

INTERDISCIPLINARY Mathematics

 InstituTE2014:04
A New Proof of the Atomic Decomposition of Hardy Spaces
S. Dekel, G. Kerkyacharian, G. Kyriazis, and P. Petrushev

A NEW PROOF OF THE ATOMIC DECOMPOSITION OF HARDY SPACES

S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV

Abstract. A new proof is given of the atomic decomposition of Hardy spaces $H^{p}, 0<p \leq 1$, in the classical setting on \mathbb{R}^{n}. The new method can be used to establish atomic decomposition of maximal Hardy spaces in general and nonclassical settings.

1. Introduction

The study of the real-variable Hardy spaces $H^{p}, 0<p \leq 1$, on \mathbb{R}^{n} was pioneered by Stein and Weiss [6] and a major step forward in developing this theory was made by Fefferman and Stein in [3], see also [5]. Since then there has been a great deal of work done on Hardy spaces. The atomic decomposition of H^{p} was first established by Coifman [1] in dimension $n=1$ and by Latter [4] in dimensions $n>1$.

The purpose of this article is to give a new proof of the atomic decomposition of the H^{p} spaces in the classical setting on \mathbb{R}^{n}. Our method does not use the CalderónZygmund decomposition of functions and an approximation of the identity as the classical argument does, see [5]. The main advantage of the new proof over the classical one is that it is amenable to utilization in more general and nonclassical settings. For instance, it is used in [2] for establishing the equivalence of maximal and atomic Hardy spaces in the general setting of a metric measure space with the doubling property and in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property.
Notation. For a set $E \subset \mathbb{R}^{n}$ we will denote $E+B(0, \delta):=\cup_{x \in E} B(x, \delta)$, where $B(x, \delta)$ stands for the open ball centered at x of radius δ. We will also use the notation $c B(x, \delta):=B(x, c \delta)$. Positive constants will be denoted by c, c_{1}, \ldots and they may vary at every occurrence; $a \sim b$ will stand for $c_{1} \leq a / b \leq c_{2}$.
1.1. Maximal operators and $\boldsymbol{H}^{\boldsymbol{p}}$ spaces. We begin by recalling some basic facts about Hardy spaces on \mathbb{R}^{n}. For a complete account of Hardy spaces we refer the reader to [5].

Given $\varphi \in \mathcal{S}$ with \mathcal{S} being the Schwartz class on \mathbb{R}^{n} and $f \in \mathcal{S}^{\prime}$ one defines

$$
\begin{gather*}
M_{\varphi} f(x):=\sup _{t>0}\left|\varphi_{t} * f(x)\right| \text { with } \varphi_{t}(x):=t^{-n} \varphi\left(t^{-1} x\right), \quad \text { and } \tag{1.1}\\
M_{\varphi, a}^{*} f(x):=\sup _{t>0} \sup _{y \in \mathbb{R}^{n},|x-y| \leq a t}\left|\varphi_{t} * f(y)\right|, \quad a \geq 1 \tag{1.2}
\end{gather*}
$$

We now recall the grand maximal operator. Write

$$
\mathcal{P}_{N}(\varphi):=\sup _{x \in \mathbb{R}^{n}}(1+|x|)^{N} \max _{|\alpha| \leq N+1}\left|\partial^{\alpha} \varphi(x)\right|
$$

2010 Mathematics Subject Classification. Primary 42B30.
Key words and phrases. Hardy spaces, Atomic decomposition.
and denote

$$
\mathcal{F}_{N}:=\left\{\varphi \in \mathcal{S}: \mathcal{P}_{N}(\varphi) \leq 1\right\} .
$$

The grand maximal operator is defined by

$$
\begin{equation*}
\mathcal{M}_{N} f(x):=\sup _{\varphi \in \mathcal{F}_{N}} M_{\varphi, 1}^{*} f(x), \quad f \in \mathcal{S}^{\prime} \tag{1.3}
\end{equation*}
$$

It is easy to see that for any $\varphi \in \mathcal{S}$ and $a \geq 1$ one has

$$
\begin{equation*}
M_{\varphi, a}^{*} f(x) \leq a^{N} \mathcal{P}_{N}(\varphi) \mathcal{M}_{N} f(x), \quad f \in \mathcal{S}^{\prime} \tag{1.4}
\end{equation*}
$$

Definition 1.1. The space $H^{p}, 0<p \leq 1$, is defined as the set of all bounded distributions $f \in \mathcal{S}^{\prime}$ such that the Poisson maximal function $\sup _{t>0}\left|P_{t} * f(x)\right|$ belongs to L^{p}; the quasi-norm on H^{p} is defined by

$$
\begin{equation*}
\|f\|_{H^{p}}:=\left\|\sup _{t>0}\left|P_{t} * f(\cdot)\right|\right\|_{L^{p}} \tag{1.5}
\end{equation*}
$$

As is well known the following assertion holds, see [3, 5]:
Proposition 1.2. Let $0<p \leq 1, a \geq 1$, and assume $\varphi \in \mathcal{S}$ and $\int_{\mathbb{R}^{n}} \varphi \neq 0$. Then for any $N \geq\left\lfloor\frac{n}{p}\right\rfloor+1$

$$
\begin{equation*}
\|f\|_{H^{p}} \sim\left\|M_{\varphi, a}^{*} f\right\|_{L^{p}} \sim\left\|\mathcal{M}_{N} f\right\|_{L^{p}}, \quad \forall f \in H^{p} \tag{1.6}
\end{equation*}
$$

1.2. Atomic \boldsymbol{H}^{p} spaces. A function $a \in L^{\infty}\left(\mathbb{R}^{n}\right)$ is called an atom if there exists a ball B such that
(i) $\operatorname{supp} a \subset B$,
(ii) $\|a\|_{L^{\infty}} \leq|B|^{-1 / p}$, and
(iii) $\int_{\mathbb{R}^{n}} x^{\alpha} a(x) d x=0$ for all α with $|\alpha| \leq n\left(p^{-1}-1\right)$.

