvalues are simultaneously measurable.
But we allow the space-time to be curved, so the cor-
responding Dµ operators translate the X operators in a
manner that depends upon the value of the X which al-
ters their commutativity so the Dµ now interfere with
each other. We found that this approach automatically
generalized the HA “structure constants” to be propor-
tional to the Riemann metric thus allowing the metric
to be a function of the position operators, X[12]. This
generalizes the concept of Lie algebra to allow for “struc-
ture constants” that are functions of the X operators in
the algebra and thus are no longer constants except ap-
proximately in small neighborhoods. This paper first for-
mally reframes RG [13] as a GLA including the HA. We



2

show that the fundamental concepts in RG such as the
coordinate transformations, contravariant and covariant
tensors, Christoffel symbols, Riemann and Ricci tensors,
and the Riemann covariant derivative can now all be ex-
pressed in terms of commutation relations among these
fundamental operators. This framework is reminiscent
of contractions of Lie algebras where the structure con-
stants as functions are modified to vary smoothly among
different algebras based upon certain external parameters
[14–19] but not in the algebra itself as we propose. In a
similar way, our algebra allows the structure constants
to be dependent upon the X operators in the algebra so
that RG is retrieved as a position-diagonal representation
of the algebra as one moves over the Riemann manifold
of X eigenvalues.

II. RIEMANNIAN GEOMETRY FRAMED AS A
NONCOMMUTATIVE ALGEBRAIC GEOMETRY

OF OBSERVABLES

We begin by defining a purely mathematical structure.
Consider a set of n independent linear self-adjoint oper-
ators, Xµ, which form an Abelian Lie algebra of order n,
where

[Xµ, Xν ] = 0 and where µ, ν ∈ {0, 1, 2, . . . , n− 1}. (1)

It is assumed that the units of measurement are the
same for the eigenvalues of all X variables. Consider
a Hilbert Space of square integrable complex functions
|Ψ⟩ as a representation space for this algebra where a
scalar product is used to normalize the vectors to unity,
that is ⟨Ψ|Ψ⟩ = 1. The simultaneous eigenvectors of the
Abelian Lie algebra can be written as the outer product
of the Xµ eigenvectors with the Dirac notation:

|y0⟩ |y1⟩ . . . |yn−1⟩ = |y0, y1, . . . , yn−1⟩ = |y⟩ (2)

where the eigenvalues yµ label the associated eigenvectors
|y⟩ of the Xµ operators where we use the notation

Xµ |y⟩ = yµ |y⟩ (3)

where the yµ are real numbers defining the Hilbert
manifold.

These independent real variables yµ can be thought of
as the coordinates (or basis vectors) of an n-dimensional
space Rn since each set of values defines a point in Rn.
Let the eigenvalues be normalized to be orthonormal
with the scalar product

⟨ya|yb⟩ = δ(y0a − y0b )δ(y
1
a − y1b ) . . . δ(y

n−1
a − yn−1

b ). (4)

Let the decomposition of unity:

1 =

∫
dy |y⟩ ⟨y| (5)

project the entire space onto the basis vectors |y⟩ where
⟨y| is the dual vector to |y⟩. A general vector in the

representation (Hilbert) space of this Lie algebra can then
be written as

|Ψ⟩ =
∫

dy |y⟩ ⟨y|Ψ⟩ =
∫

dyΨ(y) |y⟩ (6)

where the function Ψ(y) gives the “components” of the
abstract vector |Ψ⟩ on the basis vectors |y⟩. Thus

⟨Ψ|Ψ⟩ = 1 =

∫
dy ⟨Ψ|y⟩ ⟨y|Ψ⟩ =

∫
dyΨ∗(y)Ψ(y). (7)

Now consider another set of n linear operators,X ′µ, which
are independent analytic functions, X ′µ(Xµ), of the Xµ

operators also forming an Abelian Lie algebra on the
same representation space for this algebra where it fol-
lows that:

[X ′µ, X ′ν ] = 0. (8)

Let the X ′µ have eigenvectors |y′⟩ and eigenvalues y′µ

given by

X ′µ |y′⟩ = y′µ |y′⟩ (9)

where y′µ are real numbers. The same orthonormality
and decomposition of unity also obtain for the |y′⟩ vectors
which are also to be a complete basis for the space |Ψ⟩.
Then we can let the X ′µ(Xν) act to the left on the dual
vector ⟨y′| and act to the right on the vector |y⟩ as

⟨y′|X ′µ|y⟩ = ⟨y′|X ′µ(Xν)|y⟩ (10)

to give

y′µ ⟨y′|y⟩ = y′µ(y) ⟨y′|y⟩ . (11)

