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Abstract

Increasing attention is being paid to the study of families of subsets of an n-
set that contain no subposet P . Especially, we are interested in such families of
maximum size given P and n. For certain P this problem is solved for general n,
while for other P it is extremely challenging to find even an approximate solution
for large n. It is conjectured that for any P , the maximum size is asymptotic to a
constant times

(
n
bn
2
c
)
, where the constant is a certain integer depending on P . This

survey has two purposes. First, we want to bring this exciting line of research to
the attention of a wider audience. Second, we want to make experts aware of the
broad range of recent progress in the area.

1 First Results: Families Without Chains

Problems of forbidding given structures in a larger structure are very popular in extremal
combinatorics. The study of forbidden subgraph problems, starting from Mantel’s result
on triangle-free graphs, is nowadays a well-developed discipline. The Turán theory on
hypergraphs contains beautiful theorems and challenging unsolved problems.

A research area that has become fertile in recent years considers forbidding poset
structures in families of subsets. Let P = (P,≤) be a finite poset. We say that another
poset Q contains P as a subposet (in the weak sense), if there exists an order-preserving
injection i from P to Q. We view a family F of subsets of a finite set as a poset itself,
ordered according to the inclusion relation of sets. More precisely, working in the Boolean
lattice Bn of all 2n subsets of [n] := {1, 2, · · · , n}, ordered by inclusion, we want to
understand how large a family of subsets in Bn can be without containing a given poset
P as a subposet. We let

(
[n]
k

)
denote the collection of k-subsets of [n].
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The foundational result in the area dates back to 1928. Sperner studied antichains,
which are families of sets without any set containing another, and obtained the following
result.

Theorem 1.1 [47] Let F be an antichain of subsets of [n]. Then |F| is at most the largest
binomial coefficient, namely

(
n
bn
2
c

)
. Moreover, the only antichains achieving the bound are(

[n]
bn
2
c

)
and

(
[n]
dn
2
e

)
.

Note that we get two different extremal families, or just one (the two listed are iden-
tical), depending on the parity of n.

A generalization of Sperner’s theorem was given by Erdős, who developed it in the
1940’s to make progress on a question of Littlewood and Offord concerning the distribution
of roots of random polynomials. The size of a poset is its cardinality. A poset is a chain
if any two of its elements are comparable. Erdős gave the following result on forbidding
chains of a given size: .

Theorem 1.2 [18] Let k ≥ 1. Let F be a family of subsets of [n] such that no k + 1
subsets form a chain. Then |F| is at most the sum of the k middle binomial coefficients
in n. Moreover, the only families achieving the bound are obtained by taking all subsets
of the k middle sizes in [0, n].

Again, the maximum size of such a family F is given for all n, and there is just
one, or two, extremal families. Since these bounds and the families of Erdős’s Theorem
occur repeatedly in the theory, it is useful to adopt notation from [23]: Let B(n, k)
be a family of subsets of [n] of the k middle sizes,

(
[n]

b(n−k+1)/2c

)
∪ · · · ∪

(
[n]

b(n+k−1)/2c

)
or(

[n]
d(n−k+1)/2e

)
∪ · · · ∪

(
[n]

d(n+k−1)/2e

)
. So B(n, k) is one or two possible families, depending on

the parity of n+ k. Also, let Σ(n, k) denote |B(n, k)|.
By saying no k + 1 elements in a family F form a chain, it means that F does not

contain any Pk+1, where Pr denotes the chain poset (also called path poset) of size r.
In the early 1980s, Katona started to investigate forbidding posets other than chains

in the Boolean lattice. Since then a rapidly growing number of results on such problems
have been discovered by Katona, his collaborators, and other researchers who are inspired
by the pioneering work. Here we attempt to collect this work, particularly the research
papers published in past ten years. We seek to identify the core ideas and prospective
directions for continuing study. Interested readers should also see other surveys in recent
years, especially [27, 23, 35, 29].

2 Forbidding Other Posets

Following Katona we denote by La(n, P ) the maximum size of a family F of subsets of
[n] containing no subposet P . If a family of subsets does not contain P as a subposet,
then we say it is P -free. Note that we are forbidding P as a subposet in the weak sense,
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meaning that we are excluding not only P itself, but also any poset containing P . For
instance, let Vr denote the fork poset with one element below the other r elements. When
we forbid Vr, we are forbidding any subset being in r others in the family, whether or
not those others contain each other. We are interested in the exact value of La(n, P ),
when we can determine it, or else we are happy if we can determine its leading asymptotic
behavior, for fixed poset P , as n→∞.

One poset parameter we sometimes need is the height of poset P , denoted h(P ), which
is the largest size of any chain in P .

The first small poset P that was investigated was V = V2 (which has a Hasse diagram
that looks like the letter V). Katona and Tarján (1981) gave the asymptotic behavior of
La(n,V).

Theorem 2.1 [31] As n→∞,

1 +
1

n
+ Ω

(
1

n2

)
≤ La(n,V)(

n
bn
2
c

) ≤ 1 +
2

n
.

Note that B(n, 1), the subsets of middle size in n, is a V-free family of asymptotically
optimal size. However, optimal families are slightly larger (and not known)–we can add
some sets in the level above the middle one while remaining V-free. The lower bound in
the theorem adds in a lower order term, based on a construction of Graham and Sloane [19]
in coding theory. The error term in the upper bound is twice that of the lower bound. It
would be a significant accomplishment to improve the error term and determine constant
c such that La(n,V) = (1 + c

n
+ o( 1

n
))
(
n
bn
2
c

)
.

Thanh(1998) generalized the result of Katona and Tarján on poset V to the r-fork,
and Katona and DeBonis later improved the error term:

Theorem 2.2 [48, 13] For general r, as n→∞,

1 +
r − 1

n
+ Ω

(
1

n2

)
≤ La(n,Vr)(

n
bn
2
c

) ≤ 1 + 2
r − 1

n
+O

(
1

n2

)
.

Another way to build up the V poset is to add a second element below the top two.
Called the butterfly poset 1, it has two minimal elements, each below each of two maximal
elements. We have a jump in the possible size of P -free families for this poset compared
to V . Particularly surprising is that for the butterfly poset, the value of La(n, P ) can
be determined precisely. Observe that for any k, two distinct k-sets have at most one
(k − 1)-subset below them both. It means that the union of two consecutive levels in Bn
is 1-free. DeBonis, Katona, and Swanepoel (2005) used the cyclic permutation method
to prove that the family B(n, 2) is as large as possible, provided n ≥ 3.