The atomic Hardy space $H_{A}^{p}, 0<p \leq 1$, is defined as the set of all distributions $f \in \mathcal{S}^{\prime}$ that can be represented in the form

$$
\begin{equation*}
f=\sum_{j=1}^{\infty} \lambda_{j} a_{j}, \quad \text { where } \quad \sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p}<\infty \tag{1.7}
\end{equation*}
$$

$\left\{a_{j}\right\}$ are atoms, and the convergence is in \mathcal{S}^{\prime}. Set

$$
\begin{equation*}
\|f\|_{H_{A}^{p}}:=\inf _{f=\sum_{j} \lambda_{j} a_{j}}\left(\sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p}\right)^{1 / p}, \quad f \in H_{A}^{p} \tag{1.8}
\end{equation*}
$$

2. Atomic decomposition of H^{p} Spaces

We now come to the main point in this article, that is, to give a new proof of the following classical result $[1,4]$, see also [5]:
Theorem 2.1. For any $0<p \leq 1$ the continuous embedding $H^{p} \subset H_{A}^{p}$ is valid, that is, if $f \in H^{p}$, then $f \in H_{A}^{p}$ and

$$
\begin{equation*}
\|f\|_{H_{A}^{p}} \leq c\|f\|_{H^{p}} \tag{2.1}
\end{equation*}
$$

where $c>0$ is a constant depending only on p, n. This along with the easy to prove embedding $H_{A}^{p} \subset H^{p}$ leads to $H^{p}=H_{A}^{p}$ and $\|f\|_{H^{p}} \sim\|f\|_{H_{A}^{p}}$ for $f \in H^{p}$.

Proof. We first derive a simple decomposition identity which will play a central rôle in this proof. For this construction we need the following

Lemma 2.2. For any $m \geq 1$ there exists a function $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\operatorname{supp} \varphi \subset B(0,1), \hat{\varphi}(0)=1$, and $\partial^{\alpha} \hat{\varphi}(0)=0$ for $0<|\alpha| \leq m$. Here $\hat{\varphi}(x):=$ $\int_{\mathbb{R}^{n}} \varphi(x) e^{-i x \cdot \xi} d x$.
Proof. We will construct a function φ with the claimed properties in dimension $n=1$. Then a normalized dilation of $\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \cdots \varphi\left(x_{n}\right)$ will have the claimed properties on \mathbb{R}^{n}.

For the univariate construction, pick a smooth "bump" ϕ with the following properties: $\phi \in C_{0}^{\infty}(\mathbb{R}), \operatorname{supp} \phi \subset[-1 / 4,1 / 4], \phi(x)>0$ for $x \in(-1 / 4,1 / 4)$, and ϕ is even. Let $\Theta(x):=\phi(x+1 / 2)-\phi(x-1 / 2)$ for $x \in \mathbb{R}$. Clearly Θ is odd.

We may assume that $m \geq 1$ is even, otherwise we work with $m+1$ instead. Denote $\Delta_{h}^{m}:=\left(T_{h}-T_{-h}\right)^{m}$, where $T_{h} f(x):=f(x+h)$.

We define $\varphi(x):=\frac{1}{x} \Delta_{h}^{m} \Theta(x)$, where $h=\frac{1}{8 m}$. Clearly, $\varphi \in C^{\infty}(\mathbb{R})$, φ is even, and $\operatorname{supp} \varphi \subset\left[-\frac{7}{8},-\frac{1}{8}\right] \cup\left[\frac{1}{8}, \frac{7}{8}\right]$. It is readily seen that for $\nu=1,2, \ldots, m$

$$
\hat{\varphi}^{(\nu)}(\xi)=(-i)^{\nu} \int_{\mathbb{R}} x^{\nu-1} \Delta_{h}^{m} \Theta(x) e^{-i \xi x} d x
$$

and hence

$$
\hat{\varphi}^{(\nu)}(0)=(-i)^{\nu} \int_{\mathbb{R}} x^{\nu-1} \Delta_{h}^{m} \Theta(x) d x=(-i)^{\nu+m} \int_{\mathbb{R}} \Theta(x) \Delta_{h}^{m} x^{\nu-1} d x=0 .
$$

On the other hand,

$$
\hat{\varphi}(0)=\int_{\mathbb{R}} \varphi(x) d x=2 \int_{0}^{\infty} x^{-1} \Delta_{h}^{m} \Theta(x) d x=2(-1)^{m} \int_{1 / 4}^{3 / 4} \Theta(x) \Delta_{h}^{m} x^{-1} d x
$$

However, for any sufficiently smooth function f we have $\Delta_{h}^{m} f(x)=(2 h)^{m} f^{(m)}(\xi)$, where $\xi \in(x-m h, x+m h)$. Hence,

$$
\Delta_{h}^{m} x^{-1}=(2 h)^{m} m!(-1)^{m} \xi^{-m-1} \quad \text { with } \quad \xi \in(x-m h, x+m h) \subset[1 / 8,7 / 8] .
$$

Consequently, $\hat{\varphi}(0) \neq 0$ and then $\hat{\varphi}(0)^{-1} \varphi(x)$ has the claimed properties.
With the aid of the above lemma, we pick $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with the following properties: $\operatorname{supp} \varphi \subset B(0,1), \hat{\varphi}(0)=1$, and $\partial^{\alpha} \hat{\varphi}(0)=0$ for $0<|\alpha| \leq K$, where K is sufficiently large. More precisely, we choose $K \geq n / p$.

Set $\psi(x):=2^{n} \varphi(2 x)-\varphi(x)$. Then $\hat{\psi}(\xi)=\hat{\varphi}(\xi / 2)-\hat{\varphi}(\xi)$. Therefore, $\partial^{\alpha} \hat{\psi}(0)=0$ for $|\alpha| \leq K$ which implies $\int_{\mathbb{R}^{n}} x^{\alpha} \psi(x) d x=0$ for $|\alpha| \leq K$. We also introduce the function $\tilde{\psi}(x):=2^{n} \varphi(2 x)+\varphi(x)$. We will use the notation $h_{k}(x):=2^{k n} h\left(2^{k} x\right)$.

Clearly, for any $f \in \mathcal{S}^{\prime}$ we have $f=\lim _{j \rightarrow \infty} \varphi_{j} * \varphi_{j} * f$ (convergence in \mathcal{S}^{\prime}), which leads to the following representation: For any $j \in \mathbb{Z}$

$$
\begin{aligned}
f & =\varphi_{j} * \varphi_{j} * f+\sum_{k=j}^{\infty}\left[\varphi_{k+1} * \varphi_{k+1} * f-\varphi_{k} * \varphi_{k} * f\right] \\
& =\varphi_{j} * \varphi_{j} * f+\sum_{k=j}^{\infty}\left[\varphi_{k+1}-\varphi_{k}\right] *\left[\varphi_{k+1}+\varphi_{k}\right] * f
\end{aligned}
$$

Thus we arrive at

$$
\begin{equation*}
f=\varphi_{j} * \varphi_{j} * f+\sum_{k=j}^{\infty} \psi_{k} * \tilde{\psi}_{k} * f, \quad \forall f \in \mathcal{S}^{\prime} \quad \forall j \in \mathbb{Z} \quad\left(\text { convergence in } \mathcal{S}^{\prime}\right) \tag{2.2}
\end{equation*}
$$

Observe that $\operatorname{supp} \psi_{k} \subset B\left(0,2^{-k}\right)$ and $\operatorname{supp} \tilde{\psi}_{k} \subset B\left(0,2^{-k}\right)$.

