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IRREGULAR SAMPLING OF BAND-LIMITED FUNCTIONS

ON THE SPHERE AND IN MORE GENERAL SETTINGS

KAMEN IVANOV AND PENCHO PETRUSHEV

Abstract. An iterative algorithm for stable and accurate reconstruction of

band-limited functions from irregular samples on the unit 2-d sphere and the
general framework of Dirichlet spaces is developed. Geometric rate of conver-

gence in the uniform norm is achieved. It is shown that a MATLAB realization

of this algorithms can effectively recover high degree (≥ 2000) spherical poly-
nomials from their values at sufficiently dense scattered points on the sphere.

1. Introduction

In this article we consider the problem for irregular sampling of high degree
spherical polynomials (band-limited functions) on the unit 2-d sphere S2 in R3.
More explicitly, denoting by ΠN the set of all spherical polynomials of degree N ,
we focus on the following

Problem 1. Given a finite set Y of irregular sampling points on the sphere
S2 and the values f(y), y ∈ Y , of a spherical polynomial f ∈ ΠN compute to
prescribed accuracy ε the values f(z) at the points z of an arbitrary set Z ⊂ S2.

Of course, this problem has a solution only if the density of sampling points is
sufficiently high. Our main goal is to devise a fast and stable algorithm for solving
Problem 1 with prescribed accuracy measured in the uniform norm, in the case
when N is of magnitude 1000 or higher.

Our idea is to split this problem into two:
Problem 2. Given the irregular sampling values f(y), y ∈ Y , of a spherical

polynomial f ∈ ΠN compute to prescribed accuracy ε its values f(ξ) at regular
grid points ξ ∈ X ⊂ S2.

Problem 3. Given the values f(ξ) of a spherical polynomial f ∈ ΠN at regular
grid points ξ ∈ X compute to prescribed accuracy ε the values f(z) at the points z
of an arbitrary set Z ⊂ S2.

The notion of a set X of regular grid points needs clarification. In the periodic
case, X would be a set of uniformly distributed points. A set X ⊂ S2 will be
deemed regular if the values f(ξ), ξ ∈ X , of any polynomial f ∈ ΠN allow for
fast and accurate evaluation of f(z) at the points z of an arbitrary set Z ⊂ S2.
Necessarily the cardinality |X | of X must be bigger than (N + 1)2. We shall utilize
product-type sets of regular grid points based on 1-d uniformly distributed points

2000 Mathematics Subject Classification. 65T99, 42C10, 33C55, 65D15, 65D32.
Key words and phrases. spherical harmonics, irregular sampling, band-limited functions on

the sphere, needlets, fast computation.
The first author has been supported by grant DDVU 02/30 of the Fund for Scientific Research

of the Bulgarian Ministry of Education and Science. The second author has been supported by
NSF Grant DMS-1211528.

1



2 KAMEN IVANOV AND PENCHO PETRUSHEV

and 1-d Gaussian points in spherical coordinates. The notion of a set of regular
grid points on S2 will be further precised in Sections 3 and 4.

Traditionally, to reconstruct a spherical polynomial means to compute its spher-
ical harmonic coefficients, see e.g. [9, 11, 12]. Unlike the trigonometric case, how-
ever, currently there are no satisfactory practical algorithms (like FFT) for fast,
stable and accurate evaluation of high degree (≥ 2000) spherical polynomials. (The
problem here is with the evaluation of the associated Legendre functions.) This is
our motivation for putting forward and utilizing the following principle:

A spherical polynomial f ∈ ΠN is better represented (reconstructed) by its values
f(ξ) at regular grid points ξ ∈ X rather than by its spherical harmonics coefficients.

This article is devoted to the solution of Problem 2. We develop an iterative
method based on ideas from [2, 3, 4, 5] employing discrete, reproducing ΠN , oper-
ators of the form

(1.1) ΦNf(x) =
∑
ξ∈X

wξKN (x · ξ)f(ξ),

which rely on highly localized kernels (spherical needlets) KN (x · ξ), and their
truncated versions:

(1.2) ΦN,δf(x) =
∑
ξ∈X

ρ(x, ξ)≤δ

wξKN (x · ξ)f(ξ).

Here x · ξ stands for the inner product of x, ξ ∈ R3 and ρ(·, ·) denotes the geodesic
distance on S2. The rate of convergence of the algorithm is geometric, measured in
the uniform norm.

A fast, stable and memory efficient solution of Problem 3 based on operators ΦN
and ΦN,δ as above is given in [8].

In this article, we put the emphasis on the computational feasibility and prac-
tical realization of the algorithms. Robust MATLAB code realizing our algorithm
for solving Problem 2 is developed and examples of effective reconstruction of high
degree (≥ 2000) spherical polynomials from irregular sampling values are demon-
strated.

To put our ideas and methods in prospective we develop algorithms for solving
Problems 2 and 3 and hence Problem 1 in the general framework of Dirichlet spaces,
developed in [1, 10]. This allows us to extend the sampling theory to various geo-
metric settings, including irregular sampling of polynomials on the ball and simplex
with weights and sampling of band-limited functions on Lie groups or homogeneous
spaces with polynomial volume growth, complete Riemannian manifolds with Ricci
curvature bounded from below and satisfying the volume doubling condition.

There is a considerable body of work on sampling. We find, however, suitable
to only exhibit the connections between our sampling algorithm and the relevant
algorithms in the literature. As already mentioned our reconstruction algorithm
borrows from [2, 3, 4, 5]. The main distinction between our approach to sampling
and the one in these papers is in our usage of discrete operators as in (1.2) with
highly localized kernels and the recovery of the functions at regular grid points.
In [6] the authors develop iterative sampling algorithms for band-limited functions
on Riemannian manifolds. These are essentially theoretical L2-results which extend
the results from [2, 3, 4, 5]. In contrast, in our sampling algorithm the control on
the error is in the uniform norm (in L∞).
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In [9, 11, 12] the authors apply a least squares approach to the problem for
reconstruction of spherical polynomials from scattered sample values. The proposed
algorithm recovers the spherical harmonics coefficients of the polynomials. However,
it requires dealing with high order associated Legendre functions, which creates
instability. The practical feasibility of this algorithm is problematic when applied
to point-wise evaluation of high degree (≥ 2000) spherical polynomials. In addition,
as will be explained in Remark 4.4 below, to work properly the algorithm from
[9, 11, 12] requires much denser sets of scattered points on S2 compared with our
algorithm.

The paper is organized as follows. In §2 we develop a sampling algorithm for
band-limited functions in the general setting of Dirichlet spaces. In §3 we make the
needed preparations for developing our algorithm for reconstruction of spherical
polynomials from irregular samples. This algorithm is given in §4. A detailed
description of the software realization of our sampling algorithm on the sphere
along with examples are given in §5 and §6.

We will denote by c positive constants which may vary at every appearance
and by c1, c2, c�, C

? and the alike positive constants which preserve their values
throughout the paper. For a finite set E we denote by |E| the number of its
elements.

2. Irregular sampling of band-limited functions in Dirichlet spaces

Although the main purpose of this article is to develop an algorithm for irregular
sampling of band-limited functions on the 2-d sphere S2 ⊂ R3 we would like to put
our method in a general framework which allows to cover various other settings such
as on the ball and simplex with weights and on more general Riemannian manifolds
and Lee groups. We believe that such a natural framework is the one of Dirichlet
spaces, developed and utilized in [1, 10]. In this section we rapidly introduce this
setting and put forward the main ideas.

2.1. The setting. There are two sets of conditions that we now describe briefly:
I. We assume that (M, ρ, µ) is a metric measure space satisfying the conditions:

(M, ρ) is a locally compact metric space with distance ρ(·, ·) and µ is a positive
Radon measure such that the following volume doubling condition is valid

(2.1) 0 < µ(B(x, 2r)) ≤ c0µ(B(x, r)) <∞ for all x ∈M and r > 0,

where B(x, r) is the open ball centered at x of radius r and c0 > 1 is a constant.
Note that (2.1) readily implies

(2.2) µ(B(x, λr)) ≤ c0λdµ(B(x, r)) for x ∈M, r > 0, and λ > 1.