Theorem 2.3 [14] For butterfly-free families, when n ≥ 3,

La(n,1) = Σ(n, 2).

For n ≥ 5, the only extremal families are B(n, 2).
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Omitting one ordered pair in the butterfly poset gives a poset that is intermediate
between V and 1. Called N because of its Hasse diagram, it has elements corresponding
to subsets a, b, c, d with a ⊂ b, c ⊂ b, c ⊂ d. It immediately satisfies La(n,V) ≤ La(n,N ) ≤
La(n,1). Griggs and Katona (2008) discovered for this poset that La(n, P ) grows like
La(n,V).

Theorem 2.4 [20] For N -free families, as n→∞,

1 +
1

n
+ Ω

(
1

n2

)
≤ La(n,N )(

n
bn
2
c

) ≤ 1 +
2

n
+O

(
1

n2

)
.

What if we take the butterfly poset and add more elements to the two levels? Say we
have r elements each above each of s elements. Call this the complete 2-level poset Kr,s,
named after the graph that looks like its Hasse diagram. For r = s = 2 it is the butterfly.
DeBonis and Katona found bounds on La(n,Kr,s) that are asymptotically similar to what
was found for the butterfly.

Theorem 2.5 [13] Let r ≥ s ≥ 2, r ≥ 3. For Kr,s-free families, as n→∞, we have

Σ(n, 2) +

(
2
r + s− 4

n
+ Ω

(
1

n2

))(
n

bn
2
c

)
≤ La(n,Kr,s) ≤

(
2 + 2

r + s− 3

n
+O

(
1

n2

))(
n

bn
2
c

)
.

Their upper bound for La(Kr,s) follows from a method of partitioning a Kr,s-free
families into the union of a Vr-free family and a Λs–free family, where the poset s-lambda
poset Λs is the dual of Vs.

Let us mention that recently Patkos [44] has obtained results for the complete 3-level
poset Kr,s,t, where the levels have sizes r, s, t, respectively.

Griggs and Lu [24] considered several other families of posets, including batons and
height two trees. They also considered a different generalization of the butterfly poset.
The crown poset O2k, k ≥ 2, has Hasse diagram that is an up-and-down cycle on 2k
vertices, namely, a1 ≤ b1 ≥ a2 ≤ b2 · · · ≥ ak ≤ bk ≥ a1. The smallest crown is O4,
which is the butterfly, while O6 is the middle two levels of the Boolean lattice B3. Their
2008 work also introduced more probabilistic methods into the subject. They managed
to determine La(n,O2k) asymptotically for all even k ≥ 2. Later on, Lu (2014) managed
to do this as well for odd k ≥ 7.

Theorem 2.6 [24, 36] Let k = 4 or ≥ 6. For O2k-free families,

1 +
1

n
+ Ω

(
1

n2

)
≤ La(n,O2k)(

n
bn
2
c

) ≤ 1 +
2

n
+O

(
1

n2

)
.
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It remains open to determine La(n, P ) asymptotically for O6 and O10. The best upper
bound is larger than above by a factor of (1 + 1√

2
). We see that for k = 4 and for all

k ≥ 6, in contrast to the butterfly, La(n,O2k) is asymptotic to
(
n
bn
2
c

)
(and likely it also is

for k = 3, 5).
The next section describes the difficulty determining La(n, P ) when P is a four-element

diamond poset. Li (2011) then weakened the diamond slightly, considering the poset on
elements a, b, c, d with a < b, a < c < d, denoted by J (J) due to its Hasse diagram.
Forbidding J is weaker than forbidding the chain P3, but stronger than forbidding P4 or
the four-element diamond. It was surprising that there is a nice answer here.

Theorem 2.7 [35] For J -free families,

La(n,J ) = Σ(n, 2).

All posets P mentioned so far are ranked, which means that there is a function r from
P to the nonnegative integers such that whenever element y covers x, r(y) = r(x) + 1.
For instance, the Boolean lattice Bn is ranked by taking r(X) = |X| for a subset X of [n].
The smallest unranked posets contain five elements. Methuku and Tompkins considered
one such poset, with partial order relations: a1 < a2, b1 < b2 < b3, a1 < b3, b1 < a2.
They named it the skew-butterfly and determined La(n, P ) for this poset:

Theorem 2.8 [42] Let P be the skew-butterfly. For n ≥ 3, La(n, P ) = Σ(n, 2).

3 Searching for Diamonds

After speaking about the early work on forbidden subposets back in March, 2007, including
the butterfly and N posets, Griggs was asked about another poset with a 4-cycle Hasse
diagram, the Boolean lattice B2. Because of its shape, it makes sense to call it the diamond
poset. More generally, let Dk denote the poset with one maximum element above the rest,
one minimum element below the rest, and k elements in between. We call this the k-
diamond poset, so that D2 denotes the diamond poset. People asked Katona about D2

at talks before that. He wrote [29] that when he was asked in 2004 about La(n,D2), he
answered, “This is a good question, I think the present method will work on this problem,
too.” To the contrary, rather unexpectedly, it turns out that solving La(n,D2) has become
one of the most challenging problems in extremal combinatorics.

Immediately, because D2 contains a 3-chain, B(n, 2) is diamond-free. On the other
hand, since D2 is a subposet of a 4-chain, by Erdős’s Theorem 1.2, no diamond-free family
is larger than B(n, 3). It means that Σ(n, 2) ≤ La(n,D2) ≤ Σ(n, 3), so asymptotically

2(1− o(1)) ≤ La(n,D2)(
n
bn
2
c

) ≤ 3.