In what follows we will utilize the grand maximal operator \mathcal{M}_{N}, defined in (1.3) with $N:=\left\lfloor\frac{n}{p}\right\rfloor+1$. The following claim follows readily from (1.4): If $\phi \in \mathcal{S}$, then for any $f \in \mathcal{S}^{\prime}, k \in \mathbb{Z}$, and $x \in \mathbb{R}^{n}$

$$
\begin{equation*}
\left|\phi_{k} * f(y)\right| \leq c \mathcal{M}_{N} f(x) \quad \text { for all } \quad y \in \mathbb{R}^{n} \text { with }|y-x| \leq 2^{-k+1} \tag{2.3}
\end{equation*}
$$

where the constant $c>0$ depends only on $\mathcal{P}_{N}(\phi)$ and N.
Let $f \in H^{p}, 0<p \leq 1, f \neq 0$. We define

$$
\begin{equation*}
\Omega_{r}:=\left\{x \in \mathbb{R}^{n}: \mathcal{M}_{N} f(x)>2^{r}\right\}, \quad r \in \mathbb{Z} . \tag{2.4}
\end{equation*}
$$

Clearly, Ω_{r} is open, $\Omega_{r+1} \subset \Omega_{r}$, and $\mathbb{R}^{n}=\cup_{r \in \mathbb{Z}} \Omega_{r}$. It is easy to see that

$$
\begin{equation*}
\sum_{r \in \mathbb{Z}} 2^{p r}\left|\Omega_{r}\right| \leq c \int_{\mathbb{R}^{n}} \mathcal{M}_{N} f(x)^{p} d \mu(x) \leq c\|f\|_{H^{p}}^{p} \tag{2.5}
\end{equation*}
$$

From (2.5) we get $\left|\Omega_{r}\right| \leq c 2^{-p r}\|f\|_{H^{p}}^{p}$ for $r \in \mathbb{Z}$. Therefore, for any $r \in \mathbb{Z}$ there exists $J>0$ such that $\left\|\varphi_{j} * \varphi_{j} * f\right\|_{\infty} \leq c 2^{r}$ for $j<-J$. Consequently, $\left\|\varphi_{j} * \varphi_{j} * f\right\|_{\infty} \rightarrow 0$ as $j \rightarrow-\infty$, which implies

$$
\begin{equation*}
f=\lim _{K \rightarrow \infty} \sum_{k=-\infty}^{K} \psi_{k} * \tilde{\psi}_{k} * f \quad\left(\text { convergence in } \mathcal{S}^{\prime}\right) \tag{2.6}
\end{equation*}
$$

Assuming that $\Omega_{r} \neq \emptyset$ we write

$$
E_{r k}:=\left\{x \in \Omega_{r}: \operatorname{dist}\left(x, \Omega_{r}^{c}\right)>2^{-k+1}\right\} \backslash\left\{x \in \Omega_{r+1}: \operatorname{dist}\left(x, \Omega_{r+1}^{c}\right)>2^{-k+1}\right\} .
$$

By (2.5) it follows that $\left|\Omega_{r}\right|<\infty$ and hence there exists $s_{r} \in \mathbb{Z}$ such that $E_{r s_{r}} \neq \emptyset$ and $E_{r k}=\emptyset$ for $k<s_{r}$. Evidently $s_{r} \leq s_{r+1}$. We define

$$
\begin{equation*}
F_{r}(x):=\sum_{k \geq s_{r}} \int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y, \quad x \in \mathbb{R}^{n}, r \in \mathbb{Z} \tag{2.7}
\end{equation*}
$$

and more generally

$$
\begin{equation*}
F_{r, \kappa_{0}, \kappa_{1}}(x):=\sum_{k=\kappa_{0}}^{\kappa_{1}} \int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y, \quad s_{r} \leq \kappa_{0} \leq \kappa_{1} \leq \infty \tag{2.8}
\end{equation*}
$$

It will be shown in Lemma 2.3 below that the functions F_{r} and $F_{r, \kappa_{0}, \kappa_{1}}$ are well defined and $F_{r}, F_{r, \kappa_{0}, \kappa_{1}} \in L^{\infty}$.

Note that $\operatorname{supp} \psi_{k} \subset B\left(0,2^{-k}\right)$ and hence

$$
\begin{equation*}
\operatorname{supp}\left(\int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y\right) \subset E_{r k}+B\left(0,2^{-k}\right) \tag{2.9}
\end{equation*}
$$

On the other hand, clearly $2 B\left(y, 2^{-k}\right) \cap\left(\Omega_{r} \backslash \Omega_{r+1}\right) \neq \emptyset$ for each $y \in E_{r k}$, and $\mathcal{P}_{N}(\tilde{\psi}) \leq c$. Therefore, see (2.3), $\left|\tilde{\psi}_{k} * f(y)\right| \leq c 2^{r}$ for $y \in E_{r k}$, which implies

$$
\begin{equation*}
\left\|\int_{E} \psi_{k}(\cdot-y) \tilde{\psi}_{k} * f(y) d y\right\|_{\infty} \leq c 2^{r}, \quad \forall E \subset E_{r k} \tag{2.10}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left\|\int_{E} \varphi_{k}(\cdot-y) \tilde{\varphi}_{k} * f(y) d y\right\|_{\infty} \leq c 2^{r}, \quad \forall E \subset E_{r k} \tag{2.11}
\end{equation*}
$$

We collect all we need about the functions F_{r} and $F_{r, \kappa_{0}, \kappa_{1}}$ in the following

Lemma 2.3. (a) We have

$$
\begin{equation*}
E_{r k} \cap E_{r^{\prime} k}=\emptyset \quad \text { if } r \neq r^{\prime} \quad \text { and } \quad \mathbb{R}^{n}=\cup_{r \in \mathbb{Z}} E_{r k}, \quad \forall k \in \mathbb{Z} . \tag{2.12}
\end{equation*}
$$

(b) There exists a constant $c>0$ such that for any $r \in \mathbb{Z}$ and $s_{r} \leq \kappa_{0} \leq \kappa_{1} \leq \infty$

$$
\begin{equation*}
\left\|F_{r}\right\|_{\infty} \leq c 2^{r}, \quad\left\|F_{r, \kappa_{0}, \kappa_{1}}\right\|_{\infty} \leq c 2^{r} \tag{2.13}
\end{equation*}
$$