Thus, the eigenvalues y′µ = y′µ(y) give the transfor-
mation from the y coordinates to the y′ coordinates if
the Jacobian does not vanish |∂y′µ/∂yν | ≠ 0 which we
require to be the case. Thus, the operator functions
X ′µ(Xµ) define a coordinate transformation in Rn be-
tween the eigenvalues (coordinates) y and the eigenvalues
y′ (transformed coordinates) that define Rn. Then the
set of n real variables yµ and the alternative variables y′µ

both can be interpreted as specifying the coordinates of
points in this n-dimensional real space Rn with coordi-
nate transformations given by the functions

y′µ = y′µ(y). (12)

It now follows that

dy′µ =
∂y′µ
∂yν

dyν (13)

and any set of n functions V µ(y) that transforms as the
coordinates,

V ′µ(y′) =

(
∂y′µ

∂yν

)
V ν(y) (14)
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is to be called a contravarient vector. The upper (con-
travarient) indices are normally taken as the variables
that are normally measured while the lower (covari-
ent)indices are obtained by lowering the index with the
metric as shown below. We use the summation conven-
tion for repeated identical indices. The derivatives ∂/∂yν

transform as

∂

∂yν
=

(
∂yν

∂y′µ

)
∂

∂yν
(15)

and any such vector Vµ(y) which transforms in this man-
ner as

V ′
µ(y

′) =

(
∂yν

∂y′µ

)
Vν(y) (16)

is defined as a covarient vector. Upper indices are defined
as contravariant indices while lower indices are covariant
indices. Functions with multiple upper and lower indices
that transform as the contravariant and covariant indices
just shown are defined as tensors of the rank of the as-
sociated indices. One would like to have transformations
that translate one in the Rn space of the operators X
(and thus their eigenvalues y). We define a new addi-
tional set of n operators, Dµ, that translate a point an
infinitesimal distance, ds, in the Rn space respectively in
each corresponding directions yµ by using the transfor-
mation generated by the Dµ elements of the algebra via
the exponential map with transformations:

G(ds, η) = edsηµD
µ/b. (17)

In this transformation ηµ is defined to be a unit vector
in the y space, b is an unspecified constant, and ds is
defined to be the distance moved in the direction ηµ as
defined below. Then

X ′λ = GXλG−1. (18)

By taking the translated distance ds to be infinitesimal,
then one gets

X ′λ = Xλ(s+ ds)

= e
dsηµDµ

b Xλ(s)e−
dsηµDµ

b

=

(
1 +

dsηµD
µ

b

)
Xλ(s)

(
1− dsηνD

ν

b

)
= Xλ(s) +

dsην [D
µ, Xλ]

b
+O((ds)2) + . . . (19)

Thus, the commutator [Dµ, Xλ], defines the way in which
the transformations commute (interfere) with each other
in executing the translations in keeping with the theory
of Lie algebras and Lie groups although in general the
D and X may not close as a standard Lie algebra. If
the space is Euclidian (flat) then there is no dependence
of the commutator upon location, and thus there is no

interference among the Dµ. Then [Dµ, Xλ] can be nor-

malized to Iδµλ± (since Dµ is defined to translate Xµ )
thus:

[Dµ, Xλ] = Iδµλ± = bδµλ± (20)

and the space is Euclidean (flat) where δ± is the diagonal
n × n matrix with ±1 on the diagonal with off-diagonal
terms zero. The units of the constant b then are com-
plementary to the units of the associated y eigenvalues
since the product of the X and D eigenvalues must give
the units of the constant b so that dimensional units
balance for equation 20. This is the customary Heisen-
berg Lie algebra with structure constants Iδµ±λ and with

[Dµ, Dλ] = 0 for µ ̸= λ. The additional operator, I,
is to commute with all elements and by definition has a
single eigenvalue b, and is needed to close the basis of
the Lie algebra which now is of dimension 2n+ 1. Thus,
confirming that the distance is ds:

dXλ(s) = dsηµb/bδ
µλ
± = dsηλ +O(ds). (21)

We now wish to allow for curvature in the space Rn of
the X eigenvalues. Thus the [D,X] commutator is now
allowed to be dependent upon the operators X and can
vary from point to point in the non-Euclidian space. We
define the functions gµν(X) as generalized structure func-
tions (no longer constants) as:

[Dµ, Xν ] = bgµν(X) (22)

where b is a constant to be determined with the require-
ment that

|g| ≠ 0. (23)

