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A NEW PROOF OF THE ATOMIC DECOMPOSITION

OF HARDY SPACES

S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV

Abstract. A new proof is given of the atomic decomposition of Hardy spaces
Hp, 0 < p ≤ 1, in the classical setting on Rn. The new method can be used

to establish atomic decomposition of maximal Hardy spaces in general and
nonclassical settings.

1. Introduction

The study of the real-variable Hardy spaces Hp, 0 < p ≤ 1, on Rn was pioneered
by Stein and Weiss [6] and a major step forward in developing this theory was made
by Fefferman and Stein in [3], see also [5]. Since then there has been a great deal of
work done on Hardy spaces. The atomic decomposition of Hp was first established
by Coifman [1] in dimension n = 1 and by Latter [4] in dimensions n > 1.

The purpose of this article is to give a new proof of the atomic decomposition of
theHp spaces in the classical setting on Rn. Our method does not use the Calderón-
Zygmund decomposition of functions and an approximation of the identity as the
classical argument does, see [5]. The main advantage of the new proof over the
classical one is that it is amenable to utilization in more general and nonclassical
settings. For instance, it is used in [2] for establishing the equivalence of maximal
and atomic Hardy spaces in the general setting of a metric measure space with the
doubling property and in the presence of a non-negative self-adjoint operator whose
heat kernel has Gaussian localization and the Markov property.

Notation. For a set E ⊂ Rn we will denote E + B(0, δ) := ∪x∈EB(x, δ), where
B(x, δ) stands for the open ball centered at x of radius δ. We will also use the
notation cB(x, δ) := B(x, cδ). Positive constants will be denoted by c, c1, . . . and
they may vary at every occurrence; a ∼ b will stand for c1 ≤ a/b ≤ c2.

1.1. Maximal operators and Hp spaces. We begin by recalling some basic
facts about Hardy spaces on Rn. For a complete account of Hardy spaces we refer
the reader to [5].

Given φ ∈ S with S being the Schwartz class on Rn and f ∈ S ′ one defines

(1.1) Mφf(x) := sup
t>0

|φt ∗ f(x)| with φt(x) := t−nφ(t−1x), and

(1.2) M∗
φ,af(x) := sup

t>0
sup

y∈Rn,|x−y|≤at

|φt ∗ f(y)|, a ≥ 1.

We now recall the grand maximal operator. Write

PN (φ) := sup
x∈Rn

(1 + |x|)N max
|α|≤N+1

|∂αφ(x)|
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and denote

FN := {φ ∈ S : PN (φ) ≤ 1}.
The grand maximal operator is defined by

(1.3) MNf(x) := sup
φ∈FN

M∗
φ,1f(x), f ∈ S ′.

It is easy to see that for any φ ∈ S and a ≥ 1 one has

(1.4) M∗
φ,af(x) ≤ aNPN (φ)MNf(x), f ∈ S ′.

Definition 1.1. The space Hp, 0 < p ≤ 1, is defined as the set of all bounded
distributions f ∈ S ′ such that the Poisson maximal function supt>0 |Pt ∗ f(x)|
belongs to Lp; the quasi-norm on Hp is defined by

(1.5) ∥f∥Hp :=
∥∥ sup

t>0
|Pt ∗ f(·)|

∥∥
Lp .

As is well known the following assertion holds, see [3, 5]:

Proposition 1.2. Let 0 < p ≤ 1, a ≥ 1, and assume φ ∈ S and
∫
Rn φ ̸= 0. Then

for any N ≥ ⌊n
p ⌋+ 1

(1.6) ∥f∥Hp ∼ ∥M∗
φ,af∥Lp ∼ ∥MNf∥Lp , ∀f ∈ Hp.

1.2. Atomic Hp spaces. A function a ∈ L∞(Rn) is called an atom if there exists
a ball B such that

(i) supp a ⊂ B,

(ii) ∥a∥L∞ ≤ |B|−1/p, and

(iii)
∫
Rn x

αa(x)dx = 0 for all α with |α| ≤ n(p−1 − 1).

The atomic Hardy space Hp
A, 0 < p ≤ 1, is defined as the set of all distributions

f ∈ S ′ that can be represented in the form

(1.7) f =
∞∑
j=1

λjaj , where
∞∑
j=1

|λj |p <∞,

{aj} are atoms, and the convergence is in S ′. Set

(1.8) ∥f∥Hp
A
:= inf

f=
∑

j λjaj

( ∞∑
j=1

|λj |p
)1/p

, f ∈ Hp
A.