Here d = log2 c0 > 0 is a constant.
II. The main assumption is that the space (M, ρ, µ) is related to an essentially

self-adjoint positive operator L on L2(M, dµ) such that the associated semigroup
Pt = e−tL consists of integral operators with (heat) kernel pt(x, y) obeying the
conditions:
• Small time Gaussian upper bound:

(2.3) |pt(x, y)| ≤
C? exp{− c

?ρ2(x,y)
t }√

µ(B(x,
√
t))µ(B(y,

√
t))

for x, y ∈M, 0 < t ≤ 1.
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• Hölder continuity: There exists a constant β > 0 such that

(2.4)
∣∣pt(x, y)− pt(x, y′)

∣∣ ≤ C?(ρ(y, y′)√
t

)β exp{− c
?ρ2(x,y)

t }√
µ(B(x,

√
t))µ(B(y,

√
t))

for x, y, y′ ∈M and 0 < t ≤ 1, whenever ρ(y, y′) ≤
√
t.

• Markov property:

(2.5)

∫
M

pt(x, y)dµ(y) ≡ 1 for t > 0.

Above C?, c? > 0 are structural constants.
We also assume the following non-collapsing condition:

(2.6) inf
x∈M

µ(B(x, 1)) > 0.

A natural effective realization of the above setting appears in the general frame-
work of Dirichlet spaces. More precisely, in the framework of strictly local regular
Dirichlet spaces with a complete intrinsic metric it suffices to only verify

(1) the local Poincaré inequality and
(2) the global doubling condition on the measure (2.1)

and then the above general setting applies in full, see [1]. The point is that settings
where our theory applies are quite common. In particular, the sphere, ball and
simplex with classical weights are covered. Various other examples are given in [1].

2.2. Spectral spaces. Let Eλ, λ ≥ 0, be the spectral resolution associated with
the self-adjoint positive operator L from above on L2(M, dµ). We let Fλ, λ ≥
0, denote the spectral resolution associated with

√
L, i.e. Fλ = Eλ2 . Then for

any measurable and bounded function φ on R+ the operator φ(
√
L) is defined by

φ(
√
L) =

∫∞
0
φ(λ)dFλ on L2(M, dµ). For any N > 0 the L∞ spectral space ΣN is

defined by

(2.7) ΣN :=
{
f ∈ C(M) : φ(

√
L)f = f for all φ ∈ C∞0 (R+), φ ≡ 1 on [0, N ]

}
.

Here C∞0 (R+) denotes the set of all compactly supported C∞ functions on R+.

2.3. Almost exponentially localized reproducing kernels (father needlets).
Well localized reproducing kernels for band limited functions will be the main ve-
hicle in designing a sampling algorithm in the general setting described in §2.1.

Let ϕ ∈ C∞(R+) be a cut-off function so that

(2.8) ϕ(t) = 1, t ∈ [0, 1]; 0 ≤ ϕ(t) ≤ 1, t ∈ [1, 1 + τ ];ϕ(t) = 0, t ≥ 1 + τ

for some τ > 0. As shown in [1, 10] the operator ϕ(N−1
√
L) with N > 0 is an

integral operator, i.e.

(2.9) ϕ(N−1
√
L)f(x) =

∫
M

KN (x, y)f(y)dµ(y).

From Spectral Theory it follows that for a real-valued ϕ the kernel KN (x, y) is

symmetric: KN (y, x) = KN (x, y) and for every fixed x belongs to Σ(1+τ)N . More
importantly, the kernel KN (x, y) has almost exponential localization and Hölder
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continuity [10]: For any σ > 0 there exists a constant c′σ > 0 such that for any
N > 0

(2.10) |KN (x, y)| ≤ c′σ
µ(B(x,N−1))(1 +Nρ(x, y))σ

, x, y ∈M,

and

(2.11) |KN (x, y)−KN (x′, y)| ≤
c′σ
(
Nρ(x, x′)

)β
µ(B(y,N−1))(1 +Nρ(x, y))σ

if ρ(x, x′) ≤ N−1.

Here β > 0 is the constant from (2.4).
Note that for a cut-off function ϕ with “small derivatives” the kernel KN (x, y)

may have sub-exponential localization, see [10, Theorem 3.6].

Our next step is to derive a discrete version of the operator ϕ(N−1
√
L) in the

case when the spectral spaces ΣN possess the polynomial property:

(2.12) ΣK · ΣN ⊂ ΣK+N , i.e. f ∈ ΣK , g ∈ ΣN =⇒ fg ∈ ΣK+N .

This is the case when the eigenfunctions of the operator L are polynomials such as
in the case of the sphere, ball, and simplex with classical weights.

An important component of our scheme is the existence of cubature formulae on
M involving convenient regular grid points (nodes). Namely, we assume that given
N ≥ 1 and τ > 0 there exists a finite or countable set X ⊂M and a set of positive
weights {wξ}ξ∈X such that

(2.13)

∫
M

f(y)dµ(y) =
∑
ξ∈X

wξf(ξ) ∀f ∈ Σ(2+τ)N .

Moreover, we assume that there exists a companion to X disjoint partition {Dξ}ξ∈X
of M (M = ∪ξ∈XDξ) consisting of measurable sets such that

(2.14) Dξ ⊂ B(ξ, c1N
−1) and wξ ≤ c2µ(Dξ), ξ ∈ X ,

where c1, c2 > 0 are constants.
Observe that conditions (2.14) are not quite restrictive and allow us the freedom

to choose convenient cubature formulae. The existence of cubature formulae in our
general setting follows by [1, Theorem 4.4].

The following lemma will be instrumental in our further development.

Lemma 2.1. Let N ≥ 1 and τ > 0. Assume X is the set of nodes of the cubature
formula from (2.13) such that the companion to X disjoint partition {Dξ}ξ∈X sat-
isfies (2.14). Then for any σ > d with d > 1 the constant from (2.2) there exists
a constant c̄σ > 0 such that

(2.15)
∑
ξ∈X

wξ

µ(B(ξ,N−1))
(
1 +Nρ(x, ξ)

)σ ≤ c̄σ ∀x ∈M.

Proof. Set γ := c1N
−1, where c1 > 0 is the constant from (2.14). Let T be

a maximal γ-net on M, that is, ρ(t, u) ≥ γ for all t, u ∈ T and T cannot be
enlarged. By Zorn’s lemma it follows that a maximal γ-net T exists. Moreover T
is finite or countable (see [1, Proposition 2.5]). Furthermore, we have

(2.16) M = ∪t∈T B(t, γ) and B(t, γ/2) ∩B(u, γ/2) = ∅ for t, u ∈ T , t 6= u.
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Now, we split X into disjoint subsets X (t) , t ∈ T , so that ξ ∈ B(t, γ) if ξ ∈ X (t).
We claim that
(2.17)∑

ξ∈X (t)

wξ

µ(B(ξ,N−1))
(
1 +Nρ(x, ξ)

)σ ≤ c(
1 + γ−1ρ(x, t)

)σ , x ∈M, t ∈ T .

Indeed, clearly for any ξ ∈ X (t) (hence ρ(ξ, t) < γ) and x ∈M we have

1 + γ−1ρ(x, t) ≤ 1 + γ−1ρ(x, ξ) + γ−1ρ(ξ, t) ≤ 2 + c−11 Nρ(x, ξ) ≤ c(1 +Nρ(x, ξ)).

Also, clearly B(t, γ) ⊂ B(ξ, 2γ) and hence

µ(B(t, γ)) ≤ µ(B(ξ, 2c1N
−1)) ≤ cµ(B(ξ,N−1)),

where for the last inequality we used (2.2). Furthermore, using (2.14) we have

∪ξ∈X (t)Dξ ⊂ ∪ξ∈X (t)B(ξ, γ) ⊂ B(t, 2γ)

and hence∑
ξ∈X (t)

wξ ≤ c2
∑

ξ∈X (t)

µ(Dξ) = c2µ
(
∪ξ∈X (t)Dξ

)
≤ c2µ(B(t, 2γ)) ≤ cµ(B(t, γ)).

Putting the above together, we obtain (2.17).
In turn, (2.17) implies that (2.15) will be valid if we show that for any σ > d

(2.18)
∑
t∈T

1(
1 + γ−1ρ(x, t)

)σ ≤ c <∞, x ∈M.

To prove this, fix x ∈M and put

S0 := {t ∈ T : ρ(x, t) < 2−1γ} and Sj := {t ∈ T : 2j−2γ ≤ ρ(x, t) < 2j−1γ}, j ≥ 1.

