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QUANTUM MECHANICS TEST BANK

1. Kinematics of Quanta [500 level]
An electron moving along the positive z-axis with the huge γ factor of γe = 106,
or the energy Ee = 511 GeV, hits a very soft CMB photon with an energy
Eγ = 10−3 eV moving in the opposite direction (along the negative z-axis).
After the collision the direction of the three-momentum of the incoming photon
is reversed, while the electron continues to move along the positive z-xis.
(a) Derive the appropriate inverse Compton scattering formula for the energy
E ′

γ of the scattered photon and compute its numerical value. Use the leading
term in the asymptotic expansion in the γ-factor of the incoming high energy
electron.
(b) Compute the approximate numerical value of the energy E ′

γ of the scattered
photon when the initial photon energy is Eγ = 1 eV.

(c) Can you use the same approximate formulas when 4 EeEγ

(mc2)2
is larger than 1?

Find the appropriate approximate formula in this case.

2. Unknown Potential [500 level]
A one-dimensional system has the ground state wave function ψ(x) = Ne−x4/a4 ,
where N is a normalization constant.
(a) Write an integral expression for the normalization constant N .
(b) Find the potential if the ground state energy is E0.

3. One-Dimensional Potential [500 level]
A particle of mass m moves in one dimension, subject to a δ-function potential
V (x) = −Kδ(x).
(a) Find the matching condition for the wave function across the δ-function
at x = 0.
(b) Show that this potential has exactly one bound state.
(c) Find the bound state energy.

4. Tunneling [700 level]
Consider a particle in a one-dimensional double-well potential

V (x) = V0
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.

(a) Show that the eigenstates of the Hamiltonian are also eigenstates of the
parity operator. Sketch the potential and the two lowest energy eigenstates.



(b) At time t = 0, the particle is localized on one side of the double well, in
the state

ψ(x, t = 0) =
1√
2
[ψ+(x) + ψ−(x)],

where the ψ± are the eigenstates with energies E+ < E−. Write down the
time-dependent wave function ψ(x, t). What is the period of oscillation of the
particle?
(c) Using the WKB approximation, estimate the energy difference E− − E+.

5. One-Dimensional Scattering [700 level]
A particle of mass m moves in a potential V (x) = α[δ(x) + δ(x− a)].
(a) Write down the matching conditions for the wave function across the δ-
function singularities in the potential.
(b) Determine the time-independent wave function for a particle with wave
number k.
(c) At what energies E will the particle pass through the potential without
any reflection?

6. Time-Dependent Potential [700 level]
At times t < 0, a particle is in the ground state of the one-dimensional potential

V (x) =

{
0, |x| < a
V0 |x| ≥ a

,

where V0 is so large (≫ h̄2/2ma2) as to be effectively infinite.
(a) Find this initial wave function.
(b) At t = 0, the potential instantly changes to V = 0 everywhere. Find the
wave function for times t > 0.

7. Baker-Campbell-Hausdorff Lemma [500 level]
(a) Demonstrate the Baker-Campbell-Hausdorff Lemma: If [A, [A,B]] = [B, [A,B]] =

0, then eAeB = eA+Be
1
2
[A,B].

(b) Show that for the operators x and p,

eiαxeiβp = eiϕeiβpeiαx

for some phase ϕ, and find ϕ.
(c) What are the conditions for eiαx and eiβp to commute?

8. Two-State System [500 level]
Consider a system that has only two linearly independent states,

|1⟩ =
[
1
0

]
and |2⟩ =

[
0
1

]
.



Suppose the Hamiltonian of the system in matrix form is

H =

[
J 2

√
2J

2
√
2J 3J

]
,

where J is a constant with the dimensions of energy.
(a) Find the two energy eigenvalues of this system.
(b) Find the normalized eigenstates corresponding to the two eigenvalues.
(c) If the system begins in the state |ψ(t = 0)⟩ = |1⟩, find the time behavior
of the system |ψ(t)⟩.
(d) What is the probability of finding the system in state |2⟩ at time t?

9. Operator Equations [700 level]
(a) Use the commutation relations between the momentum p and position x (in
the Heisenberg picture) to obtain the equations of motion for the expectation
values ⟨p⟩ and ⟨x⟩ when the Hamiltonian is given by

H =
p2

2m
+

1

2
m(ω2x2 + Ax+B). (1)

(b) Find the general solutions of the resulting equations of motion.

10. Wave Packet Spreading [500 level]
(a) Show that for a free particle of massm, the time dependence of the operator
x(t)2 in the Heisenberg picture is

x(t)2 = x(0)2 +
t

m
[x(0)p(0) + p(0)x(0)] +

(
t

m

)2

p(0)2.

(b) At time t = 0, the particle is prepared in the Gaussian wave packet

ψ(x) =
1

(2π∆2)1/4
e−x2/4∆2

.

Show that the uncertainty in the position of the particle as a function of time
is [∆x(t)]2 = ∆2 + (h̄t/2m∆)2.

11. Squeezing Operators [700 level]
This problem concerns operators that produce what are known as “squeezed
states” of the harmonic oscillator. Consider the operator

U(η) = exp{η[a2 − (a†)2]},

where η is a real-valued parameter (not an operator).
(a) Show that U is unitary.



(b) Define another operator g+(η) = U(η)(a+a†)U(η)†. Show that g+ satisfies
the differential equation

dg+
dη

= 2g+(η).

(c) Find dg−/dη for the operator g−(η) = U(η)(a− a†)U(η)†.
(d) Use the result from parts (b) and (c) to show that

U(a± a†)U † = e±2η(a± a†).

12. Commutators [500 level]
Calculate the following commutators involving the angular momentum opera-
tors:
(a) [Lx, x]
(b) [Lx, y]
(c) [Ly, z]
(d) [Lz, x]
(e) [Ly, zx]

13. Commutators [500 level]
Calculate the following commutators involving the angular momentum opera-
tors:
(a) [Lx, px]
(b) [Ly, px]
(c) [Lz, py]
(d) [Lx, pz]
(e) [Ly, pz]

14. Angular Momentum [500 level]
Evaluate the action of the angular momentum operator in the following ex-
pressions, involving r =

√
x2 + y2 + z2 and the azimuthal angle ϕ:

(a) Lz kr
(b) Lz sin kr
(c) Lz e

iϕ

15. Angular Momentum [500 level]
Consider a particle in a state with total angular momentum ℓ(ℓ+ 1)h̄2 and z
projection mh̄.
(a) Using L+ and L−, show that ⟨Lx⟩ = ⟨Ly⟩ = 0.
(b) Using L2, show that ⟨L2

x⟩ = ⟨L2
y⟩ = 1

2
[ℓ(ℓ+ 1)−m2]h̄2.