An easy averaging argument reduces the upper bound to 2.5. Griggs and Lu believed
that upper bound to be soft– the lower bound of 2 should be the answer asymptotically.
While still a student, Li joined the effort to improve the upper bound.
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Using averaging arguments and the Lubell function (which we introduce later), Griggs,
Li, and Lu brought the upper bound strictly below 2.3. They announced their progress
at conferences, and the group of Axenovich, Manske, and Martin responded by reducing
the bound. Griggs et al. then did more computations to push their argument for an even
better bound. More recently, Kramer, Martin, and Young succeeded in reducing it to
2.25, which is important progress, even if it remains well above the value 2 that most
researchers expect is the actual value. We summarize these results here:

Theorem 3.1 For D2-free families, we have

(1)(see [23]) La(n,D2) ≤ 2.296
(
n
bn
2
c

)
,

(2)[2] La(n,D2) ≤ 2.283
(
n
bn
2
c

)
,

(3)[23] La(n,D2) ≤ 2.273
(
n
bn
2
c

)
,

(4)[34] La(n,D2) ≤ 2.25(1 + o(1))
(
n
bn
2
c

)
.

Since this problem of determining the largest size of a diamond-free family F of subsets
of [n] is so daunting, how about restricting F and seeing if the bound of 2 applies? Various
researchers independently considered F restricted to just the three middle sizes, that is,
F ⊆ B(n, 3). A diamond in such a family consists of a subset A in the lowest level,
a subset C in the highest level, and both subsets B obtained by adding an element of
C−A to A. Moreover, this problem appeals to graph theorists, who are interested in sets
of vertices of the n-cube that induce no 4-cycles. When restricting to just three middle
levels, diamonds correspond to the only 4-cycles.

Note that these three middle levels each have size ∼
(
n
bn
2
c

)
, so for a family F in

these levels, |F|/
(
n
bn
2
c

)
is essentially just the sum, over the three levels, of the proportions

of elements in F . Surely, we can manage this narrower problem on just three levels?
Axenovich, Manske, and Martin (2012) reduced the upper bound for three-level diamond-
free families to below the current best bound of 2.25

(
n
bn
2
c

)
for general diamond-free families.

They also observed that a bound on this problem also bounds the size of families in which
the sets have just three sizes, not necessarily the middle three. Elegant arguments by
Manske and Shen (2013) reduce it further. More recently Balogh, Hu, Lidický, and
Liu (2014) employed flag algebras, a sophisticated method for associating inequalities to
certain problems. The resulting semidefinite program then requires considerable computer
time to produce good bounds. This method has proven successful in Turán theory [45, 3].

Theorem 3.2 Let F be a D2-free family of subsets in B(n, 3), that is, every set in F has
one of the three middle sizes in n. Then we have

(1)[2] |F| ≤ 2.20
(
n
bn
2
c

)
,

(2)[39] |F| ≤ 2.16
(
n
bn
2
c

)
,
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(3)[4] |F| ≤ 2.15121
(
n
bn
2
c

)
.

Here is an even more restricted problem we propose that remains open, as far as we
know:

Problem 3.3 Show that if family F contains ∼ 70% of the subsets from each of the three
middle sizes, then F must contain a diamond D2.

Notice that |F| ∼ 2.1
(
n
bn
2
c

)
, which is less than what we need to use the bound of Balogh

et al. That we cannot yet solve this toy problem suggests we do not yet fully understand
how multiple levels of the Boolean lattice–even just three levels–interrelate.

Let us mention here additional work on diamond-free families. Czabarka, Dutle, John-
ston, and Székely [11] used random families arising from posets based on abelian groups
to construct more examples of large diamond-free families. These families can be viewed
as additional support for the conjectured asymptotic behavior.

Dove [15] devised examples of diamond-free families F for all even n ≥ 6 with |F| >
Σ(n, 2). It means that La(n,D2) is not likely to have a simple formula for all large n
(unlike, for instance, 1). These examples are all contained in B(n, 3), the middle three
layers. The asymptotic behavior of La(n,D2) must be more complicated than for examples
like 1, so it is unlikely anyone can determine these values exactly.

Sarkis, Shahriari, and students [46] investigated diamond-free families in the subspace
lattice, and discovered the analogous asymptotic problem is less formidable.

In a later section we shall say more about La(n, P ) for general diamonds Dk. For now,
let us mention one simple way k-diamonds arise. Griggs noticed that early results suggest
a dependence of La(n, P ) on the height h(P ). Indeed, from the result of DeBonis-Katona
on forbidding Kr,s it follows that for every poset P of height at most two, La(n, P )/

(
n
bn
2
c

)
≤

2 + o(1) as n→∞. Griggs wondered whether for general h there is a bound ch such that
La(n, P )/

(
n
bn
2
c

)
≤ ch for all posets P of height h. This turned out to be completely false:

Jiang and Lu [23] independently noticed that while the k-diamonds Dk all have height 3,
there is no bound on how large La(n,Dk)/

(
n
bn
2
c

)
can get. This is easily seen from the fact

that the family of the the middle r levels, B(n, r), contains no diamond Dk for k ≥ 2r−1−1.
It means that for any r, for large enough k, we have La(n,Dk)/

(
n
bn
2
c

)
> r for all large n.

4 Conjectured Asymptotics for General Posets

For some posets P , such as chains or the butterfly (when n ≥ 3), La(n, P ) is simply a
sum of largest binomial coefficients in n. For many more posets P , this fails, but the
asymptotic behavior of La(n, P ) is nice. Examples of this include V ,N , and Kr,s. Of
course, we have seen that for the diamond D2, even the asymptotic behavior remains
unsettled.

In their study of a variety of posets, Griggs and Lu [24] came to believe that for
every finite poset P , as n → ∞, La(n, P ) should be asymptotic to

(
n
bn
2
c

)
times some
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integer depending on P . This same belief likely guided the early work of Katona and
his collaborators, even if it was not explicitly stated. Even now, some years later, the
conjecture continues to hold for all posets for which the asymptotic behavior is known.

For posets P Griggs and Lu introduced the notation

π(P ) := lim
n→∞

La(n, P )(
n
bn
2
c

) .

The conjectured limit imitates the Turán density π(H) of k-graphs H, which concerns
the maximum number ex(n,H) of edges in a k-graph on n vertices not containing H,

π(H) := limn→∞
ex(n,H)

(n
k)

. A difference is that the hypergraph limit is known to exist in

general, while proving existence remains open for π(P ). Also, the hypergraph limit is not
integer in general, while the poset limit is conjectured to be integer.