It is necessary that the X operator subalgebra is Abelian
because that allows theX operators to all be diagonalized
simultaneously. Otherwise the space of theX eigenvalues
would not allow the commutator to be well-defined at a
point, and the space would be a set of fuzzy variables.
These generalized structure functions can now also be
written as

gµν(X) =
[Dµ, Xν ]

b
(24)

where gµν(X) are assumed to be analytic with gµν(X)
defined by

gµα(X)gαν = δνµ (25)

in the X diagonal representation. Then using equation
21 one gets

Xµ(s+ds)−Xµ(s) = dXµ = dsηλg
µλ(X) = dsηµ. (26)

Then

gµν(X)dXµdXν = ds2gµν(X)ηµην = ds2 (27)
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since ηµ is a unit vector on this metric. Thus

ds2 = gµν(X)dXµdXν (28)

proving that gµν(X) is the metric for the space.
One seeks transformations that will infinitesimally trans-
late one in the Xµ space in order to study changes in the
system. (In physics, as such changes are normally linked
to the passage of time, then time itself must be one of the
operators which we set to be the X0 variable. But time
is normally measured in seconds while space is measured
in meters so we must convert our unit of time, second, to
a unit of space, the meter, by using the invariant speed of
light, c, and write X0 as having the eigenvalue ct. Like-
wise, one could require all the X eigenvalues to be in
seconds instead of meters.)
In the position representation one now has the represen-
tation for D as the differential operator:

⟨y|Dµ|Ψ⟩ =
[
bgµν(y)

∂

∂yν
+ Γµ(y) +Aµ(y) +

∂ϕ(y)

∂yν
,Ψ(y)

]
= b∂µΨ(y)

(29)

and where

Ψ(y) = ⟨y|Ψ⟩ (30)

and which allows the D commutator to represent deriva-
tives and where Aµ(y) and ϕ(y) are yet undetermined
vector and scalar functions of Xν and Γµ(y) is the
required Christoffel symbol that is required when the
derivative gµν(y) ∂

∂yν acts on a vector function. The

Christoffel symbols are given by

Γγαβ =
1

2
(∂β , gγα + ∂α, gγβ − ∂γ , gαβ) (31)

and can be written in the position diagonal representa-
tion, in terms of the commutators of D with the metric
as

Γγαβ =
1

2

1

b
[Dβ , gγα] + [Dα, gγβ ]− [Dγ , gαβ ]. (32)

Then using

gαβ(X) =
1

b
[Dα, Xβ ], (33)

one obtains

Γγαβ =
1

2
b−2

(
[Dβ , [Dγ , Xα]] +

[Dα, [Dγ , Xβ ]]− [Dγ , [Dα, Xβ ]]

) (34)

The Riemann tensor then becomes

Rλαβγ =
1

b
([Dβ ,Γλαγ ]− [Dγ ,Γλαβ ]) +

+
(
ΓλβσΓ

σ
αγ − ΓλγσΓ

σ
αβ

) (35)

where Γγαβ is to be inserted as the Christoffel symbols
giving only commutators. One then defines the Ricci
tensor from the Riemann tensor as

Rαβ = gµνRαµβν =
1

b
[Dµ, Xν ]Rαµβν (36)

and also defines

R = gαβRαβ =
1

b
[Dα, Xβ ]Rαβ . (37)

It is well known that the ordinary derivative of a scalar
function, Vµ = ∂ϕ(y)/∂yν , in Riemann geometry will
transform under arbitrary coordinate transformations as
a covariant vector. But such a derivative of a vector
function of the coordinates will not transform as a ten-
sor. The covariant derivative with respect to yν of a
contravariant vector Aµ is given by

Aµ
,ν =

∂Aµ

∂yν
+AσΓµ

σν (38)

and the covariant derivative of a covariant vector Aµ is
given by

Aµ,ν =
∂Aµ

∂yν
AσΓ

σ
µν (39)

where both Aµ
,ν and Aµ,ν transform as tensors with re-

spect to the metric gαβ .
One recalls for Riemannian geometry that there is a
Christoffel symbol on the right-hand side for each in-
dex of the tensor being differentiated. In this algebraic
framework one can write the covariant differentiation of
a contravariant vector Aµ as:

Aµ
,ν =i[Dν , A

µ] +
1

2
Aσ

(
[Dν , [D

µ, Xσ]]+

+ [Dσ, [D
µ, Xν ]]− [Dµ, [Dσ, Xν ]]

) (40)

Since, by definition, A is at most a function of the X op-
erators. Thus, one can write both the regular derivative
(first term) and complete it with the index contraction
with the Christoffel symbol (second term). It is impor-
tant to distinguish this covariant differentiation from the
regular differentiation that occurs as a representation
of the operator Dµ in the position representation. It
follows that we can write the covariant derivative of any
tensor in the same way but with a contraction of the
Christoffel symbol with each of the tensor indices as is
well known in Riemannian geometry. The angle between
any two vectors is also defined in the customary way
using only the symmetric part of gµν(X). One recalls
that only the symmetric part of the metric is used in
Riemannian geometry to determine distance and angle
since it is contracted with a symmetric expression in
equation 28 as ds2 = gµνdX

µdXν .
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There is another transformation that is critical, and
that is the infinitesimal gradual change (rotation) in each
“plane” of two of the X variables such as in the µν plane
which can be generated by the generator given by,

Lµν = XµDν −XνDµ (41)

with

M = edηµνL
µν

(42)

as the associated transformation which gives the oper-
ator for rotations in the µν plane for a vector X thus
smoothly forming a new linear combination of the Xµ

and Xν variables.