2. Atomic decomposition of Hp spaces

We now come to the main point in this article, that is, to give a new proof of
the following classical result [1, 4], see also [5]:

Theorem 2.1. For any 0 < p ≤ 1 the continuous embedding Hp ⊂ Hp
A is valid,

that is, if f ∈ Hp, then f ∈ Hp
A and

(2.1) ∥f∥Hp
A
≤ c∥f∥Hp ,

where c > 0 is a constant depending only on p, n. This along with the easy to prove
embedding Hp

A ⊂ Hp leads to Hp = Hp
A and ∥f∥Hp ∼ ∥f∥Hp

A
for f ∈ Hp.

Proof. We first derive a simple decomposition identity which will play a central
rôle in this proof. For this construction we need the following
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Lemma 2.2. For any m ≥ 1 there exists a function φ ∈ C∞
0 (Rn) such that

suppφ ⊂ B(0, 1), φ̂(0) = 1, and ∂αφ̂(0) = 0 for 0 < |α| ≤ m. Here φ̂(x) :=∫
Rn φ(x)e

−ix·ξdx.

Proof. We will construct a function φ with the claimed properties in dimension
n = 1. Then a normalized dilation of φ(x1)φ(x2) · · ·φ(xn) will have the claimed
properties on Rn.

For the univariate construction, pick a smooth “bump” ϕ with the following
properties: ϕ ∈ C∞

0 (R), suppϕ ⊂ [−1/4, 1/4], ϕ(x) > 0 for x ∈ (−1/4, 1/4), and ϕ
is even. Let Θ(x) := ϕ(x+ 1/2)− ϕ(x− 1/2) for x ∈ R. Clearly Θ is odd.

We may assume that m ≥ 1 is even, otherwise we work with m + 1 instead.
Denote ∆m

h := (Th − T−h)
m, where Thf(x) := f(x+ h).

We define φ(x) := 1
x∆

m
h Θ(x), where h = 1

8m . Clearly, φ ∈ C∞(R), φ is even,

and suppφ ⊂ [−7
8 ,−

1
8 ] ∪ [ 18 ,

7
8 ]. It is readily seen that for ν = 1, 2, . . . ,m

φ̂(ν)(ξ) = (−i)ν
∫
R
xν−1∆m

h Θ(x)e−iξxdx

and hence

φ̂(ν)(0) = (−i)ν
∫
R
xν−1∆m

h Θ(x)dx = (−i)ν+m

∫
R
Θ(x)∆m

h x
ν−1dx = 0.

On the other hand,

φ̂(0) =

∫
R
φ(x)dx = 2

∫ ∞

0

x−1∆m
h Θ(x)dx = 2(−1)m

∫ 3/4

1/4

Θ(x)∆m
h x

−1dx.

However, for any sufficiently smooth function f we have ∆m
h f(x) = (2h)mf (m)(ξ),

where ξ ∈ (x−mh, x+mh). Hence,

∆m
h x

−1 = (2h)mm!(−1)mξ−m−1 with ξ ∈ (x−mh, x+mh) ⊂ [1/8, 7/8].

Consequently, φ̂(0) ̸= 0 and then φ̂(0)−1φ(x) has the claimed properties. �
With the aid of the above lemma, we pick φ ∈ C∞

0 (Rn) with the following
properties: suppφ ⊂ B(0, 1), φ̂(0) = 1, and ∂αφ̂(0) = 0 for 0 < |α| ≤ K, where K
is sufficiently large. More precisely, we choose K ≥ n/p.

Set ψ(x) := 2nφ(2x)−φ(x). Then ψ̂(ξ) = φ̂(ξ/2)− φ̂(ξ). Therefore, ∂αψ̂(0) = 0
for |α| ≤ K which implies

∫
Rn x

αψ(x)dx = 0 for |α| ≤ K. We also introduce the

function ψ̃(x) := 2nφ(2x) + φ(x). We will use the notation hk(x) := 2knh(2kx).
Clearly, for any f ∈ S ′ we have f = limj→∞ φj ∗ φj ∗ f (convergence in S ′),

which leads to the following representation: For any j ∈ Z

f = φj ∗ φj ∗ f +

∞∑
k=j

[
φk+1 ∗ φk+1 ∗ f − φk ∗ φk ∗ f

]
= φj ∗ φj ∗ f +

∞∑
k=j

[
φk+1 − φk

]
∗
[
φk+1 + φk

]
∗ f.