16. Addition of Angular Momentum [700 level]
What are the possible values of the total orbital angular momentum ℓ for the



following combinations of electrons?
(a) Four p electrons
(b) Three p and one f electron

17. Molecular Hamiltonian [500 level]
A rigid diatomic molecule, free to rotate around its center of mass, is given by

H =
L2 − L2

z

2I1
+
L2
z

2I3
.

(a) What are the eigenfunctions (expressed in terms of the standard basis of
Yℓm spherical harmonics) and corresponding eigenenergies for this system?
(b) What are the degeneracies of the energy spectrum, and how are they
related to the symmetry of this system?
(c) The momenta of the inertia of the molecule obey this relation,

2

I1
=
I3 − I1
I1I3

=
1

8ma20
,

for electron mass m and Bohr radius a0. Starting in the ground state, what
energy is necessary to excite the system into the second excited state? Express
the answer in terms of the Rydberg energy.

18. Operator Algebra [500 level]
Consider the vector operator Θ = L× r− ih̄r.
(a) Show that Θ may also be written Θ = ih̄r− L× r.
(b) Show that this operator is Hermitian.
(c) Show that [L2, r] = −2ih̄Θ.

19. Symmetries [700 level]
Consider the following matrix elements. Some of them can be shown to be
zero. State which ones are zero and give a brief reason for each answer. Each
state has the form ϕ(j)

m, where the superscript and subscript denote the total
angular momentum and its z-projection quantum numbers.
(a) ⟨ψ(3)

2|f(r)L · S|ϕ(2)
2⟩

(b) ⟨ψ(3)
2|J+|ϕ(2)

1⟩
(c) ⟨ψ(3)

2|µx + iµy|ϕ(2)
1⟩

(d) ⟨ψ(3)
2|V (r)|ϕ(3)

2⟩
(e) ⟨ψ(3)

1|Qzz|ϕ(1)
0⟩

20. Time Operator [500 level]
Suppose that there is a time operator T canonically conjugate to the Hamil-
tonian, so that [T,H] = ih̄.
(a) Consider the unitary operator U = eiαT . Determine the action of this



operator on an energy eigenstate |ψn⟩.
(b) Show that spectrum of the Hamiltonian is unbounded from below.
(c) Is there a time operator in quantum mechanics?

21. Fermi Gas [500 points]
A system of N noninteracting, identical, spin-1

2
fermions of mass m is con-

strained to a cubical region of volume V .
(a) Write down the nonrelativistic Schrödinger wave function for a single par-
ticle in an energy eigenstate, in terms of the quantum numbers.
(b) For what values of the quantum numbers will relativistic effects start to
become important?
(c) Calculate the Fermi energy, using the full relativistic energy-momentum
relation.

22. Magnetic Field [700 level]
A spin-1

2
particle with magnetic moment µ has Hamiltonian H = −µσ ·B. At

time t = 0, the magnetic field is B = B0ẑ, and the particle is in the ground
state. (You may take the wave function to be real at t = 0.)
(a) After a time T , the magnetic field switches instantaneously to B = B0x̂.
What is the state of the system at t = 2T?
(b) Approximately how fast does the field need to rotate for its change to be
effectively instantaneous?
(c) What would happen to the state, qualitatively, if the magnetic field instead
rotated very slowly?

23. Total Spin [500 level]
A system of two spin-1

2
particles with spin vectors S1 and S2 is prepared in

a total spin S = 1 state. We will consider all three possible mS substates of
this triplet. After the initial preparation of the S = 1 state, the the first spin
S1 is rotated 180◦ around the x-axis; this is implemented through operator
U = exp

(
iπ
2
σ1
x

)
.

(a) Simplify the exponential to get an explicit form for the operator U .
(b) Find the probability that the system is in an S = 0 state after the rotation,
for each possible initial value of mS:
(i) mS = +1
(ii) mS = 0
(iii) mS = −1

24. Stern-Gerlach Experiments [500 level]
A beam of spin-1

2
particles is prepared in a pure σy = +1 state.

(a) The beam is sent through a Stern-Gerlach apparatus oriented along the
x-axis. If the beams are measured at this point, what are the probabilities of



finding the spins up and down along the x-axis?
(b) If the x-axis spin up beam is sent through a y-axis Stern-Gerlach apparatus,
what are the probabilities for the particles emerging to be spin up and spin
down along y?
(c) If, instead, the two beams from the x-axis Stern-Gerlach apparatus are
recombined without being measured, and the recombined beam is sent through
the y-axis apparatus, what are the probabilities of the particles coming out
being spin up or spin down along y?

25. Spin Sum [500 level]
Consider a quantum system of spin 1

2
. The spin operator is S = Sxî+Sy ĵ+Szk̂.

(a) What are the eigenvalues and eigenvectors of the operator Sx + Sy?
(b) Suppose a measurement of Sx +Sy is made, and the system is found to be
in the eigenstate corresponding to the larger eigenvalue. What is the proba-
bility that a subsequent measurement of Sz yields h̄

2
?

(c) Alternatively, starting from the same Sx+Sy eigenstate, what is the prob-
ability that a measurement of Sy yields h̄

2
?

26. Total Angular Momentum [700 level]
A 3P0 atomic state hs spin and orbital angular momenta s = ℓ = 1 but total
angular momentum j = 0.
(a) Although there are nine basis states |mL⟩ ⊗ |mS⟩, show by application of
Jz = Sz + Lz that only three of them can possibly be part of the 3P0 state.
(b) By similar application of Jx and Jy, determine the expansion of the 3P0

state in the |mL⟩ ⊗ |mS⟩ basis.

27. Variational Principle [500 level points]
Consider a particle moving in the one-dimensional potential V (x) = K|x|.
(a) Find an upper limit on the ground state energy using a variational wave
function ψ1(x) = C1 exp(−|x|/a), where C1 is the appropriate normalizaiton
factor.
(b) Find another upper limit using a different wave function ψ2(x) = C2 exp(−x2/b2).
(c) Which function gives a tighter bound on the ground state energy?