When Griggs announced this conjecture at a 2008 conference, two of the experts
present, M. Saks and P. Winkler, both pointed out a pattern that explains the known
limiting values π(P ), having to do with finding poset P in Boolean lattices Bn. Griggs
and Lu [23] subsequently formulated it by introducing notation: For a poset P , let e(P )
denote the maximum k such that the union B(n, k) of k middle levels in Bn does not
contain P as a subposet, no matter how large n is.

For instance, the butterfly poset is not contained in B(n, 3) when n = 2, since B(2, 3)
is simply the diamond B2. Starting at n = 3, B(n, 3) does contain (many) butterflies.
On the other hand, 1 is not contained in the union of any two consecutive levels in the
Boolean lattice. It means that e(1) = 2. Since Σ(n, 2) ∼ 2

(
n
bn
2
c

)
, it gives π(1) = 2 = e(1).

In general, the family B(n, e) contains no P for e = e(P ). So if π(P ) exists, it must
be at least e(P ). The Griggs-Lu Conjecture (2008) is that e(P ) is the limiting value.

Conjecture 4.1 [24, 23] For any poset P , the limit π(P ) := limn→∞
La(n,P )

( n
bn
2 c)

exists. More-

over, its value is the integer e(P ).

Not long after the conjecture was announced, Bukh (2009) proved the existence of
π(P ) for every poset which has a tree (acyclic) Hasse diagram.

Theorem 4.1 [7] For all tree posets T , π(T ) = h(T )− 1 = e(T ).

This may be the strongest result yet in support of the Griggs-Lu Conjecture, consider-
ing that it includes so many of the posets described already, such as chains, forks, batons,
height 2 trees, and J . The proof is an impressive display of probabilistic reasoning.

Moreover, Bukh’s result can be used to get a good estimate for other posets. For
example, it gives another way to derive π(1) = 2: We already have the easy lower
bound from La(n,1) ≥ B(n, 2) ∼ 2

(
n
bn
2
c

)
. For the upper bound, we view the butterfly

as a subposet of X , where X is the poset on five elements with partial order relations
x1, x2 ≤ x3 ≤ x4, x5. We have that La(n,1) ≤ La(n,X ). Since the poset X is a tree of
height 3, by Theorem 4.1, La(n,X ) = (2 + o(1))

(
n
bn
2
c

)
.
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5 Lubell Function

We have the general lower bound e(P ) on π(P ), when it exists, directly from the defini-
tions. To verify the conjecture, the key is to get the upper bound. The Lubell function
is a tool that was introduced to do just that, at least for some posets. This method is an
extension of the heart of Lubell’s elegant proof [38] of Sperner’s Theorem (the case that
P = P2).

Let C := Cn denote the collection of all n! full (maximal) chains

∅ ⊂ {i1} ⊂ {i1, i2} ⊂ · · · ⊂ [n]

in the Boolean lattice Bn. Fix a family F ⊆ 2[n]. We say the height of F is

h(F) := max
C∈C
|F ∩ C|.

It is the same as the height if F is viewed as a poset under inclusion. Following [23] we
define the Lubell function of F by

h̄(F) = h̄n(F) := ave
C∈Cn

|F ∩ C|.

The bar notation suggests what it is, the average number of times a random full chain
meets F , as compared to the height, which is the maximum number of times over all
full chains. The Lubell function value bounds the size of a family (extending Lubell’s
argument for an antichain F):

Lemma 5.1 [23] Let F be a collection of subsets of [n]. Then h̄(F) =
∑

F∈F 1/
(
n
|F |

)
≥

|F|/
(
n
bn
2
c

)
.

Proof. Let us count the total number of times all full chains meet F in two different ways.
Then the average will be

1

n!

∑
C∈C

|F ∩ C| = 1

n!

∑
F∈F

|F |!(n− |F |)! =
∑
F∈F

1(
n
|F |

) .
The last inequality in the lemma follows from the fact that

(
n
bn
2
c

)
≥
(
n
k

)
for all k. �

The Lemma tells us that the ratio we are interested in, |F|/
(
n
bn
2
c

)
, is bounded above by

the Lubell function of F . So upper bounds on the Lubell function for all P -free families F
yield upper bounds on La(n, P )/

(
n
bn
2
c

)
, the ratio that is conjectured to converge to e(P ).

We can view h̄(F) as a weighted sum, where each set F has weight 1/
(
n
|F |

)
. Given

P and n, let us define λn(P ) to be max h̄n(F) over all P -free families F in Bn. For a
largest P -free family F , we have La(n, P )/

(
n
bn
2
c

)
= |F|/

(
n
bn
2
c

)
≤ λn(P ), since 1/

(
n
bn
2
c

)
is

the minimum possible weight among all subsets of [n]. Therefore, if π(P ) exists, then it
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cannot exceed limn→∞ λn(P ). Let us denote this last limit by λ(P ), if it exists. We have
that when the two limits exist,

e(P ) ≤ π(P ) ≤ λ(P ).

How can one estimate λn(P )? Because every poset P is a subposet of a chain on |P |
elements, a full chain cannot intersect a P -free family F more than |P | − 1 times. Hence,
the average number of times a random full chain meets F is at most |P | − 1. This gives
us a very rough bound, λn(P ) ≤ |P | − 1. To refine it, we may suitably partition the
set Cn of full chains into blocks and find for each block the average number of times a
random full chain meets F , and then take the maximum over all the blocks. This will
typically overestimate h̄n(F). Surprisingly, for many posets there is an appropriate choice
of partition [21] that provides a practical way to evaluate λn(P ).

For general P , the existence of λ(P ) remains an open question. Moreover, unlike the
lower bound, there are examples P for which π(P ) < λ(P ), and this gap can be extremely
large. Nevertheless, there are also some “good posets” P for which h̄n(F) ≤ e(P ) for any
P -free family F and any n. For such a poset, not only is the value of La(n, P ) determined,
but so are the families achieving it. Griggs and Li [22] say such posets are uniformly L-
bounded, where L stands for Lubell.

Theorem 5.2 [23] Let P be a poset that is uniformly L-bounded. Let e = e(P ). Then
for all n, La(n, P ) = Σ(n, e), and so π(P ) = e(P ). Moreover, if F is a P -free family of
subsets of [n] of maximum size, F must be the family B(n, e).

We see that uniformly L-bounded posets satisfy Conjecture 4.1. In [22], one can see a
constructive method to obtain many uniformly L-bounded posets.