For any u ∈ Sj , clearly, ∪t∈SjB(t, γ/2) ⊂ B(x, 2jγ) ⊂ B(u, 2j+1γ) and taking into
account (2.16)∑

t∈Sj

µ(B(t, γ/2)) = µ
(
∪t∈SjB(t, γ/2)

)
≤ µ(B(u, 2j+1γ)) ≤ c2jdµ(B(u, γ/2)),

where for the last inequality we used (2.2). Summing up both sides of the above
inequalities over u ∈ Uj yields |Sj | ≤ c2jd, implying∑

t∈T

1(
1 + γ−1ρ(x, t)

)σ =

∞∑
j=0

∑
t∈Sj

1(
1 + γ−1ρ(x, t)

)σ
≤ 1 +

∞∑
j=1

|Sj |
(1 + 2j−2)σ

≤ c
∞∑
j=0

2−(σ−d)j ≤ c <∞,

which verifies (2.18). �

Armed with the cubature formula from (2.13) we define

(2.19) ΦNf(x) :=
∑
ξ∈X

wξKN (x, ξ)f(ξ).

For f ∈ ΣN we have by (2.12) KN (x, ·)f(·) ∈ Σ(2+τ)N for any fixed x ∈ S2. Then
using that the cubature formula from (2.13) is exact for functions from Σ(2+τ)N

and (2.7) with φ(·) = ϕ(·/N) we get

(2.20) ΦNf = f for f ∈ ΣN .
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Note that the construction of discrete reproducing operators ΦN is also possible
in the case when the spectral spaces ΣN do not possess the polynomial property
(2.12). The existence of such operators follows by Lemma 4.2 in [10], used for
construction of dual frames in [10]. We shall not elaborate on this since in this
study our focus is on the case of the sphere where (2.12) is valid.

2.4. Irregular sampling: The general idea. We next focus on the irregular
sampling problem for reconstruction of band-limited functions in the general setting
described in §2.1. Namely, we consider Problem 1 for fast and accurate evaluation
of a band-limited function f ∈ ΣN on an arbitrary set of scattered points Z ⊂ M
given its values on a set of irregular sampling points Y ⊂M.

Just as in the introduction we subdivide this problem into two: Problem 2
for recovery the values of f ∈ ΣN at regular grid points ξ ∈ X from its values
at irregular sampling points y ∈ Y , and Problem 3 for computing the values of
f ∈ ΣN at arbitrary points z ∈ Z given its values at regular grid points ξ ∈ X .

We shall show that Problem 2 can be effectively solved if the given set Y ⊂ M
of sampling points is an ε-cover for M for sufficiently small ε.

To describe the solution of Problem 2, we assume that given the set Y ⊂ M
of sampling points there is a companion disjoint partition A = {Ay}y∈Y of M
(M = ∪y∈YAy) consisting of measurable sets such that

(2.21) d(A) := sup
y∈Y

sup
x∈Ay

ρ(x, y) <∞.

Given x ∈ M denote by yx the point in Y such that x ∈ Ayx . We introduce the
following extension operator for functions g defined on Y :

(2.22) EAg(x) :=
∑
y∈Y

g(y)1Ay (x) = g(yx), x ∈M,

where 1Ay is the characteristic function of Ay.
We also assume that X ⊂M is a regular set as in §2.3 with associated cubature

formula (2.13) and reproducing operator ΦN as in (2.19).
The solution of Problem 2 is contained in the following

Theorem 2.1. For some σ > d with d > 1 the constant from (2.2) and 0 < q < 1
assume

(2.23) d(A) ≤ c�N−1, c� := min{1, (q/(c′σ c̄σ))1/β},

where β and c′σ are from (2.11) and c̄σ is from (2.15). Set R := (I−EA)ΦN , where
I is the identity. Then for any f ∈ ΣN we have

(2.24) f =

∞∑
k=0

Rk(EAf)

with the series converging uniformly and

(2.25)
∥∥f − n−1∑

k=0

Rk(EAf)
∥∥
∞ ≤ q

n‖f‖∞, n ≥ 1.

Proof. For any x ∈M and for any f ∈ L∞(M) we have

Rf(x) = ΦNf(x)− ΦNf(yx) =
∑
ξ∈X

wξ
[
KN (x, ξ)−KN (yx, ξ)

]
f(ξ)
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and using (2.11) with σ > d and Lemma 2.1 we infer

|Rf(x)| ≤ c′σ
(
Nd(A)

)β ∑
ξ∈X

wξ

µ(B(ξ,N−1))
(
1 +Nρ(x, ξ)

)σ ‖f‖∞ ≤ c′σ c̄σcβ�‖f‖∞.
Therefore, ‖Rf‖∞ ≤ q‖f‖∞.

Now, let f ∈ ΣN . In view of (2.20) ΦNf = f , hence Rf = f − EAf and for
k ≥ 1

Rkf −Rk+1f = Rk(f −Rf) = Rk(EAf).

This leads to

f −
n−1∑
k=0

Rk(EAf) = Rnf

and using that ‖R‖∞7→∞ ≤ q < 1 we arrive at (2.25), which in turn implies
(2.24). �

Algorithm for solving Problem 2. Given the values f(y), y ∈ Y , of a band-
limited function f ∈ ΣN we would like to compute f(ξ) for ξ ∈ X . Denote briefly
gk := Rk(EAf). Then by (2.24) we have

(2.26) f(ξ) =

∞∑
k=0

gk(ξ), ξ ∈ X .

A key point is that the values gk(ξ), ξ ∈ X , can be computed iteratively. Namely,
we first compute g0(ξ) = EAf(ξ) = f(yξ), ξ ∈ X , and in the next step

g1(ξ) = Rg0(ξ) = ΦNg0(ξ)− ΦNg0(yξ),

where for the computation of the values ΦNg0(ξ) we only use g0(η), η ∈ X . The gen-
eral step is

gk+1(ξ) = Rgk(ξ) = ΦNgk(ξ)− ΦNgk(yξ)

and we observe again that to compute gk+1(ξ) we only need gk(η), η ∈ X . Of course,
we replace the series in (2.26) by a finite sum

f(ξ) ≈
n∑
k=0

gk(ξ), ξ ∈ X ,

where because of (2.25) the convergence is geometric and we have complete control
on the error.

To make the above algorithms computationally efficient we use the superb local-
ization of the kernel KN (x, ξ) to truncate the operator ΦNf from (2.19). Namely,
we replace it by the operator

(2.27) ΦN,δf(x) =
∑
ξ∈X

ρ(x, ξ)≤δ

wξKN (x, ξ)f(ξ),

with appropriately selected constant δ.
The utilization of the operator ΦN,δ with a kernel of small support opens the

possibility of using simultaneously more than one regular sets X . The point is that
part of the nodes in a particular regular set X are usually not quite well distributed,
which creates problems. This inconvenience can be overcome by using two or more
different regular sets X for different subregions of M.
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An effective implementation of the above algorithm for irregular sampling of
band-limited functions on the sphere S2 ⊂ R3 with a thorough analysis of its
features: accuracy, complexity, and computational efficiency, and a description of
the relevant software are given in what follows.

Algorithm for solving Problem 3. Once we have the values of the band limited
function f ∈ ΣN at the regular points ξ ∈ X we use that ΦNf = f and (2.19) to
compute f(z), z ∈ Z, i.e.

f(z) =
∑
ξ∈X

wξKN (z, ξ)f(ξ), z ∈ Z.

For computational efficiency we again replace the operator ΦN by its truncated ver-
sion ΦN,δ, see (2.27). For a complete analysis of this algorithm and implementation
on the sphere S2 ⊂ R3 we refer the reader to [8].

3. Sampling of band-limited functions on the sphere: Preparation

Our main focus is on irregular sampling of band-limited functions on the 2-d
sphere M = S2 ⊂ R3. The metric ρ(x, y) = arccos(x · y) with x · y denoting
the inner product in R3 is in fact the geodesic distance on S2, the measure is
dµ = (4π)−1dσ, where σ is the Lebesgue measure on S2, and the spectral space ΣN
is ΠN – the set of all spherical polynomials (band-limited functions) of degree ≤ N .

The present section lays down some of the ground work that will be needed for
developing our sampling algorithm on the sphere.