(c) The series in (2.7) and (2.8) (if $\left.\kappa_{1}=\infty\right)$ converge point-wise and in distributional sense.
(d) Moreover,

$$
\begin{equation*}
F_{r}(x)=0, \quad \forall x \in \mathbb{R}^{n} \backslash \Omega_{r}, \quad \forall r \in \mathbb{Z} \tag{2.14}
\end{equation*}
$$

Proof. Identities (2.12) are obvious and (2.14) follows readily from (2.9).
We next prove the left-hand side inequality in (2.13); the proof of the right-hand side inequality is similar and will be omitted. Consider the case when $\Omega_{r+1} \neq \emptyset$ (the case when $\Omega_{r+1}=\emptyset$ is easier). Write
$U_{k}=\left\{x \in \Omega_{r}: \operatorname{dist}\left(x, \Omega_{r}^{c}\right)>2^{-k+1}\right\}, \quad V_{k}=\left\{x \in \Omega_{r+1}: \operatorname{dist}\left(x, \Omega_{r+1}^{c}\right)>2^{-k+1}\right\}$.
Observe that $E_{r k}=U_{k} \backslash V_{k}$.
From (2.9) it follows that $\left|F_{r}(x)\right|=0$ for $x \in \mathbb{R}^{n} \backslash \cup_{k \geq s_{r}}\left(E_{r k}+B\left(0,2^{-k}\right)\right)$. We next estimate $\left|F_{r}(x)\right|$ for $x \in \cup_{k \geq s_{r}}\left(E_{r k}+B\left(0,2^{-k}\right)\right)$. Two cases present themselves here.

Case 1: $x \in\left[\cup_{k \geq s_{r}}\left(E_{r k}+B\left(0,2^{-k}\right)\right)\right] \cap \Omega_{r+1}$. Then there exist $\nu, \ell \in \mathbb{Z}$ such that

$$
\begin{equation*}
x \in\left(U_{\ell+1} \backslash U_{\ell}\right) \cap\left(V_{\nu+1} \backslash V_{\nu}\right) \tag{2.15}
\end{equation*}
$$

Due to $\Omega_{r+1} \subset \Omega_{r}$ we have $V_{k} \subset U_{k}$, implying $\left(U_{\ell+1} \backslash U_{\ell}\right) \cap\left(V_{\nu+1} \backslash V_{\nu}\right)=\emptyset$ if $\nu<\ell$. We consider two subcases depending on whether $\nu \geq \ell+3$ or $\ell \leq \nu \leq \ell+2$.
(a) Let $\nu \geq \ell+3$. We claim that (2.15) yields

$$
\begin{equation*}
B\left(x, 2^{-k}\right) \cap E_{r k}=\emptyset \quad \text { for } \quad k \geq \nu+2 \text { or } k \leq \ell-1 \tag{2.16}
\end{equation*}
$$

Indeed, if $k \geq \nu+2$, then $E_{r k} \subset \Omega_{r} \backslash V_{\nu+2}$, which implies (2.16), while if $k \leq \ell-1$, then $E_{r k} \subset U_{\ell-1}$, again implying (2.16).

We also claim that

$$
\begin{equation*}
B\left(x, 2^{-k}\right) \subset E_{r k} \quad \text { for } \quad \ell+2 \leq k \leq \nu-1 \tag{2.17}
\end{equation*}
$$

Indeed, clearly

$$
\left(U_{\ell+1} \backslash U_{\ell}\right) \cap\left(V_{\nu+1} \backslash V_{\nu}\right) \subset\left(U_{k-1} \backslash U_{\ell}\right) \cap\left(V_{\nu+1} \backslash V_{\nu+1}\right) \subset U_{k-1} \backslash V_{k+1}
$$

which implies (2.17).
From (2.9) and (2.16)- (2.17) it follows that

$$
\begin{aligned}
F_{r}(x) & =\sum_{k=\ell}^{\nu+1} \int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y=\sum_{k=\ell}^{\ell+1} \int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y \\
& +\sum_{k=\ell+2}^{\nu-2} \int_{\mathbb{R}^{n}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y+\sum_{k=\nu-1}^{\nu+1} \int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y
\end{aligned}
$$

However,

$$
\begin{aligned}
\sum_{k=\ell+2}^{\nu-2} \int_{\mathbb{R}^{n}} & \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y=\sum_{k=\ell+2}^{\nu-2}\left[\varphi_{k+1} * \varphi_{k+1} * f(x)-\varphi_{k} * \varphi_{k} * f(x)\right] \\
& =\varphi_{\nu-1} * \varphi_{\nu-1} * f(x)-\varphi_{\ell+2} * \varphi_{\ell+2} * f(x) \\
& =\int_{E_{r, \nu-1}} \varphi_{\nu-1}(x-y) \varphi_{\nu-1} * f(y) d y-\int_{E_{r, \ell+2}} \varphi_{\ell+2}(x-y) \varphi_{\ell+2} * f(y) d y
\end{aligned}
$$

Combining the above with (2.10) and (2.11) we obtain $\left|F_{r}(x)\right| \leq c 2^{r}$.
(b) Let $\ell \leq \nu \leq \ell+2$. Just as above we have

$$
F_{r}(x)=\sum_{k=\ell}^{\nu+1} \int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y=\sum_{k=\ell}^{\ell+3} \int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y
$$

We use (2.10) to estimate each of these four integrals and again obtain $\left|F_{r}(x)\right| \leq c 2^{r}$.
Case 2: $x \in \Omega_{r} \backslash \Omega_{r+1}$. Then there exists $\ell \geq s_{r}$ such that

$$
x \in\left(U_{\ell+1} \backslash U_{\ell}\right) \cap\left(\Omega_{r} \backslash \Omega_{r+1}\right)
$$

Just as in the proof of (2.16) we have $B\left(x, 2^{-k}\right) \cap E_{r k}=\emptyset$ for $k \leq \ell-1$, and as in the proof of (2.17) we have

$$
\left(U_{\ell+1} \backslash U_{\ell}\right) \cap\left(\Omega_{r} \backslash \Omega_{r+1}\right) \subset U_{k-1} \backslash V_{k+1}
$$

which implies $B\left(x, 2^{-k}\right) \subset E_{r k}$ for $k \geq \ell+2$. We use these and (2.9) to obtain

$$
\begin{aligned}
F_{r}(x) & =\sum_{k=\ell}^{\infty} \int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y \\
& =\sum_{k=\ell}^{\ell+1} \int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y+\sum_{k=\ell+2}^{\infty} \int_{\mathbb{R}^{n}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y .
\end{aligned}
$$