Thus we arrive at

(2.2) f = φj ∗ φj ∗ f +
∞∑
k=j

ψk ∗ ψ̃k ∗ f, ∀f ∈ S ′ ∀j ∈ Z (convergence in S ′).

Observe that suppψk ⊂ B(0, 2−k) and supp ψ̃k ⊂ B(0, 2−k).
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In what follows we will utilize the grand maximal operator MN , defined in (1.3)
with N := ⌊n

p ⌋ + 1. The following claim follows readily from (1.4): If ϕ ∈ S, then
for any f ∈ S ′, k ∈ Z, and x ∈ Rn

(2.3) |ϕk ∗ f(y)| ≤ cMNf(x) for all y ∈ Rn with |y − x| ≤ 2−k+1,

where the constant c > 0 depends only on PN (ϕ) and N .

Let f ∈ Hp, 0 < p ≤ 1, f ̸= 0. We define

(2.4) Ωr := {x ∈ Rn : MNf(x) > 2r}, r ∈ Z.

Clearly, Ωr is open, Ωr+1 ⊂ Ωr, and Rn = ∪r∈ZΩr. It is easy to see that

(2.5)
∑
r∈Z

2pr|Ωr| ≤ c

∫
Rn

MNf(x)
pdµ(x) ≤ c∥f∥pHp .

From (2.5) we get |Ωr| ≤ c2−pr∥f∥pHp for r ∈ Z. Therefore, for any r ∈ Z
there exists J > 0 such that ∥φj ∗ φj ∗ f∥∞ ≤ c2r for j < −J . Consequently,
∥φj ∗ φj ∗ f∥∞ → 0 as j → −∞, which implies

(2.6) f = lim
K→∞

K∑
k=−∞

ψk ∗ ψ̃k ∗ f (convergence in S ′).

Assuming that Ωr ̸= ∅ we write

Erk :=
{
x ∈ Ωr : dist(x,Ωc

r) > 2−k+1
}
\
{
x ∈ Ωr+1 : dist(x,Ωc

r+1) > 2−k+1
}
.

By (2.5) it follows that |Ωr| <∞ and hence there exists sr ∈ Z such that Ersr ̸= ∅
and Erk = ∅ for k < sr. Evidently sr ≤ sr+1. We define

(2.7) Fr(x) :=
∑
k≥sr

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy, x ∈ Rn, r ∈ Z,

and more generally

(2.8) Fr,κ0,κ1(x) :=

κ1∑
k=κ0

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy, sr ≤ κ0 ≤ κ1 ≤ ∞.

It will be shown in Lemma 2.3 below that the functions Fr and Fr,κ0,κ1 are well
defined and Fr, Fr,κ0,κ1 ∈ L∞.

Note that suppψk ⊂ B(0, 2−k) and hence

(2.9) supp
(∫

Erk

ψk(x− y)ψ̃k ∗ f(y)dy
)
⊂ Erk +B(0, 2−k).

On the other hand, clearly 2B(y, 2−k) ∩
(
Ωr \ Ωr+1

)
̸= ∅ for each y ∈ Erk, and

PN (ψ̃) ≤ c. Therefore, see (2.3), |ψ̃k ∗ f(y)| ≤ c2r for y ∈ Erk, which implies

(2.10)
∥∥∥ ∫

E

ψk(· − y)ψ̃k ∗ f(y)dy
∥∥∥
∞

≤ c2r, ∀E ⊂ Erk.

Similarly,

(2.11)
∥∥∥∫

E

φk(· − y)φ̃k ∗ f(y)dy
∥∥∥
∞

≤ c2r, ∀E ⊂ Erk.

We collect all we need about the functions Fr and Fr,κ0,κ1 in the following
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Lemma 2.3. (a) We have

(2.12) Erk ∩ Er′k = ∅ if r ̸= r′ and Rn = ∪r∈ZErk, ∀k ∈ Z.

(b) There exists a constant c > 0 such that for any r ∈ Z and sr ≤ κ0 ≤ κ1 ≤ ∞

(2.13) ∥Fr∥∞ ≤ c2r, ∥Fr,κ0,κ1∥∞ ≤ c2r.

(c) The series in (2.7) and (2.8) (if κ1 = ∞) converge point-wise and in distri-
butional sense.