28. Variational Principle [700 level]
Consider a system described by the Hamiltonian H. Let ψn (n = 0, 1, 2, . . .)
be the normalized eigenstates, Hψn = Enψn, ⟨ψn|ψn⟩ = 1. Let a normalized
wave function |ϕ⟩ be expanded as

|ϕ⟩ =
∞∑
n=0

cn|ϕn⟩.

(a) Find the condition on the cn coefficients imposed by the normalization of
|ϕ⟩.



(b) With the help of the expansion, prove ⟨ϕ|H|ϕ⟩ ≥ E0 for any |ϕ⟩.
(c) Suppose we have calculated ⟨ϕ|H|ϕ⟩ for various choices of |ϕ⟩ and obtained
⟨H⟩min as the minimum value of ⟨ϕ|H|ϕ⟩. Since ⟨H⟩min ≥ E0, we may get a
rather reliable estimate of the ground state energy as E0 ≈ ⟨H⟩min.

Now, consider the harmonic oscillator Hamiltonian

H =
h̄2

2m

d2

dx2
+

1

2
mω2x2

and a family of normalized trial wave functions ϕβ(x) = N exp(−βx2). Find
the normalization constant N .
(d) Calculate f(β) = ⟨ϕβ|H|ϕβ⟩.
(e) Find an estimate of he ground state energy E0 by minimizing f(β).

You may find the following integrals useful in your calculations:∫ ∞

−∞
dy exp(−γy2) =

√
π

γ∫ ∞

−∞
dy y2 exp(−γy2) =

1

2

√
π

γ3

29. Identical Particles [500 level]
Three identical bosons with spin s = 1 are placed into the same orbital state
ϕ(r).
(a) Count the number of possible states of the three bosons.
(b) Among the states, which ones have total z spin projection mS = 0?
(c) What are the possible values of the total spin of the three-boson system?

30. Identical Particles [700 level]
The normalization for a two-particle wave function Ψ(x1, x2) is given by∫

dx1

∫
dx2 |Ψ(x1, x2)|2 = 1.

Let ψα(x) and ψβ(x) be normalized one-particle wave functions,∫
dx |ψα(x)|2 =

∫
dx |ψβ(x)|2 = 1.

We allow for the possibility that ψα and ψβ are not orthogonal.
(a) If the particles, 1 and 2, are distinguishable, what is the expression for the
normalized wave function Ψ(x1, x2) for the two-particle wave function?
(b) Find the probability density for observing particle 1 at x1 = a, regardless
of the position of the distinguishable particle 2.



(c) If the particles are indistinguishable bosons, the two-particle wave function
must be

Ψ(x1, x2) = N [ψα(x1)ψβ(x2) + ψβ(x1)ψα(x2)].

Determine the normalization constantN for the general case in which ⟨ψα|ψβ⟩ ≠
0.
(d) For identical bosons, find the probability density of observing one particle
at x = a, regardless of the position of the other particle.
(e) Suppose the wave function ψα is confined in a laboratory somewhere on
Earth, while ϕβ is localized on the moon. We would naively expect that we
can ignore the symmetrization requirement between particles 1 and 2 if one
is located on Earth and the other on the moon. To justify this expectation,
discuss the behavior of the probability density for one particle to be found
in the terrestrial laboratory and show that the results are the same as for
distinguishable particles.

31. Harmonic Oscillator [500 level]

Consider a simple harmonic oscillator with Hamiltonian H = p2

2m
+ 1

2
mω2

0x
2

and the lowering operator a =
√

mω0

2h̄
x+ i 1√

2mω0h̄
p.

(a) Use the commutator [a,H] to find the time dependence of the operator a
in the Heisenberg representation.
(b) Find the normalization constant N such that the coherent state

|α⟩ = Neαa
†|0⟩

satisfies ⟨α|α⟩ = 1.
(c) Show that in the Schrödinger representation, the state |α⟩ evolves in time
as |α(t)⟩ = |α(0)e−iω0t⟩.

32. Harmonic Oscillator [500 level]
A one-dimensional harmonic oscillator has Hamiltonian

H =
p2

2m
+

1

2
mω2x2 =

(
a†a+

1

2

)
h̄ω.

(a) Starting from an initial state

|ψ(t = 0)⟩ = 1√
2
(|0⟩+ |1⟩) ,

find the expectation values of ⟨x(t)⟩ and ⟨p(t)⟩.
(b) Show that these expectation values obey the classical equations of motion.



33. Atomic Units [500 level]
In atomic physics, it is natural to use units that match the scales in atoms.
Mass is measured in units of the electron mass me. Energy is measured in
the Hartree unit, mee

4/h̄2 (in Gaussian units); this is the magnitude scale of
the kinetic and potential energies in a hydrogen atom. Length is measured
in Bohr radii, a0 = h̄2/mee

2. Angular momentum is measured in units of
h̄. Magnetic moments are in units of Bohr magnetons, µB = eh̄/mec. This
problem concerns the appropriate atomic units of electric and magnetic fields.
All dimensionless factors of order unity may be neglected.
(a) The natural unit of E is the field strength at a distance a0 from a hydrogen
nucleus. Express this E0 in terms of fundamental constants.
(b) There are two possible ways of formulating a unit of B. One possibility
is the magnetic field at the nucleus from an electron in the first Bohr orbit.
Find this field BN .
(c) There is also the field that splits the spin-up and spin-down states of a
particle with magnetic moment µB by 1 Hartree. Find this field BH .
(d) Find the relationships between these two magnetic field units and E0, in
terms of the dimensionless fine structure constant α = e2/h̄c.
(e) Which of the units for B is related to the natural scale of magnetic energy
shifts in atoms?

34. Hydrogen Atom [500 level]
The ground state wave function for an electron in a hydrogen atom has the
form

ψ(r) = Ne−r/a0 ,

where N is a normalization and constant and a0 = h̄2/me2.
(a) Find the average value of the electron kinetic energy ⟨T ⟩.
(b) Find the average value of the potential energy ⟨V ⟩.