Both the translations generated by D and the ro-
tations generated by L are essential operations that
usually are time dependent and can be used with other
considerations to formulate the dynamical changes in
the X space of variables as well as all other non-scalar
objects.

III. CONCLUSION AND APPLICATIONS

Although the primary objective here is to lay a more
general Lie algebra foundation to merge general relativ-
ity with quantum theory, it should be noted that the
work above is purely mathematical and will apply to all
other domains of Riemannian Geometry such as abstract
mathematics and applications in other areas such as eco-
nomics where the space is vast in representing the pro-
duction (and prices) of the 500 to 1,000 input-output
variables that describe the economy in any country since
those variables, although independent, form a space that
is not Euclidian. We have already done the necessary
background work to frame GR in terms of the operator
algebra. The Einstein equations:

Rαβ − 1

2
gαβR+ gαβΛ =

(
8πG

c4

)
Tαβ (43)

can now be written as

Rαβ − (iℏ[Dα, Xβ ])

(
1

2
R− Λ

)
=

8πG

c4Tαβ
(44)

where Rαβ and R are now given in terms of commuta-
tors as shown above while Tαβ is the energy-momentum
tensor as determined by the SM. The representation of
quantum theory and the standard model within this GLA
framework that includes gravity will be explored in a sub-
sequent paper where we will also show that the effective
momentum operator is

Dµ = ih

(
gµν(y)

(
∂

p
artialyν

)
+ Γµ(y) +Aµ(y) +

∂ϕ(y)

∂yν

)
(45)

where the metric gµν(y) has now become a function of
the space time variables and one now has the additional
Christoffel symbol µ(y) needed to maintain full covari-
ance in curved spaces. In a strong gravitational field near
a star, such as a non-rotating white dwarf, one can treat
the metric as constant using the Schwarzschild solution
over a region that is small relative to the size of the star.
The radial direction can be taken as the y1 direction as
the distance to the center of the star, with

g00 = 1− rs
y1

(46)

and

g11 = − 1

1− rs/y1
(47)

where rs = 2GM/c2 with g22 = g33 = −1 and where G
is the gravitational constant, M is the mass of the star,
c is the speed of light, y1 is the distance to the center of
the star, and rs is the radius of the star, giving g(X) as
the Schwarzschild solution.
Thus one gets altered uncertainty principles:

∆Xr∆Dr ≥ ℏ
2

(
1

1− rs/r

)
(48)

and

∆t∆Er ≥ ℏ
2

(
1− rs

r

)
(49)

where r2 = 2GM/c2 and where r is the distance to the
center of the spherical mass. What is maintained is

∆t∆Er∆Xr∆Dr ≥
(
ℏ
2

)2

(50)

while the other two uncertainty relations remain un-
changed. We are investigating whether this change in
the uncertainty relations affects the virtual pair produc-
tion and could lead to observable shifts in atomic spectra
with hydrogen. The space-time dependent γ(X) matrices
must reduct to γµν + γνγµ = gµν for the Euclidean met-
ric for the conservation of probability, so equation (??)
must also be valid for the Schwarzschild metric. One can
show by direct multiplication that the solution for the
Schwarzschild metric is accomplished by changing:

γ0 =

[
0 I
I 0

]
→ γ0(X) =

[
0

√
1− rs/y1√

1− rs/y1 0

]

(51)

γ1 =

[
0 σ1

σ1 0

]
→ γ1(X) =

 0 − σ1√
1−rs/y1

− σ1√
1−rs/y1

0


(52)

where r2 = 2GM/c2 and y1 is the distance to the cen-
ter of a non-rotating mass (star) and where γ2 and γ3
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are unchanged. Thus, the full Dirac equation in the X
diagonal representation is:

0 = ⟨y|γµ(y)Dµ −m|Ψ⟩ (53)

=

(
γµ(y)iℏ

∂

∂yµ
+ Γµ(y) +Aµ(y) +

∂

∂yν − µ

)
⟨y|Ψ⟩ .

(54)
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