For the last sum we have

$$
\begin{aligned}
& \sum_{k=\ell+2}^{\infty} \int_{\mathbb{R}^{n}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y=\lim _{\nu \rightarrow \infty} \sum_{k=\ell+2}^{\nu} \psi_{k} * \tilde{\psi}_{k} * f(x) \\
& =\lim _{\nu \rightarrow \infty}\left(\varphi_{\nu+1} * \varphi_{\nu+1} * f(x)-\varphi_{\ell+2} * \varphi_{\ell+2} * f(x)\right) \\
& =\lim _{\nu \rightarrow \infty}\left(\int_{E_{r, \nu+1}} \varphi_{\nu+1}(x-y) \varphi_{\nu+1} * f(y) d y-\int_{E_{r, \ell+2}} \varphi_{\ell+2}(x-y) \varphi_{\ell+2} * f(y) d y\right) .
\end{aligned}
$$

From the above and (2.10)-(2.11) we obtain $\left|F_{r}(x)\right| \leq c 2^{r}$.
The point-wise convergence of the series in (2.7) follows from above and we similarly establish the point-wise convergence in (2.8).

The convergence in distributional sense in (2.7) relies on the following assertion: For every $\phi \in \mathcal{S}$

$$
\begin{equation*}
\sum_{k \geq s_{r}}\left|\left\langle g_{r k}, \phi\right\rangle\right|<\infty, \quad \text { where } \quad g_{r k}(x):=\int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y \tag{2.18}
\end{equation*}
$$

Here $\left\langle g_{r k}, \phi\right\rangle:=\int_{\mathbb{R}^{n}} g_{r k} \bar{\phi} d x$. To prove the above we will employ this estimate:

$$
\begin{equation*}
\left\|\tilde{\psi}_{k} f\right\|_{\infty} \leq c 2^{k n / p}\|f\|_{H^{p}}, \quad k \in \mathbb{Z} \tag{2.19}
\end{equation*}
$$

Indeed, using (1.4) we get

$$
\begin{aligned}
\left|\tilde{\psi}_{k} f(x)\right|^{p} & \leq \inf _{y:|x-y| \leq 2^{-k}} \sup _{z:|y-z| \leq 2^{-k}}\left|\tilde{\psi}_{k} f(z)\right|^{p} \leq \inf _{y:|x-y| \leq 2^{-k}} c \mathcal{M}_{N}(f)(y)^{p} \\
& \leq c\left|B\left(x, 2^{-k}\right)\right|^{-1} \int_{B\left(x, 2^{-k}\right)} \mathcal{M}_{N}(f)(y)^{p} d \mu(y) \leq c 2^{k n}\|f\|_{H^{p}}^{p}
\end{aligned}
$$

and (2.19) follows.
We will also need the following estimate: For any $\sigma>n$ there exists a constant $c_{\sigma}>0$ such that

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{n}} \psi_{k}(x-y) \phi(x) d x\right| \leq c_{\sigma} 2^{-k(K+1)}(1+|y|)^{-\sigma}, \quad y \in \mathbb{R}^{n}, k \geq 0 . \tag{2.20}
\end{equation*}
$$

This is a standard estimate for inner products taking into account that $\phi \in \mathcal{S}$ and $\psi \in C^{\infty}, \operatorname{supp} \psi \subset B(0,1)$, and $\int_{\mathbb{R}^{n}} x^{\alpha} \psi(x) d x=0$ for $|\alpha| \leq K$.

We now estimate $\left|\left\langle g_{r k}, \phi\right\rangle\right|$. From (2.19) and the fact that $\psi \in C_{0}^{\infty}(\mathbb{R})$ and $\phi \in \mathcal{S}$ it readily follows that

$$
\int_{E_{r k}} \int_{\mathbb{R}^{n}}\left|\psi_{k}(x-y)\right|\left|\phi(x) \| \tilde{\psi}_{k} f(y)\right| d y d x<\infty, \quad k \geq s_{r}
$$

Therefore, we can use Fubini's theorem, (2.19), and (2.20) to obtain for $k \geq 0$

$$
\begin{align*}
\left|\left\langle g_{r k}, \phi\right\rangle\right| & \leq \int_{E_{r k}}\left|\int_{\mathbb{R}^{n}} \psi_{k}(x-y) \phi(x) d x\right|\left|\tilde{\psi}_{k} f(y)\right| d y \\
& \leq c 2^{-k(K+1-n / p)}\|f\|_{H^{p}} \int_{E_{r k}}(1+|y|)^{-\sigma} d y \leq c 2^{-k(K+1-n / p)}\|f\|_{H^{p}} \tag{2.21}
\end{align*}
$$

which implies (2.18) because $K \geq n / p$.
Denote $G_{\ell}:=\sum_{k=s_{r}}^{\ell} g_{r k}$. From the above proof of (b) and (2.13) we infer that $G_{\ell}(x) \rightarrow F_{r}(x)$ as $\ell \rightarrow \infty$ for $x \in \mathbb{R}^{n}$ and $\left\|G_{\ell}\right\|_{\infty} \leq c 2^{r}<\infty$ for $\ell \geq s_{r}$. On the other hand, from (2.18) it follows that the series $\sum_{k \geq s_{r}} g_{r k}$ converges in distributional sense. By applying the dominated convergence theorem one easily concludes that $F_{r}=\sum_{k \geq s_{r}} g_{r k}$ with the convergence in distributional sense.

We set $F_{r}:=0$ in the case when $\Omega_{r}=\emptyset, r \in \mathbb{Z}$.
Note that by (2.12) it follows that

$$
\begin{equation*}
\psi_{k} * \psi_{k} * f(x)=\int_{\mathbb{R}^{n}} \psi_{k}(x-y) \psi_{k} * f(y) d y=\sum_{r \in \mathbb{Z}} \int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y \tag{2.22}
\end{equation*}
$$

and using (2.6) and the definition of F_{r} in (2.7) we arrive at

$$
\begin{equation*}
f=\sum_{r \in \mathbb{Z}} F_{r} \text { in } \mathcal{S}^{\prime}, \text { i.e. }\langle f, \phi\rangle=\sum_{r \in \mathbb{Z}}\left\langle F_{r}, \phi\right\rangle, \quad \forall \phi \in \mathcal{S}, \tag{2.23}
\end{equation*}
$$

where the last series converges absolutely. Above $\langle f, \phi\rangle$ denotes the action of f on $\bar{\phi}$. We next provide the needed justification of identity (2.23).