3.1. Regular point sets on the sphere. Given M ∈ N we say that X is a set of
M−regular points on the sphere if the following two conditions are verified:

(1) There exist non-negative weights wξ, ξ ∈ X , of a cubature formula with X
as a nodal set which is exact for the polynomials from ΠM−1, i.e.

(3.1)
1

4π

∫
S2

f(y) dσ(y) =
∑
ξ∈X

wξf(ξ) ∀f ∈ ΠM−1,

and (2.14) is satisfied with M in the place of N ;
(2) The set X is structured in the sense that for every x ∈ S2 and δ ∈ (0, π]

one can determine effectively all points in B̄X (x, δ) = {ξ ∈ X : ρ(x, ξ) ≤ δ}
using c|B̄X (x, δ)| operations, where the constant c is independent of x, δ,
M and |X |.

Examples of regular point sets on the sphere are X (i) = {ξ(i)k,` = (θ
(i)
k , λ

(i)
` )},

i = 1, 2, that for given K,L ≥ 1 are defined by

θ
(1)
k =

π

K
k, k = 0, 1, . . . ,K; λ

(1)
` =

2π

L
`, ` = 0, 1, . . . , L− 1;

and

θ
(2)
k =

π

K
k − π

2K
, k = 1, 2, . . . ,K; λ

(2)
` =

2π

L
`, ` = 0, 1, . . . , L− 1.

Here in X (1) we consider only one node for k = 0 (the North Pole) and only one
node for k = K (the South Pole). Another example is the set X (3) generated by
the zeros uk of the K-th degree Legendre polynomial PK . In this case we write

θ
(3)
k = arccosuk, k = 1, 2, . . . ,K; λ

(3)
` =

2π

L
`, ` = 0, 1, . . . , L− 1.
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As is well-known the cubatures associated with X (1),X (2),X (3) can be represented
as tensor products of one-dimensional algebraic quadrature in the co-latitude direc-
tion θ and the rectangular trigonometric quadrature in the latitude direction (see
e.g. [8, Subsection 3.4]). The relations between K,L and M are given by (see [8,
Theorem 3.11])

M ≤ L, M ≤
{

2 b(K + 1)/2c , i = 1, 2;
2K, i = 3.

Under the above restrictions the sets X (1),X (2),X (3) are M -regular [8, Theorems
3.11 and 3.12].

Other regular point sets can be obtained from X (1), X (2), or X (3) by applying
rotations or reflections on the sphere. For example, consider the map T : R3 → R3

given by
T (x1, x2, x3) = (x1, x3,−x2).

This is π/2 rotation about the x1-axis. The restriction of T on the sphere T |S2 :

S2 → S2 relates the spherical coordinates (θ, λ) and (θ̃, λ̃) of a point x and its image
x̃ = T (x) by

(sin θ̃ cos λ̃, sin θ̃ sin λ̃, cos θ̃) = (sin θ cosλ, cos θ,− sin θ sinλ).

From the rotation invariance of ΠN it follows that the sets T (X (i)) and T−1(X(i)),
i = 1, 2, 3, are also regular and induce similar cubatures as X (i).

All of the above regular point sets have one disadvantage – their points congre-
gate near the poles (or the images of the poles). This will force us later to treat
the points near the poles differently compared to the ones away from the poles.

3.2. Spherical needlets. For the purposes of evaluation of spherical polynomials
it is convenient to use spherical “father needlets” that will be defined via kernels of
the form

(3.2) KN (u) =

∞∑
ν=0

ϕ
( ν
N

)
(2ν + 1)Pν(u), u ∈ [−1, 1],

where Pν is the Legendre polynomial of degree ν normalized by Pν(1) = 1 and ϕ
is a continuous cutoff function satisfying (2.8) for some fixed τ > 0.

For a set of M−regular points X ⊂ S2, M ≥ d(2 + τ)Ne, using the weights wξ
from (3.1) we define the linear operator ΦN by

(3.3) ΦNf(x) =
∑
ξ∈X

wξKN (x · ξ)f(ξ).

Clearly, ΦNf = f for f ∈ ΠN and ΦN : `∞(X ) 7→ ΠNτ with

(3.4) Nτ = d(1 + τ)Ne − 1.

The superb localization of the kernel KN implies that most of the terms in (3.3)
are very small and this leads us to the idea of introducing the truncated operator

(3.5) ΦN,δf(x) =
∑
ξ∈X

ρ(x, ξ)≤δ

wξKN (x · ξ)f(ξ),

where δ > 0 is a small parameter. Observe that the above sum includes only
summands corresponding to nodes ξ ∈ X , which are in the δ-neighborhood of the
point x.
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We shall also need the rotated by T versions Φ̃N , Φ̃N,δ of the operators ΦN ,
ΦN,δ defined in (3.3) and (3.5) with X replaced by T (X ), i.e.

Φ̃Nf(x) =
∑

ξ∈T (X )

w̃ξKN (x · ξ)f(ξ), Φ̃N,δf(x) =
∑

ξ∈T (X )
ρ(x, ξ)≤δ

w̃ξKN (x · ξ)f(ξ),

where w̃ξ = wT−1(ξ) for ξ ∈ T (X ).

3.3. Localization of spherical needlets. In this subsection we discuss the ques-
tion of how small δ in (3.5) can be in order that ΦNf be a good approximation to
f ∈ ΠN . The following simple claim gives the first answer (see [8, Theorem 2.4]):

Proposition 3.1. If

(3.6) |KN (cos θ)| ≤ ε for δ ≤ θ ≤ π,

then for any function f : X → R we have

(3.7) ‖ΦNf − ΦN,δf‖L∞(S2) ≤ ε‖f‖`∞(X ).

According to [8, Theorem 3.2] for any ε > 0 there exists a cutoff function ϕ
satisfying (2.8) such that (3.6) holds with

(3.8) δ ≤ c ln(N2) + ln(1/ε) + ln(1 + τ)

τN
.

In Proposition 3.1 condition (3.6) can be replaced by

(3.9)
1

2

cos δ∫
−1

|KN (u)| du = ε

=
ε

2

1∫
−1

KN (u) du


and still have (3.7) as an approximate inequality (see [8, (3.11)]). On account of [8,
Theorem 3.6] for any ε > 0 there exists a cutoff function ϕ obeying (2.8) such that
(3.9) holds with

(3.10) δ ≤ c ln(1/ε)

τN
.

Estimate (3.10) is an improvement of (3.8) mainly due to the missing lnN term in
the numerator. One can have c = 2.5 in (3.10) when working with cutoff functions
ϕ (satisfying (2.8)) given by

(3.11) ϕ(t) = κ−1
1∫

(t−1)/τ

eb
√
v(1−v) dv, κ =

1∫
0

eb
√
v(1−v) dv, b > 0,

for t in [1, 1 + τ ]. In (3.11) b is a parameter, which for 4 < log10(1/ε) < 11 and
τ ≥ 1 is given by

(3.12) b = 4.8 log10(1/ε) + 3.4− 0.2 min{τ, 3}.

For more details, see [8].
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4. Sampling of band-limited functions on the sphere: Algorithm

4.1. Formulation of the problem. For the reader’s convenience we begin by
restating our version of the problem for irregular sampling of band-limited functions
on the sphere.

Problem 1. Given a finite set Y of irregular sampling points on the sphere
S2 and the sampling values f(y), y ∈ Y , of a polynomial f ∈ ΠN at these points
compute to prescribed accuracy ε the values f(z) of the polynomial f at arbitrary
points z ∈ Z ⊂ S2.

Our main objective is to devise a fast and stable algorithm for solving Problem 1
with prescribed accuracy measured in the uniform norm, in the case when both
cardinalities |Y | and |Z| are larger than dim ΠN = (N + 1)2.

Following the idea in §2.4 we split this problem into two:
Problem 2. Given a set of sampling points Y ⊂ S2 and the values f(y) of

a polynomial f ∈ ΠN at the points y ∈ Y compute to prescribed accuracy ε the
values f(ξ) of the polynomial f at the d(2 + τ)Ne-regular points ξ ∈ X ⊂ S2.

Problem 3. Given d(2 + τ)Ne-regular point set X ⊂ S2 and the values f(ξ),
ξ ∈ X , of a polynomial f ∈ ΠN compute to prescribed accuracy ε the values f(z)
at arbitrary points z ∈ Z ⊂ S2.

