Most, if not all, of the galaxies in the universe host a supermassive black hole in the center. The masses of these black holes are correlated with the masses of the galaxies, or at least with the masses of the “bulge” components of the galaxies. Simulations of galaxy formation track how dark matter and baryons interact gravitationally, assembling the network of galaxies, clusters of galaxies, voids, and filaments that we observe today. Using our current understanding of the mean density of baryonic matter and dark matter, and of the effects of the accelerated expansion/dark energy, we now have a pretty good idea about how the largest structures emerged from the nearly uniform sea of tiny fluctuations that we can see in the cosmic microwave background. However, we demand more from these models. We would like to be able to explain what we observe, and that means explaining why, for example, the baryons don’t make more stars than they do, why galaxies of about the mass of that of the Milky Way are the best at forming stars (yet still underperform based on expectations), and why the mass of a central black hole is affected by the mass of its host galaxy. The answers are all related. I will discuss a framework for thinking and talking about these issues, a framework useful for framing useful questions to apply to the simulations and next observations, and plans for the next space observatory.