From (2.6), (2.7), (2.22), and the notation from (2.18) we obtain for $\phi \in \mathcal{S}$

$$
\langle f, \phi\rangle=\sum_{k}\left\langle\psi_{k} \tilde{\psi}_{k} f, \phi\right\rangle=\sum_{k} \sum_{r}\left\langle g_{r k}, \phi\right\rangle=\sum_{r} \sum_{k}\left\langle g_{r k}, \phi\right\rangle=\sum_{r}\left\langle F_{r}, \phi\right\rangle .
$$

Clearly, to justify the above identities it suffices to show that $\sum_{k} \sum_{r}\left|\left\langle g_{r k}, \phi\right\rangle\right|<\infty$. We split this sum into two: $\sum_{k} \sum_{r} \cdots=\sum_{k \geq 0} \sum_{r} \cdots+\sum_{k<0} \sum_{r} \cdots=: \Sigma_{1}+\Sigma_{2}$.

To estimate Σ_{1} we use (2.21) and obtain

$$
\begin{aligned}
\Sigma_{1} & \leq c\|f\|_{H^{p}} \sum_{k \geq 0} 2^{-k(K+1-n / p)} \sum_{r} \int_{E_{r k}}(1+|y|)^{-\sigma} d y \\
& \leq c\|f\|_{H^{p}} \sum_{k \geq 0} 2^{-k(K+1-n / p)} \int_{\mathbb{R}^{n}}(1+|y|)^{-\sigma} d y \leq c\|f\|_{H^{p}} .
\end{aligned}
$$

Here we also used that $K \geq n / p$ and $\sigma>n$.
We estimate Σ_{2} in a similar manner, using the fact that $\int_{\mathbb{R}^{n}}\left|\psi_{k}(y)\right| d y \leq c<\infty$ and (2.19). We get

$$
\begin{aligned}
\Sigma_{2} & \leq c\|f\|_{H^{p}} \sum_{k<0} 2^{k n / p} \sum_{r} \int_{E_{r k}} \int_{\mathbb{R}^{n}}\left|\psi_{k}(x-y)\right| d y|\phi(x)| d x \\
& \leq c\|f\|_{H^{p}} \sum_{k<0} 2^{k n / p} \int_{\mathbb{R}^{n}}(1+|x|)^{-n-1} d x \leq c\|f\|_{H^{p}} .
\end{aligned}
$$

The above estimates of Σ_{1} and Σ_{2} imply $\sum_{k} \sum_{r}\left|\left\langle g_{r k}, \phi\right\rangle\right|<\infty$, which completes the justification of (2.23).

Observe that due to $\int_{\mathbb{R}^{n}} x^{\alpha} \psi(x) d x=0$ for $|\alpha| \leq K$ we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} x^{\alpha} F_{r}(x) d x=0 \quad \text { for }|\alpha| \leq K, r \in \mathbb{Z} \tag{2.24}
\end{equation*}
$$

We next decompose each function F_{r} into atoms. To this end we need a Whitney type cover for Ω_{r}, given in the following

Lemma 2.4. Suppose Ω is an open proper subset of \mathbb{R}^{n} and let $\rho(x):=\operatorname{dist}\left(x, \Omega^{c}\right)$. Then there exists a constant $K>0$, depending only on n, and a sequence of points $\left\{\xi_{j}\right\}_{j \in \mathbb{N}}$ in Ω with the following properties, where $\rho_{j}:=\operatorname{dist}\left(\xi_{j}, \Omega^{c}\right)$:
(a) $\Omega=\cup_{j \in \mathbb{N}} B\left(\xi_{j}, \rho_{j} / 2\right)$.
(b) $\left\{B\left(\xi_{j}, \rho_{j} / 5\right)\right\}$ are disjoint.
(c) If $B\left(\xi_{j}, \frac{3 \rho_{j}}{4}\right) \cap B\left(\xi_{\nu}, \frac{3 \rho_{\nu}}{4}\right) \neq \emptyset$, then $7^{-1} \rho_{\nu} \leq \rho_{j} \leq 7 \rho_{\nu}$.
(d) For every $j \in \mathbb{N}$ there are at most K balls $B\left(\xi_{\nu}, \frac{3 \rho_{\nu}}{4}\right)$ intersecting $B\left(\xi_{j}, \frac{3 \rho_{j}}{4}\right)$.

Variants of this simple lemma are well known and frequently used. To prove it one simply selects $\left\{B\left(\xi_{j}, \rho\left(\xi_{j}\right) / 5\right)\right\}_{j \in \mathbb{N}}$ to be a maximal disjoint subcollection of $\{B(x, \rho(x) / 5)\}_{x \in \Omega}$ and then properties (a)-(d) follow readily, see [5], pp. 15-16.

We apply Lemma 2.4 to each set $\Omega_{r} \neq \emptyset, r \in \mathbb{Z}$. Fix $r \in \mathbb{Z}$ and assume $\Omega_{r} \neq \emptyset$. Denote by $B_{j}:=B\left(\xi_{j}, \rho_{j} / 2\right), j=1,2, \ldots$, the balls given by Lemma 2.4, applied to Ω_{r}, with the additional assumption that these balls are ordered so that $\rho_{1} \geq \rho_{2} \geq \cdots$. We will adhere to the notation from Lemma 2.4. We will also use the more compact notation $\mathcal{B}_{r}:=\left\{B_{j}\right\}_{j \in \mathbb{N}}$ for the set of balls covering Ω_{r}.

For each ball $B \in \mathcal{B}_{r}$ and $k \geq s_{r}$ we define

$$
\begin{equation*}
E_{r k}^{B}:=E_{r k} \cap\left(B+2 B\left(0,2^{-k}\right)\right) \quad \text { if } \quad B \cap E_{r k} \neq \emptyset \tag{2.25}
\end{equation*}
$$

and set $E_{r k}^{B}:=\emptyset$ if $B \cap E_{r k}=\emptyset$.
We also define, for $\ell=1,2, \ldots$,

$$
\begin{equation*}
R_{r k}^{B_{\ell}}:=E_{r k}^{B_{\ell}} \backslash \cup_{\nu>\ell} E_{r k}^{B_{\nu}} \quad \text { and } \tag{2.26}
\end{equation*}
$$

$$
\begin{equation*}
F_{B_{\ell}}(x):=\sum_{k \geq s_{r}} \int_{R_{r k}^{B_{\ell}}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y \tag{2.27}
\end{equation*}
$$