(d) Moreover,

(2.14) Fr(x) = 0, ∀x ∈ Rn \ Ωr, ∀r ∈ Z.

Proof. Identities (2.12) are obvious and (2.14) follows readily from (2.9).
We next prove the left-hand side inequality in (2.13); the proof of the right-hand

side inequality is similar and will be omitted. Consider the case when Ωr+1 ̸= ∅
(the case when Ωr+1 = ∅ is easier). Write

Uk =
{
x ∈ Ωr : dist(x,Ωc

r) > 2−k+1
}
, Vk =

{
x ∈ Ωr+1 : dist(x,Ωc

r+1) > 2−k+1
}
.

Observe that Erk = Uk \ Vk.
From (2.9) it follows that |Fr(x)| = 0 for x ∈ Rn \ ∪k≥sr (Erk + B(0, 2−k)). We

next estimate |Fr(x)| for x ∈ ∪k≥sr (Erk+B(0, 2−k)). Two cases present themselves
here.

Case 1: x ∈
[
∪k≥sr (Erk + B(0, 2−k))

]
∩ Ωr+1. Then there exist ν, ℓ ∈ Z such

that

(2.15) x ∈ (Uℓ+1 \ Uℓ) ∩ (Vν+1 \ Vν).

Due to Ωr+1 ⊂ Ωr we have Vk ⊂ Uk, implying (Uℓ+1 \Uℓ)∩ (Vν+1 \Vν) = ∅ if ν < ℓ.
We consider two subcases depending on whether ν ≥ ℓ+ 3 or ℓ ≤ ν ≤ ℓ+ 2.

(a) Let ν ≥ ℓ+ 3. We claim that (2.15) yields

(2.16) B(x, 2−k) ∩ Erk = ∅ for k ≥ ν + 2 or k ≤ ℓ− 1.

Indeed, if k ≥ ν +2, then Erk ⊂ Ωr \Vν+2, which implies (2.16), while if k ≤ ℓ− 1,
then Erk ⊂ Uℓ−1, again implying (2.16).

We also claim that

(2.17) B(x, 2−k) ⊂ Erk for ℓ+ 2 ≤ k ≤ ν − 1.

Indeed, clearly

(Uℓ+1 \ Uℓ) ∩ (Vν+1 \ Vν) ⊂ (Uk−1 \ Uℓ) ∩ (Vν+1 \ Vν+1) ⊂ Uk−1 \ Vk+1,

which implies (2.17).
From (2.9) and (2.16)- (2.17) it follows that

Fr(x) =
ν+1∑
k=ℓ

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy =
ℓ+1∑
k=ℓ

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy

+
ν−2∑

k=ℓ+2

∫
Rn

ψk(x− y)ψ̃k ∗ f(y)dy +
ν+1∑

k=ν−1

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy.
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However,

ν−2∑
k=ℓ+2

∫
Rn

ψk(x− y)ψ̃k ∗ f(y)dy =
ν−2∑

k=ℓ+2

[
φk+1 ∗ φk+1 ∗ f(x)− φk ∗ φk ∗ f(x)

]
= φν−1 ∗ φν−1 ∗ f(x)− φℓ+2 ∗ φℓ+2 ∗ f(x)

=

∫
Er,ν−1

φν−1(x− y)φν−1 ∗ f(y)dy −
∫
Er,ℓ+2

φℓ+2(x− y)φℓ+2 ∗ f(y)dy.

Combining the above with (2.10) and (2.11) we obtain |Fr(x)| ≤ c2r.
(b) Let ℓ ≤ ν ≤ ℓ+ 2. Just as above we have

Fr(x) =

ν+1∑
k=ℓ

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy =

ℓ+3∑
k=ℓ

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy

We use (2.10) to estimate each of these four integrals and again obtain |Fr(x)| ≤ c2r.

Case 2: x ∈ Ωr \ Ωr+1. Then there exists ℓ ≥ sr such that

x ∈ (Uℓ+1 \ Uℓ) ∩ (Ωr \ Ωr+1).

Just as in the proof of (2.16) we have B(x, 2−k) ∩Erk = ∅ for k ≤ ℓ− 1, and as in
the proof of (2.17) we have

(Uℓ+1 \ Uℓ) ∩ (Ωr \ Ωr+1) ⊂ Uk−1 \ Vk+1,

which implies B(x, 2−k) ⊂ Erk for k ≥ ℓ+ 2. We use these and (2.9) to obtain

Fr(x) =

∞∑
k=ℓ

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy

=
ℓ+1∑
k=ℓ

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy +
∞∑

k=ℓ+2

∫
Rn

ψk(x− y)ψ̃k ∗ f(y)dy.