One poset of interest that definitely is not uniformly L-bounded is the notorious di-
amond D2. In fact, there are examples of diamond-free families Fn of subsets of [n] for
which the Lubell function approaches 2.25 as n → ∞ [23]. Consequently, the sequence
λn(D2), which is known to be nonincreasing in n by a simple averaging argument, has a
limit λ(D2) ≥ 2.25. It means that working purely with the Lubell function, as in [23], one
cannot reduce the upper bound on π(D2) any lower than 2.25.

Kramer et al. [34] used the Lubell function in their proof that brought the upper
bound on π(D2) down to the very same value, 2.25. However, they were able to restrict
their consideration to diamond-free families of a particular type. As a consequence, the
value of λ(D2) remains open, with lower bound 2.25 and upper bound about 2.273 by the
proof of [23].

So why should we still expect that π(D2) = 2? The families Fn we mentioned, with
relatively large Lubell function values, are actually not very large. They consist of very
small subsets (size at most 3), or else dually very large subsets (size at least n− 3): Each
set in Fn makes a rather large contribution to h̄(Fn).

What happens with the k-diamonds Dk for general k? Do they get even harder to deal
with? Surprisingly, Li discovered that for “almost all” values of k, including k as small
as 3 or 4, Dk is uniformly L-bounded, so satisfies the Griggs-Lu Conjecture, and we know
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the exact values of La(n, P ) and the extremal families. For other values of k it remains a
great challenge to determine La(n, P ):

Theorem 5.3 [23, 35] Let k ≥ 2, and define m := dlog2(k + 2)e.
(1) If k ∈ [2m−1 − 1, 2m −

(
m
bm

2
c

)
− 1], then Dk is uniformly L-bounded, and π(Dk) =

e(Dk) = m.
(2) If k ∈ [2m −

(
m
bm

2
c

)
, 2m − 2], then, if π(Dk) exists,

m = e(Dk) ≤ π(Dk) ≤ m+ 1− 2m − k − 1(
m
bm

2
c

) < m+ 1.

Another class of posets that is uniformly L-bounded is the set of suspensions of paths
of distinct lengths. Precisely, for k ≥ 1 let l1 ≥ · · · ≥ lk ≥ 3, and define the harp
poset H(l1, . . . , lk) to consist of paths Pl1 , . . . ,Plk with their top elements identified and
their bottom elements identified. For instance, in this notation we have Dk is the harp
H(3, . . . , 3) where there are k 3’s. Then Griggs, Li, and Lu proved:

Theorem 5.4 [23] If l1 > · · · > lk ≥ 3, then La(n,H(l1, . . . , lk)) is uniformly L-bounded,
and π = e = l1 − 1.

For example, the unranked poset on five elements called N5 by lattice theorists is
the harp H(4, 3). By the theorem above, it is uniformly L-bounded, so we know that
La(n,N5) = Σ(n, 3) for all n.

The vast majority of subsets of [n] are close to the middle value in size. There are
comparatively few subsets that are small or large. More precisely, Shannon’s Theorem [1,
p.256] gives

[αn]∑
i=0

(
n

i

)
= o

((
n

bn
2
c

))
,

for any positive constant α < 1/2, showing there are few small sets. By taking comple-
ments there are similarly few large sets.

On the other hand, sets with either few or many elements make major contributions
to the weighted sum that is the Lubell function. In using the Lubell function to bound
|F|/

(
n
bn
2
c

)
asymptotically for P -free families, it is enough to consider such families F that

contain no small or large sets, thereby avoiding the overly heavy contributions of small
and large sets to h̄(F). A full hierarchy of poset properties has been devised by Griggs
and Li [22], involving the Lubell function, to take advantage of this observation. Each
of the properties imply that π(P ) = e(P ), though the values of La(n, P ) may not be
determined precisely as with uniformly L-bounded posets.

We say for integer m that poset P is m-L-bounded, if for every n every P -free family
F ⊆ Bn, containing only sets of sizes between m and n − m, satisfies h̄n(F) ≤ e(P ).
For m = 0, these are uniformly L-bounded posets. The butterfly poset is not uniformly
L-bounded, but it is 1-L-bounded. The m-L-bounded posets satisfy Conjecture 4.1.
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As an application Griggs and Li [22] introduced the class of fans, where a fan poset
is the join of paths, that is, paths (chains) that are identified at the bottom. Fans all
satisfy some Lubell boundedness condition, so that π(P ) = e(P ), which we already knew
by Bukh’s Tree Theorem. However, now we know more. For instance, if there is just one
path, or if the path lengths are distinct with the longest path at least 2 longer than the
others, the fan is uniformly L-bounded. In this case we know La(n, P ) exactly, as well as
the extremal families.

Griggs and Li [22] presented a series of results describing how to construct many more
posets satisfying Lubell boundedness properties (and thus the π(P ) = e(P ) conjecture).
It is surprising one can build such complicated posets that satisfy the conjecture, when
we still seem so far from verifying it for the diamond D2.

6 Forbidden Induced Subposets

Up to this point, we only considered families that forbid a subposet P in the weak sense,
meaning that we are also excluding all posets that contain P . It is perhaps equally natural
to investigate what happens if we exclude only families of subsets ordered exactly as P is.
A poset P1 contains poset P2 as an induced subposet, if there is an injection f (a strong
embedding) from P2 to P1, such that for x, y ∈ P2, x ≤P2 y if and only if f(x) ≤P1 f(y).
For instance, the diamond D2 is a subposet of the chain P4, but it is not an induced
subposet of any chain, no matter how long.

The notation, La#(n, P ), introduced by Carroll and Katona [9], is the maximum size
of a family F of subsets of [n] not containing the poset P as an induced subposet. Clearly,
La(n, P ) ≤ La#(n, P ), since it is more restrictive to forbid P in the weak sense.

Let us begin again with chains. Since a family F contains the chain Pk in the usual
weak sense if and only if it contains it in the strong sense, we have La(n,Pk) = La#(n,Pk),
which is Σ(n, k − 1), by Erdős’s Theorem on chains.

Next, consider V = V2, which is what Carroll and Katona did (2008):

Theorem 6.1 [9]

1 +
1

n
+ Ω

(
1

n2

)
≤ La#(n,V2)(

n
bn
2
c

) ≤ 1 +
2

n
+O

(
1

n2

)
.