Lemma 2.5. For every $\ell \geq 1$ the function $F_{B_{\ell}}$ is well defined, more precisely, the series in (2.27) converges point-wise and in distributional sense. Furthermore,

$$
\begin{equation*}
\operatorname{supp} F_{B_{\ell}} \subset 7 B_{\ell}, \tag{2.28}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} x^{\alpha} F_{B_{\ell}}(x) d x=0 \quad \text { for all } \alpha \text { with }|\alpha| \leq n\left(p^{-1}-1\right) \tag{2.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|F_{B_{\ell}}\right\|_{\infty} \leq c_{\sharp} 2^{r}, \tag{2.30}
\end{equation*}
$$

where the constant c_{\sharp} is independent of r, ℓ.
In addition, for any $k \geq s_{r}$

$$
\begin{equation*}
E_{r k}=\cup_{\ell \geq 1} R_{r k}^{B_{\ell}} \quad \text { and } \quad R_{r k}^{B_{\ell}} \cap R_{r k}^{B_{m}}=\emptyset, \quad \ell \neq m . \tag{2.31}
\end{equation*}
$$

Hence

$$
\begin{equation*}
F_{r}=\sum_{B \in \mathcal{B}_{r}} F_{B} \quad\left(\text { convergence in } \mathcal{S}^{\prime}\right) \tag{2.32}
\end{equation*}
$$

Proof. Fix $\ell \geq 1$. Observe that using Lemma 2.4 we have $B_{\ell} \subset \Omega_{r}^{c}+B\left(0,2 \rho_{\ell}\right)$ and hence $E_{r k}^{B_{\ell}}:=\emptyset$ if $2^{-k+1} \geq 2 \rho_{\ell}$. Define $k_{0}:=\min \left\{k: 2^{-k}<\rho_{\ell}\right\}$. Hence $\rho_{\ell} / 2 \leq 2^{-k_{0}}<\rho_{\ell}$. Consequently,

$$
\begin{equation*}
F_{B_{\ell}}(x):=\sum_{k \geq k_{0}} \int_{R_{r k}^{B_{\ell}}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y \tag{2.33}
\end{equation*}
$$

It follows that $\operatorname{supp} F_{B_{\ell}} \subset B\left(\xi_{\ell},(7 / 2) \rho_{\ell}\right)=7 B_{\ell}$, which confirms (2.28).
To prove (2.30) we will use the following
Lemma 2.6. For an arbitrary set $S \subset \mathbb{R}^{n}$ let $S_{k}:=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}(x, S)<2^{-k+1}\right\}$ and set

$$
\begin{equation*}
F_{S}(x):=\sum_{k \geq \kappa_{0}} \int_{E_{r k} \cap S_{k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y \tag{2.34}
\end{equation*}
$$

for some $\kappa_{0} \geq s_{r}$. Then $\left\|F_{S}\right\|_{\infty} \leq c 2^{r}$, where $c>0$ is a constant independent of S and κ_{0}. Moreover, the above series converges in \mathcal{S}^{\prime}.

Proof. From (2.9) it follows that $F_{S}(x)=0$ if $\operatorname{dist}(x, S) \geq 3 \times 2^{-\kappa_{0}}$
Let $x \in S$. Evidently, $B\left(x, 2^{-k}\right) \subset S_{k}$ for every k and hence

$$
\begin{aligned}
F_{S}(x) & =\sum_{k \geq \kappa_{0}} \int_{E_{r k} \cap B\left(x, 2^{-k}\right)} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y \\
& =\sum_{k \geq \kappa_{0}} \int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y=F_{r, \kappa_{0}}(x)
\end{aligned}
$$

On account of Lemma 2.3 (b) we obtain $\left|F_{S}(x)\right|=\left|F_{r, \kappa_{0}}(x)\right| \leq c 2^{r}$.

Consider the case when $x \in S_{\ell} \backslash S_{\ell+1}$ for some $\ell \geq \kappa_{0}$. Then $B\left(x, 2^{-k}\right) \subset S_{k}$ if $\kappa_{0} \leq k \leq \ell-1$ and $B\left(x, 2^{-k}\right) \cap S_{k}=\emptyset$ if $k \geq \ell+2$. Therefore,

$$
\begin{aligned}
F_{S}(x) & =\sum_{k=\kappa_{0}}^{\ell-1} \int_{E_{r k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y+\sum_{k=\ell}^{\ell+1} \int_{E_{r k} \cap S_{k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y \\
& =F_{r, \kappa_{0}, \ell-1}(x)+\sum_{k=\ell}^{\ell+1} \int_{E_{r k} \cap S_{k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y
\end{aligned}
$$

where we used the notation from (2.8). By Lemma 2.3 (b) and (2.10) it follows that $\left|F_{S}(x)\right| \leq c 2^{r}$.

We finally consider the case when $2^{-\kappa_{0}+1} \leq \operatorname{dist}(x, S)<3 \times 2^{-\kappa_{0}}$. Then we have $F_{S}(x)=\int_{E_{r \kappa_{0}} \cap S_{\kappa_{0}}} \psi_{\kappa_{0}}(x-y) \tilde{\psi}_{\kappa_{0}} * f(y) d y$ and the estimate $\left|F_{S}(x)\right| \leq c 2^{r}$ is immediate from (2.10).

The convergence in \mathcal{S}^{\prime} in (2.34) is established as in the proof of Lemma 2.3.
Fix $\ell \geq 1$ and let $\left\{B_{j}: j \in \mathcal{J}\right\}$ be the set of all balls $B_{j}=B\left(\xi_{j}, \rho_{j} / 2\right)$ such that $j>\ell$ and

$$
B\left(\xi_{j}, \frac{3 \rho_{j}}{4}\right) \cap B\left(\xi_{\ell}, \frac{3 \rho_{\ell}}{4}\right) \neq \emptyset
$$

By Lemma 2.4 it follows that $\# \mathcal{J} \leq K$ and $7^{-1} \rho_{\ell} \leq \rho_{j} \leq 7 \rho_{\ell}$ for $j \in \mathcal{J}$. Define

$$
\begin{equation*}
k_{1}:=\min \left\{k: 2^{-k+1}<4^{-1} \min \left\{\rho_{j}: j \in \mathcal{J} \cup\{\ell\}\right\}\right\} . \tag{2.35}
\end{equation*}
$$

From this definition and $2^{-k_{0}}<\rho_{\ell}$ we infer
(2.36) $2^{-k_{1}+1} \geq 8^{-1} \min \left\{\rho_{j}: j \in \mathcal{J} \cup\{\ell\}\right\}>8^{-2} \rho_{\ell}>8^{-2} 2^{-k_{0}} \Longrightarrow k_{1} \leq k_{0}+7$.