35. Variational Principle in a Helium-Like Atom [700 level]
A helium-like ion with two electrons has Hamiltonian

H =
p2
1

2m
+

p2
2

2m
− Ze2

r1
− Ze2

r2
+

e2

|r1 − r2|
.

Take as an ansatz for the ground state wave function

ψ(r1, r2) =
Z3

eff

πa30
e−Zeff(r1+r2)/a0 ,

where Zeff is an unknown “effective” nuclear charge. If the two electrons did
not repel, this (with Zeff = Z) would be the exact wave function.



(a) Find the expectation value of the energy for the proposed state. You will
find the integral ∫

d3r1

∫
d3r2

e−λ(r1+r2)

|r1 − r2|
=

20π2

λ5

useful.
(b) Find the value of Zeff that minimizes the energy.
(c) For this kind of position wave function, what must the spin state of the
two electrons be?

36. Stark Effect [500 level]
An electric field E = E0k̂ is applied to a hydrogen atom.
(a) Find the correct basis for the perturbation acting on the degenerate n = 2
states with wave functions

ψ2S(r) =
1

4
√
2πa

3/2
0

(
2− r

a0

)
e−r/2a0

ψ2P0(r) =
cos θ

4
√
2πa

3/2
0

r

a0
e−r/2a0 .

(b) Find the first-order Stark energy shifts for the basis of states found in part
(a).
(c) What are the first-order energy shifts for the remaining

ψ2P+1(r) = − eiϕ sin θ

8
√
πa

3/2
0

r

a0
e−r/2a0

ψ2P−1(r) =
e−iϕ sin θ

8
√
πa

3/2
0

r

a0
e−r/2a0 .

states?

37. Spherical Potential [700 level]
A particle of mass m is confined to the interior of a hollow sphere of radius R.
(a) What are the ground state wave function of the particle and the corre-
sponding energy?
(b) Calculate the pressure the particle exerts on the sphere. The pressure may
be defined as p = −∂E/∂V .

38. Spherical Potential [700 level]
A particle of mass m moves in an attractive spherical potential

V (r) =

{
−V0, r < a
0, r ≥ a

,



where V0 > 0 is a constant.
(a) Write down the radial Schrödinger equation for a state of angular momen-
tum ℓ.
(b) Find the smallest value of V0 for which there is a bound state with zero
energy and zero angular momentum.

39. Relativistic Potentials [700 level]
Two different relativistic effects (Zitterbewegung and interactions with vacuum
fluctuations of the electric field) each lead to an effective smearing out of an
electron’s position. If the smearing extends over a characteristic distance λ,
the electron effectively interacts with a potential that is averaged over the
smearing region. If the true potential is V (r), the effective potential that
appears in the effective Schrödinger equation is

Veff(r) ≈ V (r) +
1

8
λ2∇⃗2V (r).

(a) In a hydrogen atom, with V (r) = −α
r
, which atomic states are most affected

by the modified Veff?
(b) Find the leading order energy shift due to this effect for the hydrogen
ground state ψ(r) = 1√

πa30
e−r/a0 .

40. Perturbation Theory [500 level]
The unperturbed Hamiltonian for a theory can be written

H0 =


200 0 0 0
0 200 0 0
0 0 200 0
0 0 0 300

 .
(a) Find the unperturbed eigenvalues of the energy.
(b) A perturbation

H1 =


2 1 0 1
1 2 0 1
0 0 3 2
1 1 2 3


is addded to H. Find the energy eigenvalues for first order in H1.
(c) Find the eigenstates to first order.
(d) Find the eigenvalues to second order.

41. Perturbation Theory [500 level]

A two-level quantum system with non-degenerate level energies E
(0)
1 and E

(0)
2



experiences a perturbation V with matrix elements as shown:

V =

[
V11 V12
V ∗
12 V22

]
.

(a) Find the corrections to the energies up to second order in perturbation
theory.
(b) Find the exact expressions for the eigenenergies.
(c) Show that when the exact expression is expanded to second order, it agrees
with the result from part (a).

42. Perturbation Theory [700 level]
A system of two coupled harmonic oscillators has Hamiltonian

H = H0 +H1

H0 =
p21
2m

+
1

2
mω2

1x
2
1 +

p22
2m

+
1

2
mω2

2x
2
2

H1 = λx1x2,

with ω1 ̸= ω2.
(a) Find the energy of the perturbed number state |n1, n2⟩ to first order in λ.

Hint: Remember, xi =
√

h̄
2miωi

(ai + a†i ).

(b) Find the second-order energy shift for the |n1, n2⟩ state.
(c) What is the condition on λ for the validity of perturbation theory?

43. Perturbation Theory [700 level points]
Consider an electron in a one-dimensional harmonic oscillator potential 1

2
mω2x2,

placed in an electric field E pointing in the x-direction.
(a) Write the Hamiltonian H in terms of raising and lowering operators a =√

mω
2h̄
x+ i√

2mωh̄
p and a† =

√
mω
2h̄
x− i√

2mωh̄
p.

(b) Calculate the first-order energy shift of the state |n⟩ due to E .
(c) Calculate the second-order energy shift of |n⟩.
(d) Find the exact energy levels of this system, and compare the results to the
first- and second-order perturbative shifts.

44. Perturbation Theory [700 level points]
A particle of mass m moves in a one-dimensional square well potential with a
δ-function in the center of the well,

V (x) =

{
∞, |x| > a
λδ(x), |x| < a

.

(a) Find the energy eigenvalues for λ = 0.
(b) Find the energy levels to first order in λ ̸= 0, using perturbation theory.



(c) Find a transcendental equation for the exact eigenvalues, and show that
expanding this equation to first order in λ gives the same result as part (b).

45. Time-Dependent Harmonic Oscillator [700 level points]
A one-dimensional harmonic oscillator with Hamiltonian

H0 =
p2

2m
+
kx2

2

has energy eigenvalues E
(0)
n = (n+ 1/2)h̄ω0, where ω0 =

√
k/m. Suppose the

spring constant is changed according to k → k′ = k(1 + ϵ), with ϵ≪ 1.
(a) Find the exact new eigenvalues, and expand the result up to second order
in ϵ.
(b) Now calculate the perturbed energies, treating the Hamiltonian as H =
H0 + ϵV , where ϵV = ϵkx2/2 is a small perturbation. Work to first order in ϵ.
(c) Calculate the perturbed energy for the ground state to second order in λ,
and show that the result agrees with the result from part (a).