For the last sum we have
∞∑

k=ℓ+2

∫
Rn

ψk(x− y)ψ̃k ∗ f(y)dy = lim
ν→∞

ν∑
k=ℓ+2

ψk ∗ ψ̃k ∗ f(x)

= lim
ν→∞

(
φν+1 ∗ φν+1 ∗ f(x)− φℓ+2 ∗ φℓ+2 ∗ f(x))

= lim
ν→∞

(∫
Er,ν+1

φν+1(x− y)φν+1 ∗ f(y)dy −
∫
Er,ℓ+2

φℓ+2(x− y)φℓ+2 ∗ f(y)dy
)
.

From the above and (2.10)-(2.11) we obtain |Fr(x)| ≤ c2r.
The point-wise convergence of the series in (2.7) follows from above and we

similarly establish the point-wise convergence in (2.8).
The convergence in distributional sense in (2.7) relies on the following assertion:

For every ϕ ∈ S

(2.18)
∑
k≥sr

|⟨grk, ϕ⟩| <∞, where grk(x) :=

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy.

Here ⟨grk, ϕ⟩ :=
∫
Rn grkϕdx. To prove the above we will employ this estimate:

(2.19) ∥ψ̃kf∥∞ ≤ c2kn/p∥f∥Hp , k ∈ Z.
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Indeed, using (1.4) we get

|ψ̃kf(x)|p ≤ inf
y:|x−y|≤2−k

sup
z:|y−z|≤2−k

|ψ̃kf(z)|p ≤ inf
y:|x−y|≤2−k

cMN (f)(y)p

≤ c|B(x, 2−k)|−1

∫
B(x,2−k)

MN (f)(y)pdµ(y) ≤ c2kn∥f∥pHp ,

and (2.19) follows.
We will also need the following estimate: For any σ > n there exists a constant

cσ > 0 such that

(2.20)
∣∣∣ ∫

Rn

ψk(x− y)ϕ(x)dx
∣∣∣ ≤ cσ2

−k(K+1)(1 + |y|)−σ, y ∈ Rn, k ≥ 0.

This is a standard estimate for inner products taking into account that ϕ ∈ S and
ψ ∈ C∞, suppψ ⊂ B(0, 1), and

∫
Rn x

αψ(x)dx = 0 for |α| ≤ K.
We now estimate |⟨grk, ϕ⟩|. From (2.19) and the fact that ψ ∈ C∞

0 (R) and ϕ ∈ S
it readily follows that∫

Erk

∫
Rn

|ψk(x− y)||ϕ(x)||ψ̃kf(y)|dydx <∞, k ≥ sr.

Therefore, we can use Fubini’s theorem, (2.19), and (2.20) to obtain for k ≥ 0

|⟨grk, ϕ⟩| ≤
∫
Erk

∣∣∣ ∫
Rn

ψk(x− y)ϕ(x)dx
∣∣∣|ψ̃kf(y)|dy

≤ c2−k(K+1−n/p)∥f∥Hp

∫
Erk

(1 + |y|)−σdy ≤ c2−k(K+1−n/p)∥f∥Hp ,(2.21)

which implies (2.18) because K ≥ n/p.

Denote Gℓ :=
∑ℓ

k=sr
grk. From the above proof of (b) and (2.13) we infer

that Gℓ(x) → Fr(x) as ℓ → ∞ for x ∈ Rn and ∥Gℓ∥∞ ≤ c2r < ∞ for ℓ ≥ sr.
On the other hand, from (2.18) it follows that the series

∑
k≥sr

grk converges in
distributional sense. By applying the dominated convergence theorem one easily
concludes that Fr =

∑
k≥sr

grk with the convergence in distributional sense. �
We set Fr := 0 in the case when Ωr = ∅, r ∈ Z.
Note that by (2.12) it follows that

(2.22) ψk ∗ψk ∗ f(x) =
∫
Rn

ψk(x− y)ψk ∗ f(y)dy =
∑
r∈Z

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy

and using (2.6) and the definition of Fr in (2.7) we arrive at

(2.23) f =
∑
r∈Z

Fr in S ′, i.e. ⟨f, ϕ⟩ =
∑
r∈Z

⟨Fr, ϕ⟩, ∀ϕ ∈ S,

where the last series converges absolutely. Above ⟨f, ϕ⟩ denotes the action of f
on ϕ. We next provide the needed justification of identity (2.23).