Clearly, from (2.35)

$$
\begin{equation*}
B_{j}+2 B\left(0,2^{-k}\right) \subset B\left(\xi_{j}, 3 \rho_{j} / 4\right), \quad \forall k \geq k_{1}, \quad \forall j \in \mathcal{J} \cup\{\ell\} \tag{2.37}
\end{equation*}
$$

Denote $S:=\cup_{j \in \mathcal{J}} B_{j}$ and $\tilde{S}:=\cup_{j \in \mathcal{J}} B_{j} \cup B_{\ell}=S \cup B_{\ell}$. As in Lemma 2.6 we set

$$
S_{k}:=S+2 B\left(0,2^{-k}\right) \quad \text { and } \quad \tilde{S}_{k}:=\tilde{S}+2 B\left(0,2^{-k}\right)
$$

It readily follows from the definition of k_{1} in (2.35) that

$$
\begin{equation*}
R_{r k}^{B_{\ell}}:=E_{r k}^{B_{\ell}} \backslash \cup_{\nu>\ell} E_{r k}^{B_{\nu}}=\left(E_{r k} \cap \tilde{S}_{k}\right) \backslash\left(E_{r k} \cap S_{k}\right) \quad \text { for } \quad k \geq k_{1} . \tag{2.38}
\end{equation*}
$$

Denote

$$
\begin{aligned}
& F_{S}(x):=\sum_{k \geq k_{1}} \int_{E_{r k} \cap S_{k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y, \quad \text { and } \\
& F_{\tilde{S}}(x):=\sum_{k \geq k_{1}} \int_{E_{r k} \cap \tilde{S}_{k}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y
\end{aligned}
$$

From (2.38) and the fact that $S \subset \tilde{S}$ it follows that

$$
F_{B_{\ell}}(x)=F_{\tilde{S}}(x)-F_{S}(x)+\sum_{k_{0} \leq k<k_{1}} \int_{R_{r k}^{B \ell}} \psi_{k}(x-y) \tilde{\psi}_{k} * f(y) d y
$$

By Lemma 2.6 we get $\left\|F_{S}\right\|_{\infty} \leq c 2^{r}$ and $\left\|F_{\tilde{S}}\right\|_{\infty} \leq c 2^{r}$. On the other hand from (2.36) we have $k_{1}-k_{0} \leq 7$. We estimate each of the (at most 7) integrals above using (2.10) to conclude that $\left\|F_{B_{\ell}}\right\|_{\infty} \leq c 2^{r}$.

We deal with the convergence in (2.27) and (2.32) as in the proof of Lemma 2.3.

Clearly, (2.29) follows from the fact that $\int_{\mathbb{R}^{n}} x^{\alpha} \psi(x) d x=0$ for all α with $|\alpha| \leq K$.
Finally, from Lemma 2.4 we have $\Omega_{r} \subset \cup_{j \in \mathbb{N}} B_{\ell}$ and then (2.31) is immediate from (2.25) and (2.26).

We are now prepared to complete the proof of Theorem 2.1. For every ball $B \in \mathcal{B}_{r}, r \in \mathbb{Z}$, provided $\Omega_{r} \neq \emptyset$, we define $B^{\star}:=7 B$,

$$
a_{B}(x):=c_{\sharp}^{-1}\left|B^{\star}\right|^{-1 / p} 2^{-r} F_{B}(x) \quad \text { and } \quad \lambda_{B}:=c_{\sharp}\left|B^{\star}\right|^{1 / p} 2^{r},
$$

where $c_{\sharp}>0$ is the constant from (2.30). By (2.28) supp $a_{B} \subset B^{\star}$ and by (2.30)

$$
\left\|a_{B}\right\|_{\infty} \leq c_{\sharp}^{-1}\left|B^{\star}\right|^{-1 / p} 2^{-r}\left\|F_{B}\right\|_{\infty} \leq\left|B^{\star}\right|^{-1 / p} .
$$

Furthermore, from (2.29) it follows that $\int_{\mathbb{R}^{n}} x^{\alpha} a_{B}(x) d x=0$ if $|\alpha| \leq n\left(p^{-1}-1\right)$. Therefore, each a_{B} is an atom for H^{p}.

We set $\mathcal{B}_{r}:=\emptyset$ if $\Omega_{r}=\emptyset$. Now, using the above, (2.23), and Lemma 2.5 we get

$$
f=\sum_{r \in \mathbb{Z}} F_{r}=\sum_{r \in \mathbb{Z}} \sum_{B \in \mathcal{B}_{r}} F_{B}=\sum_{r \in \mathbb{Z}} \sum_{B \in \mathcal{B}_{r}} \lambda_{B} a_{B},
$$

where the convergence is in \mathcal{S}^{\prime}, and

$$
\sum_{r \in \mathbb{Z}} \sum_{B \in \mathcal{B}_{r}}\left|\lambda_{B}\right|^{p} \leq c \sum_{r \in \mathbb{Z}} 2^{p r} \sum_{B \in \mathcal{B}_{r}}|B|=c \sum_{r \in \mathbb{Z}} 2^{p r}\left|\Omega_{r}\right| \leq c\|f\|_{H^{p}}^{p},
$$

which is the claimed atomic decomposition of $f \in H^{p}$. Above we used that $\left|B^{\star}\right|=$ $|7 B|=7^{n}|B|$.
Remark 2.7. The proof of Theorem 2.1 can be considerably simplified and shortened if one seeks to establish atomic decomposition of the H^{p} spaces in terms of q-atoms with $p<q<\infty$ rather than ∞-atoms as in Theorem 2.1, i.e. atoms satisfying $\|a\|_{L^{q}} \leq|B|^{1 / q-1 / p}$ with $q<\infty$ rather than $\|a\|_{L^{\infty}} \leq|B|^{-1 / p}$. We will not elaborate on this here.

References

[1] R. Coifman, A real variable characterization of H^{p}, Studia Math. 51 (1974), 269-274.
[2] S. Dekel, G, Kyriazis, G. Kerkyacharian, P. Petrushev, Hardy spaces associated with non-negative self-adjoint operators, preprint.
[3] C. Fefferman, E. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
[4] R. Latter, A characterization of $H^{p}\left(\mathbb{R}^{n}\right)$ in terms of atoms, Studia Math. 62 (1978), 93-101.
[5] E. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993.
[6] E. Stein, G. Weiss, On the theory of harmonic functions of several variables. I. The theory of H^{p}-spaces. Acta Math. 103 (1960), 25-62.

Hamanofim St. 9, Herzelia, Israel
E-mail address: Shai.Dekel@ge.com
Laboratoire de Probabilités et Modèles Aléatoires, CNRS-UMR 7599, Université Paris Vi et Université Paris VII, rue de Clisson, F-75013 Paris

E-mail address: kerk@math.univ-paris-diderot.fr
Department of Mathematics and Statistics, University of Cyprus, 1678 Nicosia, Cyprus E-mail address: kyriazis@ucy.ac.cy

Department of Mathematics, University of South Carolina, Columbia, SC 29208
E-mail address: pencho@math.sc.edu