So far, the results are similar to usual weak containment. However, in general it should
be much easier to build families that only avoid containing P as an induced subposet, since
in order for F to contain an induced copy of P , not only must we have the containment
relations intact, we must also have the non-containments.

Indeed, observe that since a poset P is always a subposet of the chain P|P |, it means
that

La(n, P ) ≤ La(n,P|P |) = Σ(n, |P | − 1) ∼ (|P | − 1)

(
n

bn
2
c

)
.
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By contrast, for general P it is not at all clear how to bound La#(n, P )/
(
n
bn
2
c

)
for all n. Is

it even bounded in general? Lu and Milans [37] have conjectured that it is bounded for
every poset P (and it is reported Katona also made this conjecture).

In more detail, for the induced subposet problem, Lu and Milans defined the Turán
threshold

π∗(P ) := lim sup
n→∞

La#(n, P )(
n
bn
2
c

)
and the Lubell threshold

λ∗(P ) := lim sup
n→∞

{h̄n(F) | P is not as an induced subposet of F}.

They conjectured that the two thresholds are finite for all posets. Clearly, if λ∗(P ) is
finite, so is π∗(P ), since π∗(P ) ≤ λ∗(P ). Lu and Milans verified that λ∗(P ) is finite for
series-parallel posets and for posets of height at most 2. These innocent-looking claims
stymied the experts for some time. (We return to this shortly.)

Given the challenge of working with La#(n, P ), it is then remarkable that Boehnlein
and Jiang (2012) managed to extend Bukh’s methods to determine the asymptotics of all
tree posets.

Theorem 6.2 [5] Let T be a tree poset of height h ≥ 2. Then

La#(n, T ) = (h− 1)

(
n

bn
2
c

)
(1 + o(1)).

We see that π∗(T ) = h− 1 for tree posets of height h.
Next compare La#(n, P ) with La(n, P ), which in general is smaller. For tree posets

P , we have that limn→∞ La#(n, P )/La(n, P ) = 1. On the other hand, there are examples
of posets P such that limn→∞ La#(n, P )/La(n, P ) is arbitrarily large [5]. For example,
let Hm be a poset consisting of elements x1, . . . , xm and y1, . . . , ym with orderings xi ≤ yj
for i ≤ j ≤ m. This is a poset of height 2, which is contained in Km,m as a non-induced
poset. On the other hand, when m ≥ 3, Hm contains the butterfly as a subposet. Thus,
by Theorems 2.3 and 2.5, La(n,Hm) ∼ 2

(
n
bn
2
c

)
. However, one can show that La#(n,Hm) ≥

(m− 1− o(1))
(
n
bn
2
c

)
, which is larger by a factor of m−1

2
than La(n,Hm).

For complete two-level posets, Patkós (2015) gave the following estimates of La#(n, P ).

Theorem 6.3 [44] For integers r, s ≥ 2, we have

Σ(n, 2) +

(
r + s− 2

n
−Or,s

(
1

n2

))(
n

bn
2
c

)
≤ La#(n,Kr,s) ≤

(
2 +

2(r + s− 2)

n
+ o

(
1

n

))(
n

bn
2
c

)
.
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It is interesting that whileHm is a subposet ofKm,m, we have La#(n,Hm) ≥ La#(n,Km,m).
What about the notorious diamond poset D2? Lu and Milans (2014) gave the best

result to date

Theorem 6.4 [37] As n→∞, La#(n,D2) ≤ (2.583 + o(1))
(
n
bn
2
c

)
.

Later in 2014 there was a breakthrough on the induced subposet problem, when the
boundedness conjecture of Katona and of Lu and Milans was proven by Methuku and
Pálvőlgyi. They brought the ideas and results from the area of forbidden hypermatri-
ces [32, 40] to the problem and established the next theorem. It is interesting that the
parameter, the order dimension of P , has never appeared in the theory before.

Theorem 6.5 [41] For every poset P , there is a CP = 2dK such that La#(n, P ) ≤
CP
(
n
bn
2
c

)
, where d is the order dimension of P and K is a constant obtained from forbidden

hypermatrix problems.

It means that π∗(P ) ≤ CP . Unfortunately, the Lu-Milans conjecture that λ∗(P ) is
finite for all P is not yet proven.

7 General Upper Bounds

Erdős’s result, Theorem 1.2, provides an upper bound of Σ(n, k − 1) on La(n, P ) for any
poset P on k elements. This bound is far from accurate when the width, the largest size
of an antichain in P , is large. In this section, we present ideas for finding upper bounds
on La(n, P ) using the invariants of P .

Recall that the Lubell function for a family F is the average number of times that a
full chain C meets F . We can also count the average number of times other families meet
F . Bursci and Nagy (2013) called a family of sets in Bn a double chain D, as follows. It
consists of a full chain

C = {I0 ⊂ I1 ⊂ · · · ⊂ In},
where |Ii| = i for all i, called the primary chain, together with sets Si = Ii−1 ∪ Ii+1\Ii,
1 ≤ i ≤ n−1. The number of double chains containing a specific set is twice the number of
full chains containing it, for every subset besides ∅, [n]. Using a double counting argument
as in Lubell’s method, there is a weighted sum of sets in a P -free family:

1

n!

∑
F∈F
F 6=∅,[n]

2|F |!(n− |F |)! ≤ 1

n!

∑
D

|D ∩ F| ≤ (|P |+ h(P )− 2). (1)

This leads to an upper bound that involves not only the size, but also the height of P :

Theorem 7.1 [8] For any poset P ,

La(n, P ) ≤
(
|P |+ h(P )− 2

2

)(
n

bn
2
c

)
.
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Note that the height of a poset is at most the size. So, this result indeed improves
Theorem 1.2 for general P . While Erdős’s upper bound is only tight for chains, there
is a series of posets P with La(n, P ) reaching the upper bound, one of them being the
butterfly.

Chen and Li (2014) introduced a new type of set family, called k-linkage, with a
parameter k. They derived a more general inequality that reduces to the previous one
when k = 1.

Theorem 7.2 [10] Given a poset P and k ≥ 1, for sufficiently large n,

La(n, P ) ≤ 1

k + 1

(
|P |+ 1

2
(k2 + 3k − 2)(h(P )− 1)− 1

)(
n

bn
2
c

)
.