From (2.6), (2.7), (2.22), and the notation from (2.18) we obtain for ϕ ∈ S

⟨f, ϕ⟩ =
∑
k

⟨ψkψ̃kf, ϕ⟩ =
∑
k

∑
r

⟨grk, ϕ⟩ =
∑
r

∑
k

⟨grk, ϕ⟩ =
∑
r

⟨Fr, ϕ⟩.

Clearly, to justify the above identities it suffices to show that
∑

k

∑
r |⟨grk, ϕ⟩| <∞.

We split this sum into two:
∑

k

∑
r · · · =

∑
k≥0

∑
r · · ·+

∑
k<0

∑
r · · · =: Σ1 +Σ2.
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To estimate Σ1 we use (2.21) and obtain

Σ1 ≤ c∥f∥Hp

∑
k≥0

2−k(K+1−n/p)
∑
r

∫
Erk

(1 + |y|)−σdy

≤ c∥f∥Hp

∑
k≥0

2−k(K+1−n/p)

∫
Rn

(1 + |y|)−σdy ≤ c∥f∥Hp .

Here we also used that K ≥ n/p and σ > n.
We estimate Σ2 in a similar manner, using the fact that

∫
Rn |ψk(y)|dy ≤ c <∞

and (2.19). We get

Σ2 ≤ c∥f∥Hp

∑
k<0

2kn/p
∑
r

∫
Erk

∫
Rn

|ψk(x− y)|dy|ϕ(x)|dx

≤ c∥f∥Hp

∑
k<0

2kn/p
∫
Rn

(1 + |x|)−n−1dx ≤ c∥f∥Hp .

The above estimates of Σ1 and Σ2 imply
∑

k

∑
r |⟨grk, ϕ⟩| < ∞, which completes

the justification of (2.23).

Observe that due to
∫
Rn x

αψ(x)dx = 0 for |α| ≤ K we have

(2.24)

∫
Rn

xαFr(x)dx = 0 for |α| ≤ K, r ∈ Z.

We next decompose each function Fr into atoms. To this end we need a Whitney
type cover for Ωr, given in the following

Lemma 2.4. Suppose Ω is an open proper subset of Rn and let ρ(x) := dist(x,Ωc).
Then there exists a constant K > 0, depending only on n, and a sequence of points
{ξj}j∈N in Ω with the following properties, where ρj := dist(ξj ,Ω

c):

(a) Ω = ∪j∈NB(ξj , ρj/2).

(b) {B(ξj , ρj/5)} are disjoint.

(c) If B
(
ξj ,

3ρj

4

)
∩B

(
ξν ,

3ρν

4

)
̸= ∅, then 7−1ρν ≤ ρj ≤ 7ρν .

(d) For every j ∈ N there are at most K balls B
(
ξν ,

3ρν

4

)
intersecting B

(
ξj ,

3ρj

4

)
.

Variants of this simple lemma are well known and frequently used. To prove
it one simply selects {B(ξj , ρ(ξj)/5)}j∈N to be a maximal disjoint subcollection of
{B(x, ρ(x)/5)}x∈Ω and then properties (a)-(d) follow readily, see [5], pp. 15-16.

We apply Lemma 2.4 to each set Ωr ̸= ∅, r ∈ Z. Fix r ∈ Z and assume
Ωr ̸= ∅. Denote by Bj := B(ξj , ρj/2), j = 1, 2, . . . , the balls given by Lemma 2.4,
applied to Ωr, with the additional assumption that these balls are ordered so that
ρ1 ≥ ρ2 ≥ · · · . We will adhere to the notation from Lemma 2.4. We will also use
the more compact notation Br := {Bj}j∈N for the set of balls covering Ωr.

For each ball B ∈ Br and k ≥ sr we define

(2.25) EB
rk := Erk ∩

(
B + 2B(0, 2−k)

)
if B ∩ Erk ̸= ∅

and set EB
rk := ∅ if B ∩ Erk = ∅.