46. Unstable Potential [500 level]
Consider the Schrödinger equation with potential

V (r) = −K
r2
,

with a positive constant K.
(a) Show that if ψ(r) is a solution of the time-independent Schrödinger equa-
tion, so is the wave function ψ(cr) with coordinates rescaled by a c > 0,
although the energies of the two eigenfunctions are different.
(b) Show that if ψ(r) is a normalizable wavefunction, so is ψ(cr).
(c) Show that this potential has no lowest-energy state. (This phenomenon is
known as “falling to the center.”)

47. Carbon Atom [500 level points]
The electron configuration of a neutral carbon atom is 1s22s22p2.
(a) Taking the approximation in which L2, S2, J2, and Jz are good quantum
numbers, what possible values can they take in the ground state manifold?
(b) Which of the quantum numbers are still good with the full relativistic
Hamiltonian?
(c) What values can the true good quantum numbers take in the ground state?

48. Spins [500 level points]
The spin components of a beam of spin-1

2
atoms prepared in an initial state |ψ0⟩

are measured, and the following probabilities are obtained: P (Sz = +) = 1
2
,

P (Sz = −) = 1
2
, P (Sx = +) = 3

4
, P (Sx = −) = 1

4
, P (Sy = +) = 0.067, and

P (Sy = −) = 0.933. From the experimental data, determine the input state.



49. Spin-1 Probabilities [500 level points]
A beam of spin-1 particles is prepared in the state

|ψ⟩ = 2√
29

|1y⟩+ i
3√
29

|0y⟩ −
4√
29

| − 1y⟩

in the y-quantization basis.
(a) What are the possible results of a measurement of the spin component Sy

and with what probabilities would they occur?
(b) What are the possible results of a measurement of the spin component Sz

and with what probabilities?
(c) Plot a histogram of the results of parts (a) and (b), and calculate the
expectation values for both measurements.

50. Spin-1 Probabilities [500 level points]
A spin-1 particle is in the state

|ψ⟩ = 1√
30

 1
2
5i


in the Sz basis.
(a) What are the possible results of a measurement of the spin component Sz,
and with what probabilities do they occur?
(b) Calculate the expectation value of the spin component Sz.
(c) Calculate the expectation value of the spin component Sx.

51. Wavefunction Overlap [500 level points]
A spin-1 particle is prepared in the state

|ψi⟩ =
√

1

6
|1z⟩ −

√
2

6
|0z⟩+ i

√
3

6
| − 1z⟩

in the z basis.
(a) Find the probability that the system is measured to be

|ψf⟩ =
1 + i√

7
|1y⟩+

2√
7
|0y⟩ − i

1√
7
| − 1y⟩.

(b) What is the probability of |ψf⟩ being found if the system is first measured
and found to have spin projection Sx = 1?

52. Spin Projections [500 level points]
Consider the projection operators P+ and P− that project out the spin-up and
spin-down states (of a spin-1

2
particle) in the z-direction. Determine whether

these operators are Hermitian, and explain why.



53. Time-Dependent Observables [500 level points]
(a) Show that the probability of a measurement of the energy is time in-
dependent for a general state |ψ(t)⟩ =

∑
n cn(t)|En⟩ that evolves due to a

time-independent Hamiltonian.
(b) Show that probability of measurements for other observables are also in-
dependent of time if those observables commute with the Hamiltonian.

54. Two-State Hamiltonian [500 level points]
Consider a Hamiltonian

H =
h̄

2

[
ω0 ω1

ω1 −ω0

]
.

(a) Diagonalize this Hamiltonian. Find the eigenvalues and eigenvectors.

(b) Find time dependence of the initial state

[
1
0

]
.

55. Magnetic Precession [500 level points]
Consider a spin-1

2
particle with a magnetic moment µ. At time t = 0, the

state of the particle is |ψ(t = 0)⟩ = |+n̂⟩—up in the n̂ direction, with n̂ =
(x̂ + ŷ)/

√
2. The system is allowed to evolve in a uniform magnetic field

B = B0(x̂+ ẑ)/
√
2. What is the probability that the particle will be measured

to have spin up in the y-direction after a time t?

56. Observable Operator [500 level points]
(a) Consider a two-state system with a Hamiltonian

H =

[
E1 0
0 E2

]
.

Another physical observable A is described by the operator

A =

[
0 a
a 0

]
,

where a is real and positive. Let the initial state of the system be |ψ(0)⟩ = |a1⟩,
where |a1⟩ is the eigenstate corresponding to the larger of the two eigenvalues
of of A. Find this eigenstate.
(b) What is the frequency of oscillation of the expectation value of A?

57. Three-State System [500 level points]
Let the matrix representation of the three-state system be

H =

 E0 0 A
0 E1 0
A 0 E0

 .



using the basis states |1⟩, |2⟩, and |3⟩.
(a) If the state of the system at time t = 0 is |ψ(0)⟩ = |2⟩, what is the
probability that the system is in the state |2⟩ at time t?
(b) If, instead, the state of the system at time t = 0 is |ψ(0)⟩ = |3⟩, what is
the probability that the system is in the state |3⟩ at time t?

58. Composite Spin State [500 level points]
Consider a state of two s = 1

2
spins,

|ψa⟩ =
1√
2
(|+z⟩1|−z⟩2 + |−z⟩1|+z⟩2) .

(a) Transform each of the spins into the x basis and find the resulting two-
particle spin wavefunction.
(b) Transform each of the spins into the y basis and find the resulting two-
particle spin wavefunction.

59. Infinite Square Well [500 level points]
Consider an infinite square well of width L, centered at x = 0.
(a) Find the wavefunction for the n-th eigenstate.
(b) Find the expectation values of x and p as functions of n.
(c) Find the uncertainties ∆x and ∆p as functions of n.

60. Square Well States [500 level points]
Consider an infinite square well of width L, extending from x = 0 to L. Find
the probability that a particle lies in the region 3L/4 < x < L for the three
lowest eigenstates of the Hamiltonian.