Above τ > 0 is the needlet parameter from (2.8).
The main input in Problem 2 are the set Y and the degree N . We are free

to chose the regular set X because after its solution we solve Problem 3 to get
a solution of Problem 1 and the needlet solution of Problem 2 works with every
regular point set X .

In [8] we developed needlets based fast and stable algorithm for solving Prob-
lem 3. An exact solution of Problem 3 is given by f(z) = ΦNf(z) and an approx-
imate solution by f(z) ≈ ΦN,δf(z), where ΦN and ΦN,δ are defined in (3.3) and
(3.5).

In the following we focus on Problem 2.

4.2. Exact solution of Problem 2. Given a finite set of sampling points Y ⊂ S2
let A = {Ay}y∈Y be a disjoint partition of S2 consisting of measurable sets Ay,
such that y ∈ Ay.

In particular, {Ay} can be the Voronoi tessellation of S2 induced by Y , where
the common points from the boundaries of several cells are attached to exactly one
of the cells. Another meaningful example are the HEALPix centers Y with the
pixels collected in {Ay}.

The following notation will be useful: For any x ∈ S2 we denote by yx the point
in Y such that x ∈ Ayx . Consider the extension operator

(4.1) EAg(x) :=
∑
y∈Y

g(y)1Ay (x) = g(yx)

defined for any function g : Y → R. Obviously ‖EA‖ = 1 (all operator norms are
∞ 7→ ∞ norms). Denote

(4.2) d(A) := max
y∈Y

sup
x∈Ay

ρ(x, y).

Theorem 4.1. Assume that the bounded linear operator Φ : `∞(X ) → ΠNτ pre-
serves the polynomials from ΠN . Let

(4.3) q := d(A)Nτ‖Φ‖ < 1.
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Set R = (I − EA)Φ, where I denotes the identity. Then for any f ∈ ΠN

(4.4) f =

∞∑
k=0

Rk(EAf)

with the series converging uniformly and

(4.5)
∥∥∥f − n−1∑

k=0

Rk(EAf)
∥∥∥
∞
≤ qn‖f‖∞, n ≥ 1.

Proof. We proceed quite as in the proof of Theorem 2.1. For f ∈ ΠN and k ≥ 0 we
use that Φf = f to write

(4.6) Rkf −Rk+1f = Rk(f − (I − EA)Φf) = Rk(f − f + EAf) = Rk(EAf).

Hence

(4.7) f −
n−1∑
k=0

Rk(EAf) = Rnf, ∀f ∈ ΠN .

We now estimate ‖R‖. Clearly

Rg(x) = Φg(x)− EAΦg(x) = Φg(x)− Φg(yx) for g ∈ L∞(S2), x ∈ S2.

The restriction of Φg to the big circle connecting x and yx is a trigonometric
polynomial of degree Nτ and, therefore, the mean-value theorem and the Bernstein
inequality yield

|Rg(x)| ≤ ρ(x, yx)Nτ‖Φg‖∞ ≤ d(A)Nτ‖Φ‖‖g‖∞.
Hence

(4.8) ‖R‖ ≤ d(A)Nτ‖Φ‖.
Now (4.8) and (4.3) give ‖R‖ ≤ q, which implies the uniform convergence of the
series in (4.4). The last inequality coupled with (4.7) implies (4.5), yielding (4.4).

�

Theorem 4.1 provides an exact reconstruction algorithm for f ∈ ΠN . Indeed,
pick a (2 + τ)N−regular point set X ⊂ S2 and set Φ := ΦN with ΦN being the
operator from (3.3). Denote briefly gk = Rk(EAf). Then Theorem 4.1 implies

(4.9) f(ξ) =

∞∑
k=0

gk(ξ), ξ ∈ X ,

which solves Problem 2, and the solution f(z) = ΦNf(z) of Problem 3 gives exact
reconstruction of f at every z ∈ Z ⊂ S2. Observe that the values gk(ξ), ξ ∈ X , can
be recursively computed by g0(ξ) = f(yξ) and

(4.10) gk+1(ξ) = Rgk(ξ) = ΦNgk(ξ)− ΦNgk(yξ).

Note that the evaluation of ΦNg(x) by (3.3) uses only the values g(ξ) for ξ ∈ X .
Of course, for practical purposes we truncate the series in (4.9) to obtain the

approximation

f(ξ) ≈
n−1∑
k=0

gk(ξ),

where n is determined by the target accuracy via (4.5).
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The complexity of this algorithm is as follows. To determine the yξ’s one needs
O(|X | + |Y |) operations using that X is structured. Every step in (4.10) requires
O(|X |2) operations if KN (u) can be evaluated with O(1) operations within the
machine precision. Thus, the algorithm evaluates f(ξ), ξ ∈ X , with accuracy ε
using O(|X |2 ln(1/ε)/ ln(1/q) + |Y |) operations.

4.3. Approximate solution of Problem 2. As already mentioned the regular
point sets from §3.1 have the deficiency that the points in each of them concentrate
around the poles or the images of the poles via some rotation. This drawback along
with the fact that the value of ΦNf(x) is obtained by O(|X |) operations makes the
sampling algorithm from §4.2 impractical. To overcome the second deficiency we
shall use the truncated version ΦN,δ of the operator ΦN defined in (3.5), and to

remedy the first deficiency we shall utilize the rotated version Φ̃N,δ of ΦN,δ for the
regions around the poles. In this way we will decrease substantially the algorithm’s
computational cost outlined at the end of Subsection 4.2.

To realize these ideas we first introduce some notation. Given N ∈ N and ε > 0
(to be determined) we assume that X ⊂ S2 is one of the M -regular set points X (1),
X (2), or X (3) from §3.1 with M := d(2 + τ)Ne. In fact, to us the best choice is
X := X (3).

Let δ > 0 be a constant such that (3.6) holds and let ΦN,δ be the operator
defined in (3.5) . We subdivide S2 into two: The equatorial area (belt) U1 and its
compliment (the polar regions) U2, defined in spherical coordinates by

(4.11) U1 := {x ∈ S2 : π/4 ≤ θ ≤ 3π/4}, U2 := S2 \ U1.

We also introduce the following sets of nodes on S2:

X1 := X ∩ {π/4− δ0 ≤ θ ≤ 3π/4 + δ0},
X2 := T (X ) ∩ ({0 ≤ θ ≤ π/4 + δ0} ∪ {3π/4− δ0 ≤ θ ≤ π}),
X0 := X1 ∪ X2,

(4.12)

where δ0 := δ + d(A). We assume δ0 < π/4.
We now introduce the linear operator

(4.13) Rg(x) := (I − EA)ΦN,δg(x) · 1U1(x) + (I − EA)Φ̃N,δg(x) · 1U2(x).

The above operator only uses the values of g at the points of X0. Indeed, if x ∈ U1
then EAΦN,δg(x) = ΦN,δg(yx) uses the values g(ξ) for ξ ∈ X and ρ(yx, ξ) ≤ δ,
hence ρ(x, ξ) ≤ δ+ d(A), i.e. ξ ∈ X1. Let us point out that for these x the value of
ΦN,δg at yx is determined by the values of g at X1 even in the case when yx itself
belongs to U2. Similar considerations holds for x ∈ U2.

Our algorithm for approximate solution of Problem 2 is contained in the following

Theorem 4.2. Assume that (3.6) or (3.9) holds for some ε > 0 and 0 < δ < π.
Using the notation from above assume also that

(4.14) q := d(A)Nτ‖ΦN‖+ 2ε < 1.

Then for any f : Y → R the series
∑∞
k=0Rk(EAf) converges uniformly and for

any f ∈ ΠN

(4.15)
∥∥∥f − n−1∑

k=0

Rk(EAf)
∥∥∥
∞
≤
(
qn +

2ε

1− q

)
‖f‖∞.
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Proof. We first estimate the norm of the operator R. By (4.13) we have for any
function g : Y 7→ R and x ∈ U1

Rg(x) = ΦN,δg(x)− ΦN,δg(yx)

= ΦNg(x)− ΦNg(yx) + (ΦN,δ − ΦN )g(x)− (ΦN,δ − ΦN )g(yx).

Now just as in the proof of Theorem 4.1 we get

|ΦNg(x)− ΦNg(yx)| ≤ ρ(x, yx)Nτ‖ΦN‖‖g‖∞ ≤ d(A)Nτ‖ΦN‖‖g‖∞
and by Proposition 3.1

|(ΦN,δ − ΦN )g(x)| ≤ ε‖g‖∞, |(ΦN,δ − ΦN )g(yx)| ≤ ε‖g‖∞.