By setting k = [
√
|P |/h(P )], it implies La(n, P ) = O(

√
|P |h(P ))

(
n
bn
2
c

)
.

The next inequality is proved by Grosz, Methuku, and Tompkins (posted in 2014)
using the concept of a k-interval chain Ck, which is a union of a full chain ∅ ⊂ {i1} ⊂
{i1, i2} ⊂ · · · ⊂ [n] and the collection of sets S satisfying {i1, . . . , im} ⊂ S ⊂ {i1, . . . , im+k}
for some m. When k = 2, a k-interval chain is a double chain D. Counting |Ck ∩F| for a
P -free family F is technical and complicated, but it gives a better estimate for La(n, P ).

Theorem 7.3 [26] Given a poset P , for any integer k ≥ 1, it holds that

La(n, P ) ≤ 1

2k−1
(
|P |+ (3k − 5)2k−2h(P )− 1)− 1

)( n

bn
2
c

)
.

As in Theorem 7.2, we get

La(n, P ) = O

(
h(P ) log2

(
|P |
h(P )

+ 2

))(
n

bn
2
c

)
by an appropriate choice of k. On the other hand, Grosz et al. also showed that for some
posets P ,

La(n, P ) ≥
(

(h(P )− 2) log2

(
|P |
h(P )

))(
n

bn
2
c

)
.

8 Packing posets

In their pioneering paper on forbidden subposets, Katona and Tarján (1983) proposed the
more general problem of forbidding a family. In our notation, given a collection of posets
{Qj}j≥1 (possibly infinite), we seek the maximum size La(n, {Qj}j≥1) of a family F of
subsets of [n] that contains no copy of any poset Qj in the collection. Katona and Tarján,
and independently but much later, Dove and Griggs (2015), solved an interesting instance
of this problem. Recall that Λ is the three-element poset that is the dual of V = V2.
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Theorem 8.1 [31, 16] For all n,

La(n, {V ,Λ}) = 2

(
n− 1

bn−1
2
c

)
.

Dove and Griggs obtained this result by converting it to a packing problem. Instead
of trying to pick many subsets of [n] that avoid containing a poset P , we take the entire
Boolean lattice Bn and seek to pack in as many unrelated copies of P as possible. Here, a
copy of P is meant in the weak sense as usual. So if F avoids any V or Λ, it means that
F can be decomposed into unrelated chains, each of size 2 or 1, and this is a problem
that can be completely solved.

It depends mainly on how many unrelated copies of the chain P2 can be packed into
Bn. More precisely, following Dove and Griggs [16], let the packing number Pa(n, P )
denote the maximum size of a family of subsets F constructed from pairwise unrelated
copies of P in Bn. Here F is the union of (weak) copies of P such that no two elements
of different copies are equal or even related (by inclusion). We measure the size of such
a family, rather than the number of copies of P . The measures are equivalent, of course,
but later we will describe a more general model, where we build F out of unrelated copies
of posets Pi coming from a collection. In this case, the family size is more important than
the number of copies.

Here is the determination of Pa(n, P ) when P is a chain Pk. It was obtained by Griggs,
Stahl, and Trotter (1984). It can also be deduced from an earlier paper of Bollobás [6]
(1965).

Theorem 8.2 [25] The packing number for k-paths is Pa(n,Pk) = k

(
n− (k − 1)

bn−(k−1)
2
c

)
. For

fixed k, as n goes to infinity, this is asymptotic to
k

2k−1
(
n
bn
2
c

)
.

It is interesting that the packing number for k-paths (chains) is asymptotic to a con-
stant times

(
n
bn
2
c

)
, the same behavior as for La(n,Pk), though with a different constant.

For general posets P , the asymptotics of La(n, P ) remain rather wide open. It is then
surprising that it is possible to determine the leading asymptotic behavior of the packing
number Pa(n, P ) for general posets P . Dove and Griggs asked and solved this question
in 2013. Only later did they learn that the same problem had been posed first by Katona
(2010) [28]. Moreover, Katona and Nagy also succeeded in solving it, at about the same
time in 2013. The papers by the two teams were published together (2015).

Both teams formulated their results using convexity. A family F ⊆ Bn generates an
ideal (or down-set) and a filter (or up-set) denoted as follows:

D(F) = {S ∈ Bn|S ⊆ A for some A ∈ F}, and

U(F) = {S ∈ Bn|A ⊆ S for some A ∈ F}.
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Define the convex closure operator on F to be F := D(F)∩U(F). Note that F ⊆ F . It is
important that if two subset families are unrelated, then their closures must be unrelated
as well. If a family F satisfies F = F , we say F is convex.

The asymptotic determination of Pa(n, P ) depends on how P can be weakly embedded
into a Boolean lattice. There exists a minimum size of the closure of f(P ) over all weak
embeddings f of P into Bk over all k. Denote this minimum by c(P ).

Theorem 8.3 [16, 30] For any poset P , as n→∞, Pa(n, P ) ∼ |P |
c(P )

(
n
bn
2
c

)
.

This result can be proven using Lubell-style chain averaging methods, extending the
arguments used to prove Theorem 8.2.

Dove and Griggs expanded their study to allow packing posets from a collection.
Specifically, let Pa(n, {Pi}i≥1) denote the maximum size of a family in Bn constructed
from pairwise unrelated (weak) copies of posets, each chosen from a given collection of
posets {Pi}i≥1 (possibly infinite). Note that the sizes of the posets Pi can vary. Dove and
Griggs showed that as n goes to infinity,

Pa(n, {P1, P2, . . . , Pk}) ∼ max
1≤i≤k

(
|Pi|
c(Pi)

)(
n

bn
2
c

)
.

Similarly, one can investigate families built from induced copies of given posets. Denote
the maximum size of a family in Bn constructed from induced copies of P as Pa∗(n, P ). We
can also define the more general quantity Pa∗(n, {Pi}i≥1). Now, for any collection {Qj}j≥1,
the forbidden poset maximum, La(n, {Qj}j≥1), is equivalent to Pa∗(n, {Pi}i≥1), where
{Pi}i≥1 is the collection of all possible connected posets that do not contain any of the
posets in {Qj}j≥1 as a subposet. For instance, La(n,V) = Pa∗(n, {Λi}i≥0). So the problem
of determining Pa∗(n, {Pi}i≥1) can be viewed as more general than the La(n, {Qj}j≥1)
problem this survey is addressing.

