Skip to Content

College of Arts and Sciences

Faculty and Staff

Chuanbing Tang

Title: Professor and College of Arts and Sciences Distinguished Professor / Organic
Materials / Nano/ Organometallic / Polymer / Supramolecular
Department: Chemistry and Biochemistry
College of Arts and Sciences
Phone: 803-777-3628
Fax: 803-777-8100
Office: Office: HZN1 239
Lab: GSRC 425, 803-576-5694
Lab 2: GSRC 426, 803-576-5694
Lab 3: HZN1 225, 803-777-3299
Lab 4: HZN1 226, 803-777-3299

CV [pdf]
All Publications
Chuanbing Tang Group Website 
Department of Chemistry and Biochemistry

Dr. Chuanbing Tang


B.S., 1997, Nanjing University
Ph.D., 2006, Carnegie Mellon University

Honors and Awards

POLY Fellow of American Chemical Society, 2018; Kavli Fellow of National Academy of Sciences, 2018; ACS Local Section Outreach Volunteer of the Year Award, 2018; Fellow of Royal Society of Chemistry, 2017; PECASE Award, 2017; South Carolina Governor’s Award for Young Scientist for Excellence in Scientific Research, 2016; USC Distinguished Undergraduate Research Mentor Award, 2015;  ACS PMSE Young Investigator, 2014;  NSF Career Award, 2013;  Thieme Chemistry Journal Award, 2013;  USC Rising Star, 2013;  ACS Leadership Development Award Alternate, 2013;  Doctoral New Investigator Award, ACS PRF, 2012.

Research Interests

Organic polymer synthesis, controlled/living radical polymerization, renewable biobased polymers from natural resources, antimicrobial polymers, metal-containing polymers, macromolecular self-assemby, polymer nanotechnolgy, clean energy.

Our research combines synthesis of innovative polymeric materials, including both renewable biobased polymers, nanostructured polymers and metal-containing polymers, which can find applications ranging from novel biodegradable thermoplastics, drug delivery, antimicrobials, magnetic materials, nanolithography, etc. We also study macromolecular self-assembly in both solutions and thin films.

Renewable Biobased Polymers from Natural Resources

Synthesis of renewable polymeric materials from natural resources has become a rapidly growing area, as these materials could potentially replace or partially replace environmentally and energy unfavorable plastics derived from petroleum chemicals. However, applications of renewable polymers are significantly behind petroleum-derived polymers, partially because of limitations in the monomer resources and therefore derived polymers. We have developed a variety of renewable monomers and polymers using resin acids as natural resources. Our goal is to revolutionize traditional renewable polymers and develop a new class of green polymers such as thermoplastic elastomers, degradable polymers and natural fiber reinforced nanocomposites.

Next-Generation Antimicrobial Polymers

The development of robust, selective and efficient antimicrobial agents in large quantities and low cost is essential to prevent bacteria-associated infections. We are developing next-generation antimicrobial materials derived from natural products that exhibit high antimicrobial activities against a broad spectrum of bacteria while maintaining selective lysis on bacterial cell membranes without inducing significant haemolysis of red blood cells over a wide range of concentrations.

Metal-Containing Polymers

Metal-containing polymers have attracted significant attentions since they have great potentials in catalytic, optical, magnetic and biological applications as well as the use for semiconductors, lithographic resists, and ceramic precursors due to the specific and unique geometries and their properties of metallocenes. Compared to ferrocene and ferrocene polymers, cobaltocene has received far less attention, partly because of greater difficulty in preparing substituted derivatives. We have developed a strategy to prepare 18-e cobaltocenium derivatives. We aim to develop a synthetic toolbox towards well-defined cobaltocenium polymers: (1) side-chain polymers, (2) main-chain polymers, and (3) end-functionalized polymers. The goal is to explore a broad range of spectra of novel cobaltocenium polymers and to lay out synthetic foundation of this type of polymers for many potential applications such as magnetic materials, energy storage and anticancer drugs. 

Selected Publications

Zhu, T.; Xu, S.; Rahman, Md. A.; Dogdibegovic, E.; Yang, P.; Pageni, P.; Kabir, Mohammad P.; Zhou, X.; Tang, C. Cationic Metallo-Polyelectrolytes for Robust Alkaline Anion-Exchange Membranes‎, Angew. Chem. Int. Ed., 2018, 57, 2388-2392. DOI: 10.1002/anie.201712387.

Qiao Y.; Yin X.; Zhu T.; Li H.; Tang C. Dielectric Polymers with Novel Chemistry, Compositions and Architectures, Prog. Polym. Sci., 2018, 80, 153-162.                   DOI:  10.1016/j.progpolymsci.2018.01.003.

Wang Z.; Yuan L.; Tang C. Sustainable Elastomers from Renewable Biomass, Acc. Chem. Res, 2017, 50, 1762-1773. DOI: 10.1021/acs.accounts.7b00209.

Yan Y.; Zhang J.; Ren L.; Tang C. Metal-Containing and Related Polymers for Biomedical Applications, Chem. Soc. Rev., 2016, 45, 5232-5263.                               DOI: 10.1039/C6CS00026F.

Zhang, J.; Chen, Y.-P.; Miller, K. P.; Ganewatta, M. S.; Bam, M.; Yan, Y.; Nagarkatti, M.; Decho, A. W.; Tang, C. Antimicrobial Metallopolymers and Their Bioconjugates with Antibiotics against Multidrug Resistant Bacteria. J. Am. Chem. Soc., 2014, 136, 4873-4876. DOI: 10.1021/ja5011338.