Putting the above together we arrive at

|Rg(x)| ≤ (d(A)Nτ‖ΦN‖+ 2ε) ‖g‖∞.

Exactly in the same way, using Φ̃N,δ, Φ̃N instead of ΦN,δ, ΦN we obtain the same
estimate for x ∈ U2. Therefore,

(4.16) ‖R‖ ≤ d(A)Nτ‖ΦN‖+ 2ε = q.

The uniform convergence of
∑∞
k=0Rk(EAf) follows from (4.16) and (4.14).

Let f ∈ ΠN . Clearly,

Rkf −Rk+1f = Rk(f −Rf) = Rk(EAf) +Rk(f − EAf −Rf), k ≥ 0,

and iterating this identity we obtain

(4.17) f −
n−1∑
k=0

Rk(EAf) = Rnf +

n−1∑
k=0

Rk(f − EAf −Rf).

By the definition of R in (4.13) we have for x ∈ S2

f(x)− EAf(x)−Rf(x) = f(x)− f(yx)− (ΦN,δf(x)− ΦN,δf(yx)) · 1U1(x)

− (Φ̃N,δf(x)− Φ̃N,δf(yx)) · 1U2(x)

and using the fact that ΦNf = f and Φ̃Nf = f we infer

f(x)− EAf(x)−Rf(x) = [(ΦN − ΦN,δ)f(x)− (ΦN − ΦN,δ)f(yx)] · 1U1(x)

+ [(Φ̃N − Φ̃N,δ)f(x)− (Φ̃N − Φ̃N,δ)f(yx)] · 1U1(x),

which can be written in the form

f − EAf −Rf = (I − EA)(ΦN − ΦN,δ)f · 1U1 + (I − EA)(Φ̃N − Φ̃N,δ)f · 1U2 .

We now use (3.6)–(3.7) to obtain

(4.18) ‖f − EAf −Rf‖∞ ≤ 2ε‖f‖∞.

Combining this with (4.17) and (4.16) yields (4.15). �

We next explain how the sampling (reconstruction) algorithm based on Theo-
rem 4.2 works. We are given the values f(y), y ∈ Y , of a band-limited function
f ∈ ΠN . We only need to compute the values f(ξ) at the points ξ ∈ X0 = X1 ∪X2.
Then the algorithm for solving Problem 3 enables us to compute the values f(z) at
the points z ∈ Z for an arbitrary set Z ⊂ S2.
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Denote briefly gk := Rk(EAf) with R defined in (4.13) and EA from (4.1). The
values f(ξ) are approximated by

(4.19) f(ξ) ≈
n−1∑
k=0

gk(ξ), ξ ∈ X0.

The gist of our method is that the values gk(ξ), ξ ∈ X0, can be computed recursively.
More explicitly, we start from g0(ξ) = EAf(ξ) = f(yξ), ξ ∈ X0, and for k =
0, 1, . . . , n− 2,

(4.20) gk+1(ξ) = Rgk(ξ) = ΦN,δgk(ξ)− ΦN,δgk(yξ) if ξ ∈ X0 ∩ U1
and

(4.21) gk+1(ξ) = Rgk(ξ) = Φ̃N,δgk(ξ)− Φ̃N,δgk(yξ) if ξ ∈ X0 ∩ U2.
Observe that identities (4.20)–(4.21) are in fact local – the evaluation of gk+1(ξ)

involves only the values gk(η) for η satisfying ρ(η, ξ) ≤ δ + d(A). Therefore, the
evaluation of gk+1(ξ) for ξ ∈ X0∩U1 involves only points η ∈ X1 and the evaluation
of gk+1(ξ) for ξ ∈ X0 ∩ U2 involves only points η ∈ X2.

Remark 4.1. The series in Theorem 4.2 converges to a function g ∈ L∞ which is
in general different from the polynomial f but satisfies ‖f − g‖∞ ≤ 2ε

1−q‖f‖∞.

Remark 4.2. The “remainder” operators R in Theorem 4.1 can be replaced by
R? = Φ(I − EA). Then Theorem 4.1 remain valid with (4.5) replaced by∥∥∥f − n−1∑

k=0

Rk?(ΦEAf)
∥∥∥
∞
≤ qn‖Φ‖‖f‖∞.

The proof is carried out along the lines of the proof of Theorem 4.1 using the
identity Rk?Φ = ΦRk. The advantage of this representation is that we approximate
f by polynomials (because the partial sums of the series belong to ΠNτ ) and the
price we pay is that the error estimate is worsen by the factor ‖Φ‖ > 1.

A similar observation applies to Theorem 4.2, where we can replace R by R?
defined by

R?g(x) := ΦN,δ(I − EA)g(x) · 1U1(x) + Φ̃N,δ(I − EA)g(x) · 1U2(x)

and (4.15) by∥∥∥f − n−1∑
k=0

Rk?(ΦN,δEAf)
∥∥∥
∞
≤
(
qn +

2ε

1− q

)
‖ΦN,δ‖‖f‖∞.

Remark 4.3. Note that the smaller q the faster the convergence in (4.4) or in
(4.15). Turning our attention to (4.3) or (4.14) we observe that the smallest d(A)
is realized whenever A is the Voronoi tessellation of S2 induced by Y . Instead of
(4.1) one can use other extension operators, e.g. local interpolation.

Remark 4.4. The norm ‖ΦN‖ plays an essential role in conditions (4.3) and (4.14).
This norm has been computed numerically for various values of τ and ε and the
results are displayed in Table 6 in Subsection 6.2. For example, if τ = 1 and
ε = 10−5, then ‖ΦN‖ ≈ 4.2324, which implies that the condition d(A)N < 1/9 is
sufficient for successful reconstruction of spherical polynomials of degree N with
relative error ε = 10−5 (or smaller error if δ is increased). For comparison, the
similar sufficient condition in [9, Theorem 1] in our notations reads d(A)N < 1/308.
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Therefore, our condition on the sampling set Y is a lot more relaxed than the
condition given in [9].

5. Approximate reconstruction algorithm

Assume in Problem 2 we would like to find the approximate values F (ξ) to the
unknown values f(ξ), ξ ∈ X0, with absolute error ε0, i.e. |F (ξ) − f(ξ)| ≤ ε0.
We determine the relative error ε1 = ε0/‖f‖`∞(Y ) and split it into two parts ε1 =
ε2+2ε/(1−q), where ε2 will be the iteration accuracy and ε – the needlet accuracy.

Here we describe our algorithm for approximate reconstruction. If we consider
Problem 2 as a step in the solution of Problem 1, then we are free to chose the
regular set X0 from (4.12) in Subsection 4.3. This case is described below. In the
case of fixed X0 in Problem 2 step (1) from the Pre-computation part has to be
moved to the Input part.

Input :

(1) Values f(y), y ∈ Y , at an irregular sampling set Y .
(2) Degree N of f , the cutoff parameter τ , the target relative accuracy ε1, the

iteration accuracy ε2 and the needlet accuracy ε.

Pre-computation:

(1) Compute the number of knots K, L so that the cubature be exact for
polynomials of degree M − 1 with M = d(2 + τ)Ne.

(2) Compute the knots and weights of the one-dimensional quadratures.
(3) Compute the nodes of a regular set X = X (3) (see Subsection 3.1).
(4) Compute the weights wξ of the cubature (3.1) as tensor product of the

one-dimensional quadratures weights.
(5) For every ξ ∈ X ∪ T (X ) find the closest point yξ in Y .
(6) Compute δ for the given N, ε, τ and a cutoff function ϕ from (3.11)–(3.12).
(7) Compute the values ϕ(k/N) for the given N, ε, τ and ϕ from (3.11)–(3.12).
(8) Compute KN (cos t∗r), r = −s,−s + 1, . . . , R + s with downward Clenshaw

recurrence (see [8, Subsection 3.3]).
(9) Compute d = maxξ∈X ρ(ξ · yξ) and form the sets Xi, i = 0, 1, 2, with

parameter δ0 = δ + d (see (4.12)).
(10) Compute the matrices:

V (1) = {v(1)ξ,η : ξ ∈ X1 ∩ U1, η ∈ X}, V (2) = {v(2)ξ,η : ξ ∈ X2 ∩ U2, η ∈ T (X )},
V (3) = {v(3)ξ,η : ξ ∈ X1 ∩ U2, η ∈ T (X )}, V (4) = {v(4)ξ,η : ξ ∈ X2 ∩ U1, η ∈ X},
defined by

v
(j)
ξ,η = wη(K̃N (ξ · η)− K̃N (yξ · η)), j = 1, 4,

v
(j)
ξ,η = w̃η(K̃N (ξ · η)− K̃N (yξ · η)), j = 2, 3,

(5.1)

where K̃N (t) = KN (t) for t ≥ cos δ and K̃N (t) = 0 for t < cos δ.

