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Abstract

We study sparse approximation by greedy algorithms. Our con-
tribution is two-fold. First, we prove exact recovery with high prob-
ability of random K-sparse signals within dK(1 + ε)e iterations of
the Orthogonal Matching Pursuit (OMP). This result shows that in a
probabilistic sense the OMP is almost optimal for exact recovery. Sec-
ond, we prove the Lebesgue-type inequalities for the Weak Chebyshev
Greedy Algorithm, a generalization of the Weak Orthogonal Match-
ing Pursuit to the case of a Banach space. The main novelty of these
results is a Banach space setting instead of a Hilbert space setting.
However, even in the case of a Hilbert space our results add some
new elements to known results on the Lebesque-type inequalities for
the RIP dictionaries. Our technique is a development of the recent
technique created by Zhang.

1 Introduction

This paper deals with sparse approximation. Driven by applications in bi-
ology, medicine, and engineering approximation problems are formulated in
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very high dimensions, which bring to the fore new phenomena. One aspect
of the high-dimensional context is a focus on sparse signals (functions). The
main motivation for the study of sparse signals is that many real world sig-
nals can be well approximated by sparse ones. A very important step in
solving multivariate problems with large dimension occurred during last 20
years. Researchers began to use sparse representations as a way to model
the corresponding function classes. This approach automatically implies a
need for nonlinear approximation, in particular, for greedy approximation.
We give a brief description of a sparse approximation problem. In a general
setting we are working in a Banach space X with a redundant system of
elements D (dictionary D). There is a solid justification of importance of a
Banach space setting in numerical analysis in general and in sparse approx-
imation in particular (see, for instance, [10], Preface, and [5]). An element
(function, signal) f ∈ X is said to be K-sparse with respect to D if it has a
representation f =

∑K
i=1 xigi, gi ∈ D, i = 1, . . . , K. The set of all K-sparse

elements is denoted by ΣK(D). For a given element f0 we introduce the error
of best m-term approximation

σm(f0,D) := inf
f∈Σm(D)

‖f0 − f‖.

Here are two fundamental problems of sparse approximation.
P1. Exact recovery. Suppose we know that f0 ∈ ΣK(D). How can we

recover it?
P2. Approximate recovery. How to design a practical algorithm that

builds m-term approximations comparable to best m-term approximations?
It is known that in both of the above problems greedy-type algorithms

play a fundamental role. We discuss one of them here. There are two special
cases of the above general setting of the sparse approximation problem.

(I). Instead of a Banach space X we consider a Hilbert space H. Approx-
imation is still with respect to a redundant dictionary D.

(II). We approximate in a Banach space X with respect to a basis Ψ
instead of a redundant dictionary D.

This section discusses setting (I) and the corresponding generalizations
to the Banach space setting. Section 4 addresses setting (II). We begin our
discussion with the Orthogonal Greedy Algorithm (OGA) in a Hilbert space.
The Orthogonal Greedy Algorithm is called the Orthogonal Matching Pur-
suit (OMP) in signal processing. We will use the name Orthogonal Matching
Pursuit for this algorithm in this paper. It is natural to compare perfor-
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mance of the OMP with the best m-term approximation with regard to a
dictionary D. We recall some notations and definitions from the theory of
greedy algorithms. Let H be a real Hilbert space with an inner product 〈·, ·〉
and the norm ‖x‖ := 〈x, x〉1/2. We say a set D of functions (elements) from
H is a dictionary if each g ∈ D has a unit norm (‖g‖ = 1) and the closure of
spanD is H. Let a sequence τ = {tk}∞k=1, 0 ≤ tk ≤ 1, be given. The following
greedy algorithm was defined in [6] under the name Weak Orthogonal Greedy
Algorithm (WOGA).

Weak Orthogonal Matching Pursuit (WOMP). Let f0 be given.
Then for each m ≥ 1 we inductively define:

(1) ϕm ∈ D is any element satisfying

|〈fm−1, ϕm〉| ≥ tm sup
g∈D
|〈fm−1, g〉|.

(2) Let Hm := span(ϕ1, . . . , ϕm) and let PHm(·) denote an operator of
orthogonal projection onto Hm. Define

Gm(f0,D) := PHm(f0).

(3) Define the residual after mth iteration of the algorithm

fm := f0 −Gm(f0,D).

In the case tk = 1, k = 1, 2, . . . , WOMP is called the Orthogonal Matching
Pursuit (OMP). In this paper we only consider the case tk = t, k = 1, 2, . . . ,
t ∈ (0, 1].