61. Square Well [500 level points]
A particle at t = 0 is known to be in right half of an infinite square well of
width L, with a probability density that is uniform in the right half of the
well.
(a) What is the initial wavefunction of the particle?
(b) Calculate the expectation value of the energy.
(c) Find that the probability that the energy takes on its n-the eigenvalue.

62. Half-Infinite Square Well [500 level points]
Consider a potential

V (x) =


∞, x < 0
0 0 < x < L
V0 x > L

.

(a) Find a transcendental equation for the energy of the ground state of the
system.
(b) Find the ground state energy, to the lowest nonvanishing order in 1/V0.



63. Coherent State [500 level points]
Consider a harmonic oscillator with frequency ω. Suppose the system is pre-
pared in a state

|α⟩ =
∞∑
n=0

αne−α2/2

√
n!

|n⟩,

where α is a positive real number.
(a) Plot a histogram of the possible measured energies.
(b) Find the expectation value of the energy.
(c) Find the uncertainty of the energy.

64. Wavefunctions [500 level points]
Consider these three wavefunctions:
(i) ψ(x) = Ae−x2/3,
(ii) ψ(x) = B/(x2 + 2),
(iii) ψ(x) = Csech (x/5).
(a) Calculate the normalization constant for each wavefunction.
(b) For each wavefunction, find the probability that a particle is to be found
in the range 0 < x < 1.

65. Finite Wave Train [700 level points]
A beam of particles of mass m is prepared in a momentum state |p0⟩. The
beam is directed to a shutter that is open for a finite time τ .
(a) Find the position-space wavefunction of the system immediate after passing
through the shutter.
(b) Find the momentum probability distribution of the beam after the shutter.

66. Free Particle Operators [500 level points]
(a) Show that the momentum and Hamiltonian operators for a free particle in
three dimensions commute, using the explicit position-space representations
of these operators.
(b) Show that the two operators commute using the canonical commutation
relations.
(c) Calculate the expectation value of the angular momentum component Lz

for a plane wave.

67. Wave Packet Spreading [700 level points]
Consider a wavefunction that is initially

ψ(x, 0) =
1√
2πh̄

∫ ∞

−∞
dp ϕ(p)eipx/h̄,

where the momentum-space wavefunction is ϕ(p) = (2πβ2)−1/4e−(p−p0)2/4β2
.

(a) Write down an integral expression for the time-evolved wavefunction ψ(x, t).



(b) Evaluate the resulting integral.
(c) Find the position uncertainty ∆x(t) as a function of t.

68. Gaussian Wavefunctions [500 level points]
(a) Show that a wave packet that is Gaussian in position space is also Gaussian
in momentum space.
(b) Calculate ∆x∆p for a Gaussian packet.
(c) Explain why, for a free particle, ∆x depends on time, but ∆p does not.

69. Sinusiodal Wavefunction [500 level points]
Consider a particle whose wavefunction is ψ(x) = A sin(p0x/h̄). (If you wish,
you make take the wave function to be defined on a space of length L, with
periodic boundary conditions.)
(a) Is this an eigenstate of momentum? Find the expectation value of p.
(b) Calculate the uncertainty ∆p. What are the possible results of a measure-
ment of the momentum?

70. Uncertainty Estimate [500 level points]
Use the uncertainty principle to estimate the ground-state energy of a particle
of mass m bound in the harmonic oscillator potential V (x) = 1

2
kx2. How does

this compare to the true ground state energy?

71. Uncertainty Estimate [500 level points]
Use the uncertainty principle to estimate the ground-state energy of a particle
of mass m bound in the potential V (x) = a|x|.

72. Uncertainty Estimate [500 level points]
Use the uncertainty principle to estimate the ground-state energy of a particle
of mass m bound in the potential V (x) = bx4.

73. Position Uncertainty [500 level points]
Calculate the position uncertainty for a particle bound in an infinite square
well of width L if
(a) the particle is in the ground state;
(b) the wave function is uniform across the well.

74. Beam Wavefunction [700 level points]
A beam of particles is described by the wavefunction

ψ(x) =

{
Aeip0x/h̄(b− |x|), |x| < b
0, |x| > b

.

(a) Normalize the wavefunction, using an appropriate convention for contin-
uum states.



(b) Sketch the wavefunction.
(c) Calculate and sketch a plot of the momentum probability distribution.

75. Angular Momentum [500 level points]
Starting with the definition of the angular momentum, show that the orbital
angular momentum operators in spherical coordinates are

Lx = ih̄

(
sinϕ

∂

∂θ
+ cosϕ cot θ

∂

∂ϕ

)
Ly = ih̄

(
− cosϕ

∂

∂θ
+ sinϕ cot θ

∂

∂ϕ

)
Lz = ih̄

∂

∂ϕ

76. Wave Function on a Circle [500 level points]
Consider the normalized state |ψ⟩ for a particle of mass µ constrained to move
ona circle of radius r0, given by

|ψ⟩ = N

2 + cos(3ϕ)
.

(a) Find the normalization constant N .
(b) Sketch the wavefunction.
(c) What is the expectation value of Lz in this state?

77. Angular Wave Function [500 level points]
Consider the normalized state of a particle of mass m on a sphere given by

|ψ⟩ = 1√
2
|1,−1⟩+ 1√

3
|10⟩+ i√

6
|00⟩

in the |ℓm⟩ angular momentum basis.
(a) What are the probabilities that a measurement of Lz will yield 2h̄, −h̄, or
0h̄?
(b) What is the expectation value of Lz?
(c) What is the expectation value of L2?
(d) What are the Hamiltonian and the expectation value of the energy in this
state?
(e) What is the expectation value of Ly?

78. Hydrogenic Wavefunction [500 level points]
(a) Calculate the normalization constant N , for the radial hydrogenic wave-
function R10(r) = Ne−Zr/a0 .
(b) Calculate the expectation value for ⟨r⟩.



79. Hydrogenic Wavefunctions [500 level points]
(a) Calculate the probability that the electron is measured to be within one
Bohr radius of the nucleus for the wavefunction

ψ200(x) = 2(Z/2a0)
3/2(1− Zr/2a0)e

−Zr/2a0Y00(θ, ϕ).

(b) Calculate the probability that the electron is measured to be within one
Bohr radius of the nucleus for the wavefunction

ψ211(x) =
1√
3
(Z/2a0)

3/2(Zr/a0)e
−Zr/2a0Y11(θ, ϕ).