We also define, for ℓ = 1, 2, . . . ,

(2.26) RBℓ

rk := EBℓ

rk \ ∪ν>ℓE
Bν

rk and
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(2.27) FBℓ
(x) :=

∑
k≥sr

∫
R

Bℓ
rk

ψk(x− y)ψ̃k ∗ f(y)dy.

Lemma 2.5. For every ℓ ≥ 1 the function FBℓ
is well defined, more precisely, the

series in (2.27) converges point-wise and in distributional sense. Furthermore,

(2.28) suppFBℓ
⊂ 7Bℓ,

(2.29)

∫
Rn

xαFBℓ
(x)dx = 0 for all α with |α| ≤ n(p−1 − 1),

and

(2.30) ∥FBℓ
∥∞ ≤ c♯2

r,

where the constant c♯ is independent of r, ℓ.
In addition, for any k ≥ sr

(2.31) Erk = ∪ℓ≥1R
Bℓ

rk and RBℓ

rk ∩RBm

rk = ∅, ℓ ̸= m.

Hence

(2.32) Fr =
∑
B∈Br

FB (convergence in S ′).

Proof. Fix ℓ ≥ 1. Observe that using Lemma 2.4 we have Bℓ ⊂ Ωc
r + B(0, 2ρℓ)

and hence EBℓ

rk := ∅ if 2−k+1 ≥ 2ρℓ. Define k0 := min{k : 2−k < ρℓ}. Hence

ρℓ/2 ≤ 2−k0 < ρℓ. Consequently,

(2.33) FBℓ
(x) :=

∑
k≥k0

∫
R

Bℓ
rk

ψk(x− y)ψ̃k ∗ f(y)dy.

It follows that suppFBℓ
⊂ B

(
ξℓ, (7/2)ρℓ

)
= 7Bℓ, which confirms (2.28).

To prove (2.30) we will use the following

Lemma 2.6. For an arbitrary set S ⊂ Rn let Sk := {x ∈ Rn : dist(x, S) < 2−k+1}
and set

(2.34) FS(x) :=
∑
k≥κ0

∫
Erk∩Sk

ψk(x− y)ψ̃k ∗ f(y)dy

for some κ0 ≥ sr. Then ∥FS∥∞ ≤ c2r, where c > 0 is a constant independent of S
and κ0. Moreover, the above series converges in S ′.

Proof. From (2.9) it follows that FS(x) = 0 if dist(x, S) ≥ 3× 2−κ0

Let x ∈ S. Evidently, B(x, 2−k) ⊂ Sk for every k and hence

FS(x) =
∑
k≥κ0

∫
Erk∩B(x,2−k)

ψk(x− y)ψ̃k ∗ f(y)dy

=
∑
k≥κ0

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy = Fr,κ0(x).

On account of Lemma 2.3 (b) we obtain |FS(x)| = |Fr,κ0(x)| ≤ c2r.
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Consider the case when x ∈ Sℓ \ Sℓ+1 for some ℓ ≥ κ0. Then B(x, 2−k) ⊂ Sk if
κ0 ≤ k ≤ ℓ− 1 and B(x, 2−k) ∩ Sk = ∅ if k ≥ ℓ+ 2. Therefore,

FS(x) =

ℓ−1∑
k=κ0

∫
Erk

ψk(x− y)ψ̃k ∗ f(y)dy +
ℓ+1∑
k=ℓ

∫
Erk∩Sk

ψk(x− y)ψ̃k ∗ f(y)dy

= Fr,κ0,ℓ−1(x) +
ℓ+1∑
k=ℓ

∫
Erk∩Sk

ψk(x− y)ψ̃k ∗ f(y)dy,

where we used the notation from (2.8). By Lemma 2.3 (b) and (2.10) it follows
that |FS(x)| ≤ c2r.

We finally consider the case when 2−κ0+1 ≤ dist(x, S) < 3 × 2−κ0 . Then we

have FS(x) =
∫
Erκ0∩Sκ0

ψκ0(x − y)ψ̃κ0 ∗ f(y)dy and the estimate |FS(x)| ≤ c2r is

immediate from (2.10).
The convergence in S ′ in (2.34) is established as in the proof of Lemma 2.3. �
Fix ℓ ≥ 1 and let {Bj : j ∈ J } be the set of all balls Bj = B(ξj , ρj/2) such that

j > ℓ and

B
(
ξj ,

3ρj
4

)
∩B

(
ξℓ,

3ρℓ
4

)
̸= ∅.