Iterations:

(1) Initial values: g0(ξ) = f(yξ), F (ξ) = g0(ξ), ξ ∈ X0.
(2) Iteration steps: For k = 0, 1, . . . do

(a)

(5.2) gk+1(ξ) =
∑
η∈X1

v
(1)
ξ,ηgk(η), ξ ∈ X1 ∩ U1;
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(b)

(5.3) gk+1(ξ) =
∑
η∈X2

v
(2)
ξ,ηgk(η), ξ ∈ X2 ∩ U2;

(c)

(5.4) gk+1(ξ) =
∑
η∈X2

v
(3)
ξ,ηgk(η), ξ ∈ X1 ∩ U2;

(d)

(5.5) gk+1(ξ) =
∑
η∈X1

v
(4)
ξ,ηgk(η), ξ ∈ X2 ∩ U1;

(e) F (ξ) = F (ξ) + gk+1(ξ), ξ ∈ X0;
(3) Stopping criterion: ‖gk+1‖ ≤ ε2‖g0‖.

Output : The approximate values F (ξ) of f(ξ) at all points ξ ∈ X0.

The only condition which has to be met for the work of the algorithm is (4.14).
Under this condition the algorithm has geometric convergence and we have

Proposition 5.1. Under the assumption of Theorem 4.2 the relative error of the
algorithm output is given by

(5.6)
‖F − f‖`∞(X0)

‖f‖`∞(Y )
< ε2 +

2ε

1− q
= ε1,

(5.7) max{‖ΦN,δF − f‖`∞(Y ∩U1), ‖Φ̃N,δF − f‖`∞(Y ∩U2)} < ε1‖ΦN,δ‖‖f‖`∞(Y ).

Proof. Inequality (5.6) follows from (4.17), (4.16), (4.18) and the Stopping criterion
of the Iterations part. Inequality (5.7) follows by the same argument if we use the
operator R? from Remark 4.2 instead of R. �

Inequality (5.6) shows that the prescribed accuracy is achieved by the algorithm,
while (5.7) give us a tool to verify whether the computed values F (ξ), ξ ∈ X0,
reconstruct the spherical polynomial f , known by its values at the scattered points
y ∈ Y .

Complexity of the algorithm. We determine the complexity for the best choice of
K and L in step (1), which means K = O(N), L = O(N). Steps (1), (2), (3), (4),
(6), (7), and (8) are analyzed in [8, Subsection 3.7]. In view of the structure condi-
tion for regular points in Subsection 3.1 step (5) requires O(N2 + |Y |) operations.
The complexity of step (9) is O(N2).

Step (10) is the most demanding one on both memory and number of operations
(i.e. speed) in the whole algorithm. The “matrices of influence” V (j), j = 1, 2, 3, 4,
express the relative distances between the elements of the two sets X0 and Y .
Their size is huge: V (1) and V (2) have O(N4) elements and V (3) and V (4) have
O(N4δ0) elements. If one wants to work with the whole “matrices of influence” then
polynomial degrees exceeding 200 will be practically prohibitive. For comparison,
for degree 1000 we work with a regular set X0 with close to 6 000 000 points and
the nodal sets X = X (3) and T (X ) have 8 000 000 points each. This makes a total
of 4.8 × 1013 elements in the “matrices of influence” and only the storage of such
amount of data on a “hard disk” as 8 bytes numbers will require 350 TB of memory!
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Using the superb localization of the father needlet kernel KN (x · ξ) we make the

“matrices of influence” sparse by setting K̃N (t) = 0 for t < cos δ in (5.1). Thus,
the total number of non-zero elements in these matrices is O(N2n̄) = O(N4δ2) =
O(N2 ln2(1/ε)), where n̄ is the average number per point ξ of non-zero elements in
(5.1). Several values of n̄ are given in Table 1 of Subsection 6.1. For τ = 2 they
range from 267 for ε = 10−5 to 1150 for ε = 10−11. Other important parameters
of the problem as memory requirements and time of execution are also given in
Subsection 6.1. In sum, step (10) requires O(N2 ln2(1/ε)) operations but the O
constant is quite large.

Every step in the Iterations part performs a matrix-times-vector multiplication,
where every non-zero element of the “matrices of influence” is used once. This
means O(N2 ln2(1/ε)) operations. The number of iterations is ln(1/ε2)/ ln(1/q).
Hence the choice ε2 = ε1/3 and ε = (1 − q)ε1/3 will give O(N2 ln3(1/ε1)) for the
complexity of the algorithm.

Memory requirements. For N = 1000 and ε = 10−7 the values of the elements of
the sparse “matrices of influence” will occupy some 21 GB memory (see Table 1).
With additional 12 GB for the indexes of the non-zero elements we arrive at 33
GB of memory for storage of these matrices. This fact made us decide to save
the “matrices of influence” in pieces on the hard disk. Then the operations in
(5.2)–(5.5) are executed by reading one piece at a time from HD, performing the
multiplication and clearing the matrix piece from the memory before reading a new
piece. In this way the execution time for 20 iterations is comparable to the time
necessary to compute matrix element values in (5.1) and to save them on HD (see
Table 2 in Subsection 6.1).

Each of the other input, work, and output variables as F , old and new g (i.e. gk
and gk+1), spherical coordinates of the irregular sample points and the polynomial
values requires O(N2) memory. In view of the small number of such variables this
is easily manageable for N in the range of several thousand.

Optimal choice of needlet parameter τ . For M = d(2 + τ)Ne, K = dM/2e,
L = M we have:

• The number of nodes in X0 is proportional to M2;
• The average number of nodes from X0 in a δ neighborhood is proportional

to δ2M2.

Hence, both the size of the “matrices of influence” and the number of operation in
(5.2)–(5.5) for a single iteration step are proportional to δ2M4. Using (3.10) we get
δ2M4 = O((2 + τ)4τ−2N2) and the minimal value of the last expression is attained
for τ = 2. Therefore, the best choice of the needlet parameter τ relative to memory
usage as well as speed is τ = 2.

6. Numerical examples

6.1. Reconstruction. We have implemented our reconstruction algorithm in a
MATLAB R2012b code and have extensively tested it on a 2.4 GHz PC, CPU
Intel Core i7 with 16 GB of RAM. The code does not relay on variable precision
arithmetic.

For irregular points we have taken the HEALPix pixel centers and their rotations
on the sphere.
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The optimal speed and memory requirements were achieved for τ = 2 according
to the theory. Hence, we report in this subsection results only for this value of the
cutoff parameter. In the latitude direction the quadrature is Gaussian.

For K = 2N , L = 4N and ϕ from (3.11)–(3.12) we get the following values for
the size of the “influence matrices”, i.e. number of points in X0 and average number
of non-zero elements in (5.1).

N \ ε 10−5 10−7 10−9 10−11

250 384728 x 270 396300 x 494 408016 x 786 419836 x 1150
500 1470932 x 268 1493560 x 488 1516332 x 773 1539128 x 1127

1000 5749660 x 267 5794400 x 485 5839244 x 767 5884128 x 1117
Table 1. Size of the “influence matrices”: number of points in X0

and average number of non-zero elements

For different irregular sampling sets Y the average number of non-zero elements
may slightly vary. The number of points in X0 grows slowly when ε decreases due
to the log ε enlargement of the adjacent sets X1 ∩ U2 and X2 ∩ U1.

The polynomial values were provided by several low and high degree polynomials.

Among them were the polynomials GN and G̃N given by

GN (θ, λ) :=

N∑
m=1

m−1/3qm,NPm,N (cos θ) sin(mλ)

+

N−3∑
m=1

m−1/3qm,N−3Pm,N−3(cos θ) sin(mλ),

G̃N (θ, λ) :=q0,NP0,N (cos θ) + 2

N∑
m=1

qm,NPm,N (cos θ) cos(mλ),

where Pm,n are the associated Legendre functions and the coefficients qm,n are
selected so that they normalize to 1 in L2(S2, 1

4πdσ) each spherical harmonic term.