(c) Explain the difference between the ℓ = 0 and ℓ = 1 states.

80. Hydrogenic Wavefunctions [500 level points]
(a) Calculate the probability that the electron is measured to be in the classical
forbidden region for the wavefunction

ψ200(x) = 2(Z/2a0)
3/2(1− Zr/2a0)e

−Zr/2a0Y00(θ, ϕ).

(b) Calculate the probability that the electron is measured to be in the classical
forbidden region for the wavefunction

ψ211(x) =
1√
3
(Z/2a0)

3/2(Zr/a0)e
−Zr/2a0Y11(θ, ϕ).

(c) Explain the difference between the ℓ = 0 and ℓ = 1 states.

81. Hydrogenic Wavefunctions [500 level points]
(a) Calculate the probability that the electron is measured to be inside the
nucleus for the ground state wavefunction

ψ100(x) = 2(Z/a0)
3/2e−Zr/a0Y00(θ, ϕ).

A nucleus with A nucleons (meaning Z protons and A − Z neutrons) has an
approximate radius of rN ≈ 1.2A1/3 fm.
(b) Evaluate this probability for ordinary hydrogen and U-238.

82. Tritium Decay [500 level points]
Tritium is an isotope of hydrogen, with a nucleus consisting of one proton and
two neutrons. The tritium nucleus is radioactive, decaying by β-decay to the
He-3 nucleus. An electron is initially in the ground state

ψ100(x) = 2(Z/a0)
3/2e−Zr/a0Y00(θ, ϕ).

of the tritium atom. After the (essentially instantaneous) β-decay, what is the
probability that the electron is in the ground state of the new atom?



83. Three-Dimensional Square Well [700 level points]
Consider a particle of mass m bound in an infinite square well in three dimen-
sions

V (x, y, z) =

{
0 0 < x < L, 0 < y < L 0 < z < L
∞ otherwise

.

(a) Use separation of variables to find the energy eigenvalues and eigenstates.
(b) Find the degeneracies of the first six energy levels.

84. Time-Dependent States [500 level points]
A particle in a harmonic oscillator potential is initially been in the state

|ψ(t = 0)⟩ = N
[
|0⟩+ 2eiπ/2|1⟩

]
.

(a) Find the normalization constant N .
(b) Find the time-evolved state |ψ(t)⟩.
(c) Calculate ⟨x⟩ as a function of time.
(d) Calculate ⟨p⟩ as a function of time.
(e) Verify that Ehrenfest’s Theorem holds.

85. Time-Dependent Harmonic Oscillator [700 level points]
A particle is in the ground state of the harmonic oscillator potential V1(x) =
1
2
mω2

1x
2, when the potential suddenly changes to V2(x) =

1
2
mω2

2x
2 essentially

instantaneously.
(a) What is the probability that a measurement of the particle energy yields
1
2
h̄ω2 after the change?

(a) What is the probability that a measurement of the particle energy yields
3
2
h̄ω2?

(b) Evaluate the results of parts a and b for the case ω2 = 1.7ω1.

86. Half Harmonic Oscillator [500 level points]
A particle of mass m moves in the one-dimensional potential

V (x) =

{
1
2
mω2x2, x < 0

∞, x > 0
.

(a) Find the allowed energy eigenvalues.
(b) Find the normalized ground-state wavefunction.

87. Perturbed Harmonic Oscillator [700 level points]
Consider a particle bound in the harmonic oscillator potential V (x) = 1

2
mω2x2.

A perturbation H ′ = γx3 is applied to the system.
(a) Calculate the first-order corrections to the eigenstate energies.
(b) Calculate the second-order corrections to the energies for the first three



energy levels.
(c) Calculate the the first-order corrections the wavefunctions for the first three
energy levels.

88. Perturbed Potential [500 level points]
Consider a particle moving in an infinite square well that extends over the
region 0 < x < L (with the potential vanishing in this region). A “ramp”
perturbation H ′ = βx is added to the system.
(a) Find the first-order energy shift for the ground state of the system.
(b) Find the first-order energy-shift for the first excited state of the system.

89. Perturbed Potential [700 level points]
Consider a particle moving in an infinite square well that extends over the
region 0 < x < L (with the potential vanishing in this region). A perturbation
H ′ = V0 sin(πx/L) is added to the system.
(a) Find the first-order energy shift for the ground state of the system.
(b) Find the first-order energy-shift for an arbitrary excited state of the system.

90. Perturbed Potential [700 level points]
Consider a particle moving in an infinite square well that extends over the
region 0 < x < L (with the potential vanishing in this region). A perturbation
H ′ = γx(L− x) is added to the system.
(a) Find the first-order energy shift for the ground state of the system.
(b) Find the first-order energy-shift for an arbitrary excited state of the system.

91. Addition of Angular Momenta [700 level points]
Consider two electrons, each with orbital angular momentum ℓi = 1.
(a) What are the possible values for the quantum number ℓ corresponding to
the total angular momentum L = L1 + L2?
(b) What are the possible values for the quantum number s corresponding to
the total angular momentum S = S1 + S2?
(c) Using the results from parts a and b, what are the possible values for the
quantum number j corresponding to the total angular momentum J = L+S?
(d) What are the possible values for the quantum number j1 for elctron 1,
corresponding to the total angular momentum J1 = L1 + S1?
(e) Using the result from part d, determine the possible values of j again, and
show that your results agree with part c.

92. Particle Statistics [700 level points]
Consider two noninteracting particles of mass m in an infinite square well of
width L. For the case of one particle in a state |n⟩ and the other particle in
the state |k⟩ (with n ̸= k). Calculate the value of the squared interparticle
spacing ⟨(x1 − x2)

2⟩, assuming:



(a) the particles are distinguishable;
(b) the particles are identical spin-0 bosons;
(c) the particles are identical spin-1

2
fermions in a spin triplet state.

93. Particle Statistics [700 level points]
Consider two noninteracting particles of mass m in an infinite square well of
width L. For the case of one particle in the ground state and the other particle
in the first excited state. calculate the probability density for the interparticle
separation P (x1 − x2), assuming:
(a) the particles are distinguishable;
(b) the particles are indistinguishable in a symmetric state;
(c) the particles are indistinguishable in an antisymmetric state.