By Lemma 2.4 it follows that #J ≤ K and 7−1ρℓ ≤ ρj ≤ 7ρℓ for j ∈ J . Define

(2.35) k1 := min
{
k : 2−k+1 < 4−1 min

{
ρj : j ∈ J ∪ {ℓ}

}}
.

From this definition and 2−k0 < ρℓ we infer

(2.36) 2−k1+1 ≥ 8−1 min
{
ρj : j ∈ J ∪ {ℓ}

}
> 8−2ρℓ > 8−22−k0 =⇒ k1 ≤ k0 +7.

Clearly, from (2.35)

(2.37) Bj + 2B(0, 2−k) ⊂ B
(
ξj , 3ρj/4

)
, ∀k ≥ k1, ∀j ∈ J ∪ {ℓ}.

Denote S := ∪j∈JBj and S̃ := ∪j∈JBj ∪Bℓ = S ∪Bℓ. As in Lemma 2.6 we set

Sk := S + 2B(0, 2−k) and S̃k := S̃ + 2B(0, 2−k).

It readily follows from the definition of k1 in (2.35) that

(2.38) RBℓ

rk := EBℓ

rk \ ∪ν>ℓE
Bν

rk =
(
Erk ∩ S̃k

)
\
(
Erk ∩ Sk

)
for k ≥ k1.

Denote

FS(x) :=
∑
k≥k1

∫
Erk∩Sk

ψk(x− y)ψ̃k ∗ f(y)dy, and

FS̃(x) :=
∑
k≥k1

∫
Erk∩S̃k

ψk(x− y)ψ̃k ∗ f(y)dy.

From (2.38) and the fact that S ⊂ S̃ it follows that

FBℓ
(x) = FS̃(x)− FS(x) +

∑
k0≤k<k1

∫
R

Bℓ
rk

ψk(x− y)ψ̃k ∗ f(y)dy.

By Lemma 2.6 we get ∥FS∥∞ ≤ c2r and ∥FS̃∥∞ ≤ c2r. On the other hand from
(2.36) we have k1 − k0 ≤ 7. We estimate each of the (at most 7) integrals above
using (2.10) to conclude that ∥FBℓ

∥∞ ≤ c2r.
We deal with the convergence in (2.27) and (2.32) as in the proof of Lemma 2.3.
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Clearly, (2.29) follows from the fact that
∫
Rn x

αψ(x)dx = 0 for all α with |α| ≤ K.
Finally, from Lemma 2.4 we have Ωr ⊂ ∪j∈NBℓ and then (2.31) is immediate

from (2.25) and (2.26). �
We are now prepared to complete the proof of Theorem 2.1. For every ball

B ∈ Br, r ∈ Z, provided Ωr ̸= ∅, we define B⋆ := 7B,

aB(x) := c♯
−1|B⋆|−1/p2−rFB(x) and λB := c♯|B⋆|1/p2r,

where c♯ > 0 is the constant from (2.30). By (2.28) supp aB ⊂ B⋆ and by (2.30)

∥aB∥∞ ≤ c♯
−1|B⋆|−1/p2−r∥FB∥∞ ≤ |B⋆|−1/p.

Furthermore, from (2.29) it follows that
∫
Rn x

αaB(x)dx = 0 if |α| ≤ n(p−1 − 1).
Therefore, each aB is an atom for Hp.

We set Br := ∅ if Ωr = ∅. Now, using the above, (2.23), and Lemma 2.5 we get

f =
∑
r∈Z

Fr =
∑
r∈Z

∑
B∈Br

FB =
∑
r∈Z

∑
B∈Br

λBaB ,

where the convergence is in S ′, and∑
r∈Z

∑
B∈Br

|λB |p ≤ c
∑
r∈Z

2pr
∑
B∈Br

|B| = c
∑
r∈Z

2pr|Ωr| ≤ c∥f∥pHp ,

which is the claimed atomic decomposition of f ∈ Hp. Above we used that |B⋆| =
|7B| = 7n|B|. �
Remark 2.7. The proof of Theorem 2.1 can be considerably simplified and short-
ened if one seeks to establish atomic decomposition of the Hp spaces in terms of
q-atoms with p < q < ∞ rather than ∞-atoms as in Theorem 2.1, i.e. atoms sat-
isfying ∥a∥Lq ≤ |B|1/q−1/p with q < ∞ rather than ∥a∥L∞ ≤ |B|−1/p. We will not
elaborate on this here.
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