The uniform norms of GN and G̃N for selected values of N are given in Tables 3

and 4, respectively. The global extrema of GN and G̃N are localized around the
points (π2 ,

π
2 ) and (π2 ,

3π
2 ). The graph of G100 in spherical coordinates is given in

Figure 1, while Figure 2 shows a typical behavior of this function in a region away

from global extrema. We believe that the polynomials GN and G̃N are good for
testing of our reconstruction algorithm since they have relatively large spherical
harmonic coefficients and highly oscillatory behavior.

Degree N 250 500 1000 2000
Pre-computation part 6.2 23.0 92.7 363.5
Iterations part (20 iterations) 6.2 24.2 96.1 384.4
Total 12.4 47.2 188.8 747.9

Table 2. Execution times (in minutes) of the reconstruction algorithm

Table 2 contains the execution times of the Pre-computation and Iterations parts
of the reconstruction algorithm. The Pre-computation time is the total of the times
for execution of all steps of Pre-computation from Section 5 plus the saving time
on HD. The Iterations time includes the execution times for all steps of Iterations
plus the “matrices of influence” loading time from HD. The number of irregular
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Figure 1. Graph of G100

Figure 2. Graph of G100 over {(θ, λ) : π5 ≤ θ ≤
π
2 , |π − λ| ≤

π
4 }

sampling points is about 8 times larger than the number of regular points in X0,
but their influence on the times reported below is minimal (apart from the number
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of iterations for achieving the target accuracy). The values of the other parameters
are ε = 10−7, K = 2N , L = 4N , and the number of iterations is 20.

We see that the execution times are proportional to N2 according to the theory
given in Section 5. The saving time is approximately 27% of the Pre-computation
time, while the loading time is approximately 63% of the Iterations time.

The relative errors defined in (5.6) for f = GN and f = G̃N at the regular
points X0 are given in Tables 3 and 4, respectively. These errors are obtained from
the algorithm from §5 and its modification described in Remark 4.2 with accuracy
parameters ε = 10−7 and ε2 = 10−8.

Degree N 250 500 1000 2000
Uniform norm ‖GN‖∞ 76.45 121.35 192.65 305.86
Algorithm from §5 8.4667e-09 7.8133e-09 5.7893e-09 5.8170e-09
Algorithm from Remark 4.2 9.6770e-09 1.1789e-08 9.2821e-09 9.5697e-09

Table 3. Uniform norms and relative errors from (5.6) for GN

Degree N 250 500 1000 2000

Uniform norm of ‖G̃N‖∞ 480.60 958.99 1915.4 3828.0
Algorithm from §5 5.6226e-09 5.6581e-09 5.4573e-09 5.3932e-09
Algorithm from Remark 4.2 6.5248e-09 6.6718e-09 6.0687e-09 6.0394e-09

Table 4. Uniform norms and relative errors from (5.6) for G̃N

As a rule the observed relative errors are 10 to 15 times smaller than the target
relative accuracy ε1! Our experiments also show that the relative errors from (5.7)
at the sampling points Y are very close to the respective errors at the regular points
X0.

6.2. Norms of operators. The operator norms in this subsection are ∞ → ∞
norms. The norm of the integral needlet operator (2.9) is given by

(6.1) ‖ϕ(N−1
√
L)‖ = sup

x∈S2

1

4π

∫
S2

|KN (x · y)| dσ(y) =
1

2

1∫
−1

|KN (t)| dt.

For ϕ from (3.11)–(3.12) and for various τ and ε the numerical values of the norm
from (6.1) for N = 40, N = 400, N = 4000 are displayed in Table 5.

As Table 5 shows the norm practically does not depend on the degree N . This
fact is in compliance with the theory which states that these norms have majorants,
which are independent of N . The slight decrease of the norm with N is predictable
and is due to the increased smoothness of the kernel KN . The variations of the
norm with τ and ε are due to the different functions ϕ defined in (3.11)–(3.12).

The norms of the discrete operators ΦN and ΦN,δ are given by

(6.2) ‖ΦN‖ = sup
x∈S2

∑
ξ∈X

wξ|ΦN (x · ξ)|

and

(6.3) ‖ΦN,δ‖ = sup
x∈S2

∑
ξ∈X

ρ(x, ξ)≤δ

wξ|ΦN (x · ξ)|.
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τ N \ ε 10−5 10−7 10−9 10−11

40 3.1364 3.4067 3.6306 3.8230
1 400 3.1280 3.3996 3.6251 3.8194

4000 3.1267 3.3982 3.6236 3.8179
40 2.4559 2.6774 2.8613 3.0197

2 400 2.4487 2.6700 2.8538 3.0123
4000 2.4478 2.6691 2.8529 3.0114

40 2.1905 2.3927 2.5606 2.7054
3 400 2.1849 2.3867 2.5545 2.6991

4000 2.1842 2.3861 2.5538 2.6984
40 2.0510 2.2421 2.4010 2.5380

4 400 2.0465 2.2373 2.3960 2.5328
4000 2.0460 2.2368 2.3954 2.5323

Table 5. Numerical evaluation of norm from (6.1)

Let us recall that due to (3.7) the two norms are quite close, namely,

0 < ‖ΦN‖ − ‖ΦN,δ‖ ≤ ε.
The norms in (6.2) and (6.3) depend on N , δ, ϕ, τ , ε, K, L, and the type of the
regular nodes used. As in the case of the norm in (6.1) the relative variation of
these norms with respect to N is less than one percent.

For N = 500 and for various τ and ε the numerical values of the norm from (6.2)
are displayed in Table 6. The other parameters for the computations are: Gaussian
quadrature with K = 2 d(2 + τ)N/4e, L = 2K, and ϕ from (3.11)–(3.12).

τ \ ε 10−5 10−7 10−9 10−11

1 4.2324 4.6610 5.0166 5.3227
2 3.1562 3.5077 3.7990 4.0497
3 2.7355 3.0577 3.3245 3.5540
4 2.5137 2.8193 3.0724 3.2901

Table 6. Numerical evaluation of ‖ΦN‖ for X = X (3)

In Theorem 4.2 and in the solution of Problem 3 from [8] instead of ΦN,δ we in

fact use the operators ΦN,δ · 1U1 + Φ̃N,δ · 1U2 . Their norms are given by

(6.4) ‖ΦN,δ · 1U1 + Φ̃N,δ · 1U2‖ = sup
x∈S2

π/4≤θ≤3π/4

∑
ξ∈X

ρ(x,ξ)≤δ

wξ|ΦN (x · ξ)|.

For the same values of the parameters as in Table 6 we have these norms:

τ \ ε 10−5 10−7 10−9 10−11

1 3.7265 4.0423 4.3022 4.5245
2 2.9159 3.1833 3.4026 3.5898
3 2.5899 2.8396 3.0438 3.2178
4 2.4152 2.6549 2.8507 3.0174

Table 7. Numerical evaluation of ‖ΦN,δ · 1U1 + Φ̃N,δ · 1U2‖ for X = X (3)

According to (6.3) and (6.4)

(6.5) ‖ΦN,δ · 1U1 + Φ̃N,δ · 1U2‖ ≤ ‖ΦN,δ‖.
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For the nodes X = X (3) generated by the Gaussian quadrature one has strict
inequality in (6.5) as evidenced by Tables 6 and 7. The reason for this is that
the supremums in (6.2) and (6.3) are attained for x at one of the poles, while the
supremum in (6.4) is attained for x at the equator.

For X = X (1) or X = X (2) all supremums above are attained for x’s at the
equator and, hence, in (6.5) we have an equality. For these types of nodes and
minimal possible K and L the norm values are approximately in the middle between
the norm in (6.1) given in Tables 5 and the norm in (6.4) given in Table 7. The
main reason for the decrease of the norm is that the number of knots in latitude
direction is doubled. The general rule is that for a fixed cutoff function ϕ whenever
the nodes get denser then the norm becomes smaller and tends to the value given
in Table 5. Note that the parameters K and L are optimized for speed, but not to
minimize ‖ΦN‖.

The results in this subsection show that the norms of our needlet-type operators
are quite small, which in turn guarantees the stability of the described algorithms.
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