94. Multiparticle Perturbations [700 level points]
Consider two indistinguishable spin-1

2
particles in the one-dimensional har-

monic oscillator potential V (x) = 1
2
mω2x2. The two particles interact with

each other through a perturbing potential H ′ = 1
2
α(x1 − x2)

2, where the con-
stant α is small (α ≪ mω2).
(a) For the unperturbed two-particle system, find the energy eigenvalues and
degeneracies for the ground state and the first excited energy level.
(b) Discuss qualitatively how the energies from part a are perturbed by H ′.
Draw an energy level diagram showing the unperturbed and perturbed energy
levels.

95. Time-Dependent Potential Well [700 level]
A particle of mass m bounces elastically between two infinite plane walls sep-
arated by a distance D. The particle is in the lowest possible energy state.
(a) What is the energy of this state?
(b) The separation between the walls is slowly (i.e. adiabatically) increased to
2D.
(i) How does the expectation value of the energy change?
(ii) Compare this energy with the result obtained classically from the mean
force exerted on a wall by the bouncing particle.
(c) Now assume that the separation between the walls is increased rapidly,
with one wall moving at a speed v ≫

√
E/m. Classically, there is no change

in the particle’s energy, since the wall is moving faster than the particle and
cannot be struck by the particle while the wall is moving.
(i) What happens to the expectation value of the energy quantum mechani-
cally?
(ii) Compute the probability that the particle is left in the lowest possible
energy state.



96. Crossed Fields [500 level]
Consider a particle with charge e and mass m in constant, crossed E and B
fields,

E = (0, 0, E)

E = (0, B, 0),

in r = (x, y, z) coordinates.
(a) Write down the Schrödinger equation (in a convenient gauge).
(b) Separate variables and reduce it to a one-dimensional problem.
(c) Calculate the expectation value of the velocity in the x-direction in any
energy eigenstate (sometimes called the “drift velocity”).

97. Pion Scattering [700 level]
Pion-nucleon scattering at low energies can be qualitatively described by an
effective interaction potential of the form

V =
g2

4π

e−µr

r
I(π) · I(N).

Here, g and µ are constants, r is the relative pion-nucleon distance coordinate,
and I(π) and I(N) are the pion and nucleon isospin operators.
(a) Calculate the ratio of the scattering cross sections with total isospin I = 3/2
and I = 1/2.
(b) Calculate, in the Born approximation, the low-energy total cross sections
for the reactions

π+ + p → π+ + p

π− + p → π− + p

π− + p → π0 + n.

Note: If you are not familiar with isospin, you may consider the two particles to
have (ordinary) spin 1 and spin 1/2 with spin-spin interactions and initial and
final states which are eigenstates of Sz for each particle. The corresponding
Sz values are  π+

π0

π−

 =

 1
0
−1


[
p
n

]
=

[
1
2

−1
2

]
.



98. One-Dimensional Scattering [500 level]
A particle of total energy E = h̄2α2/2m moves in a series of contiguous one-
dimensional regions. The potential in the n-th region is

Vn = −(n2 − 1)E,

where n = 1, 2, . . . , N . All of the regions of of equal width π/α except for the
first and the last, which are of effectively infinite extent. Calculate the two
transmission coefficients for a particle incident from either end.

99. Zeeman Effect [500 level]
The electron and positron have the same (absolute) magnetic moment, but
opposite g-factors. Show that the “ground state” manifold of the e+e− atom
positronium—which consists of a doublet of 1S0 and 3S1 states—cannot have
a linear Zeeman effect if this is true. Argue in terms of the total magnetic
moment operator.

100. Nuclear Quantum Numbers [500 level]
Experiments (deuteron “stripping”) show that the ground state of the 17O is
formed from that of 16O only by acceptance of a neutron of orbital angular
momentum ℓ = 2. The first excited state is formed by the acceptance of a
neutron with angular momentum ℓ = 0.
(a) What can you conclude about the spin and parity of the ground state of
17O?
(b) What can you conclude about the spin and parity of the first excited state?

101. Anticommuting Operator [500 level]
Let B and C be two anticommuting operators, i.e.

{B,C} ≡ BC + CB = 0.

(a) Let |ψ⟩ be an eigenstate of both B and C. What can be said about the
corresponding eigenvalues?
(b) For B = baryon number and C = charge conjugation, the relations
{B,C} = 0 and C2 = 1 hold. What does the result from part (a) imply
about this case?

102. Operator Algebra [500 level]
(a) Simplify the operator Λjk = [xj, [L

2, xk]], where j, k = 1, 2, 3, and L2 =
(r× p)2.
(b) Find all the eigenvalues of Λjk.

103. Bohr-Sommerfeld Quantization [500 level]
Use the Bohr-Sommerfeld quantization rule to find approximate values for



the allowed energy levels of a ball which is bouncing elastically in a vertical
direction.

104. Zero-Point Pressure [500 level]
An electron is contained inside a sphere of radius R.
(a) What is the pressure P exerted on the surface of the sphere, if the electron
is in the lowest S energy state?
(b) What is the pressure P exerted on the surface of the sphere, if the electron
is in the lowest P state?

105. Variational Principle [700 level]
Using the variational principle, and taking a trial wave function of the form
xe−αx, estimate the ground state energy of a particle in the potential

V (x) =

{
∞, x < 0
Cx, x > 0

.

106. Angular Variables [500 level]
Two identical plane rotors with coordinates θ1 and θ2 are coupled according
to the Hamiltonian

H = A
(
p2θ1 + p2θ2

)
−B cos(θ1 − θ2),

where A and B are positive constants. (Note that θi + 2π is describes the
same state of a rotor as does θi.) From the Schrödinger equation, determine
the energy eigenvalues and eigenfunctions when the following conditions hold:
(a) In the case B ≪ Ah̄2, discussing only terms linear in B. Watch out for
degeneracies.
(b) In the case B ≫ Ah̄2, by reducing the problem to an oscillator problem
(with small oscillations).

107. Spin Precession [500 level]
Consider an electron in a uniform magnetic field in the positive z-direction.
The result of a measurement has shown that the electron spin is along the
positive x-direction at t = 0. For t > 0, compute the probability for finding
the electron in the spin states:
(a) Sx = h̄

2

(b) Sx = − h̄
2

(c) Sz =
h̄
2
.