Both teams independently formulated and solved the analogue of the result above for
induced subposets. We need to define c∗(P ) as the minimum size of the closure of a strong
embedding of P in Bn over all possible n. In general, c∗(P ) 6= c(P ). Here is the main
theorem for packing induced copies of P .

Theorem 8.4 [16, 30] For any poset P , as n→∞, Pa∗(n, P ) ∼ |P |
c∗(P )

(
n
bn
2
c

)
.

9 Supersaturation

There has been some effort to obtain results in this area of “supersaturation” or “Erdős-
Rademacher type” which concern how many copies of poset P there must be in every
family F ⊆ Bn of given size greater than La(n, P ).

Kleitman (1966) solved this problem in the case P = P2, verifying a conjecture of
Erdős-Katona that the minimum number of copies is attained by picking F to consist
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of subsets as close to the middle value as possible [33]. He conjectured that for any k,
the same families of subsets closest to the middle would achieve the minimum number of
copies of chains Pk for any k.

This conjecture remains open for general k. However, for families of size not much
larger than La(n,Pk) = Σ(n, k − 1), it has been verified independently by Dove, Griggs,
Kang, and Séreni (2014), and by Das, Gan, and Sudakov (2015). Using different ap-
proaches, both groups proved:

Theorem 9.1 [12, 17] If a family F of subsets of [n] satisfies |F| = Σ(n, k− 1) +x, then
there must be at least

x ·
k−1∏
i=1

(⌊
n+ k

2

⌋
− i+ 1

)
copies of Pk in F .

Note that this product
k−1∏
i=1

(⌊
n+ k

2

⌋
− i+ 1

)
is the number of copies of Pk contained in B(n, k), with one endpoint of the chain being
a particular set in the kth middle rank (of ranks in [0, n]). Thus, the family that consists
of k− 1 middle ranks B(n, k− 1) and x sets from the kth middle rank witnesses that the
bound above is tight for

x ≤
(

n⌊
n
2

⌋
+ (−1)k

⌊
k
2

⌋).
Dove’s dissertation [15] further addresses this problem, extending the theorem above

to the lattice of subsets of a multiset (the divisor lattice).
The first result we know that goes beyond chains considers P to be the butterfly poset.

Recall La(n, P ) = Σ(n, 2). Patkós (2014) considered families of Σ(n, 2) +x subsets of [n],
x > 0. For small values of x, similar to the result above for chains P , he determined the
minimum possible number of butterflies [43]. Beyond that, he found a general bound that
is asymptotically best-possible.

10 Future Study

There are posets P for which we can readily determine La(n, P ) for all n. In most cases,
La(n, P ) is simply a sum of binomial coefficients, often of the form Σ(n, k) for some k.
It may even be possible to describe all of the extremal P -free families. Examples include
chains Pk, the butterfly 1, and diamonds D3,D4.

Then there are posets P such as V , for which it seems to be very hard to determine
La(n, P ), but for which the asymptotic behavior π(P ) is known.

However, there seem to be many posets P for which even the asymptotic behavior is
challenging or beyond current methods. The most notable example is the diamond D2.
Other examples include the 5-diamond D5, and the crowns O6,O10.
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Beyond trying to find La(n, P ), or at least π(P ), how can we tell which posets we can
solve and which are going to difficult (or hopeless)?

Many researchers continue to be interested in the diamond-free family problem, par-
ticularly for families restricted to the middle three levels. We have learned that the upper
bound on π(D2) provided by the Lubell function can only go down to 2.25, which is still
well above the conjectured upper bound of 2. If the sets in the family F are excluded from
the smallest and largest sizes–which won’t really affect the asymptotics of |F|/

(
n
bn
2
c

)
since

asymptotically few subsets are very small or very large–it is suspected the Lubell bound
can be brought down to the conjectured 2. However, no one has been able to reduce the
Lubell bound with such size restrictions.

A smaller problem that remains open is to prove that the Lubell limit λ(D2) = 2.25.
We have the lower bound, and know the limit exists, but the upper bound remains around
2.27.

Flag algebra arguments (and related computations) have led to improved bounds for
the diamond poset D2. Can they give the conjectured value of 2, or solve other open
subposet problems, as they have in Turán theory?

After the diamond D2, the most intriguing posets for which the existence of π(P )
remains open may be the crowns O6 and O10.

Probability theory has figured into Lubell function arguments and in the proof of
Bukh’s Tree Theorem. It seems likely that we can do more with probability to answer
the asymptotic questions raised in this field.

It feels like we have only gotten started in the study of induced subposet problems.
The recent proof of the conjecture of Katona and Lu-Milans, that the Turán threshold
π∗(P ) is finite for all posets P , is encouraging. It remains open to prove the conjecture
of Lu-Milans that the Lubell threshold λ∗(P ) is finite for all posets P .

This survey has not done justice to all of the wonderful ideas developed in the area, but
at least we have collected all of the references to date we are aware of, and the interested
reader is encouraged to study them. This continues to be a lively research area, and there
is a long way to go!
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[18] P. Erdős, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945),
898–902.

[19] R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE
IT bf 26 (1980), 37-43.

[20] J. R. Griggs and G. O. H. Katona, No four subsets forming an N , J. Combinatorial
Theory (Ser. A) 115 (2008), 677–685.

[21] J. R. Griggs and W.-T. Li, The partition method for poset-free families, J. Combi-
natorial Optimization, Volume 25, Issue 4 (2013), 587-596.

20



[22] J. R. Griggs and W.-T. Li, Poset-free families and Lubell-boundedness, J. Combina-
torial Theory (Ser. A) 134 (2015), 166–187.

[23] J. R. Griggs, W.-T. Li, and L. Lu, Diamond-free families, J. Combinatorial Theory
(Ser. A) 119 (2012), 310–322.

[24] J. R. Griggs and L. Lu, On families of subsets with a forbidden subposet, J. Combi-
natorial Theory (Ser. A) 119 (2012), 310–322.

[25] J. R. Griggs, J. Stahl, and W. T. Trotter, Jr., A Sperner Theorem on Unrelated
Chains of Subsets, J. Combinatorial Theory (Ser. A) 36 (1984), 124–127.
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