The theory of the WOMP is well developed (see [10]). In first results
on performance of the WOMP in problems P1 and P2 researchers imposed
the incoherence assumption on a dictionary D. The reader can find detailed
discussion of these results in [10], Section 2.6 and [4]. Recently, exact recov-
ery results and Lebesgue-type inequalities for the WOMP under assumption
thatD satisfies Restricted Isometry Property (RIP) introduced in compressed
sensing theory (see Definition 2.1 below) have been proved (see [12], [3], [11]).
A breakthrough result in this direction was obtained by Zhang [12]. In par-
ticular, he proved that if δRIP31K (D) < 1/3 then the OMP recovers exactly all
K-sparse signals within 30K iterations. In other words, f30K = 0. It is in-
teresting and difficult problem to improve the constant 30. There are several
papers devoted to this problem (see [3] and [11]). In this paper we develop
Zhang’s technique in two directions: (1) to obtain exact recovery with high
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probability of random K-sparse signals within dK(1 + ε)e iterations of the
OMP and (2) to obtain recovery results and the Lebesgue-type inequalities
in the Banach space setting.

In Section 2 we prove exact recovery results under RIP conditions on a
dictionary combined with assumptions on the sparse signal to be recovered
(see Theorem 2.1). We prove that the corresponding assumptions on a sparse
signal are satisfied with high probability if it is a random signal. In particular,
we prove the following theorem.

Theorem 1.1. For any ε > 0 there exist δ = δ(ε) > 0 and K0 = K0(ε) such
that for any dictionary D, δRIP2K (D) < δ, K ≥ K0, the following statement
holds. Let f0 ∈ ΣK(D) and its nonzero coefficients are uniformly distributed
on [−1, 1] independent random variables. Then fdK(1+ε)e = 0 with probability
greater than 1− exp(−C(ε)K).

This theorem shows that in a probabilistic sense the OMP is almost op-
timal for exact recovery.

Sections 3 is devoted to the Banach space setting. Let X be a Banach
space with norm ‖ · ‖ := ‖ · ‖X . As in the case of Hilbert spaces we say that a
set of elements (functions) D from X is a dictionary if each g ∈ D has norm
one (‖g‖ = 1), and the closure of spanD is X. For a nonzero element g ∈ X
we let Fg denote a norming (peak) functional for g:

‖Fg‖X∗ = 1, Fg(g) = ‖g‖X .

The existence of such a functional is guaranteed by the Hahn-Banach theo-
rem.

Let τ := {tk}∞k=1 be a given weakness sequence of nonnegative num-
bers tk ≤ 1, k = 1, . . . . We define the Weak Chebyshev Greedy Algorithm
(WCGA) (see [7]) as a generalization for Banach spaces of the Weak Orthog-
onal Matching Pursuit. We study in detail the WCGA in this paper.

Weak Chebyshev Greedy Algorithm (WCGA). Let f0 be given.
Then for each m ≥ 1 we have the following inductive definition.

(1) ϕm := ϕc,τm ∈ D is any element satisfying

|Ffm−1(ϕm)| ≥ tm sup
g∈D
|Ffm−1(g)|.

(2) Define
Φm := Φτ

m := span{ϕj}mj=1,
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and define Gm := Gc,τ
m to be the best approximant to f0 from Φm.

(3) Let
fm := f c,τm := f0 −Gm.

In Section 3 we prove the Lebesgue-type inequalities for the WCGA.
A very important advantage of the WCGA is its convergence and rate of
convergence properties. The WCGA is well defined for all m. Moreover, it
is known (see [7] and [10]) that the WCGA with τ = {t} converges for all f0

in all uniformly smooth Banach spaces with respect to any dictionary. That
is, when X is a real Banach space and the modulus of smoothness of X is
defined as follows

ρ(u) :=
1

2
sup

x,y;‖x‖=‖y‖=1

|‖x+ uy‖+ ‖x− uy‖ − 2| ,

then the uniformly smooth Banach space is the one with ρ(u)/u → 0 when
u→ 0.

For notational convenience we consider here a countable dictionary D =
{gi}∞i=1. For a given f0, let the sparse element (signal)

f := f ε =
∑
i∈T

xigi

be such that ‖f0 − f ε‖ ≤ ε and |T | = K. For A ⊂ T denote

fA := f εA :=
∑
i∈A

xigi.

We use the following two assumptions.
A1. Nikol’skii-type inequality. The sparse element f =

∑
i∈T xigi

satisfies Nikol’skii-type `1X inequality with parameter r if∑
i∈A

|xi| ≤ C1|A|r‖fA‖, A ⊂ T, r ≥ 1/2.

A2. Incoherence property. The sparse element f =
∑

i∈T xigi has
incoherence property with parameters D and U if for any A ⊂ T and any Λ,
such that A ∩ Λ = ∅ and |A|+ |Λ| ≤ D, we have for any {ci}

‖fA −
∑
i∈Λ

cigi‖ ≥ U−1‖fA‖.

The main result of Section 3 is the following.
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Theorem 1.2. Let X be a Banach space with ρ(u) ≤ γu2. Suppose K-sparse
f ε satisfies A1, A2 and ‖f0 − f ε‖ ≤ ε. Then the WCGA with weakness
parameter t applied to f0 provides

‖fC(t,γ,C1)U2 ln(U+1)K2r‖ ≤ Cε for K + C(t, γ, C1)U2 ln(U + 1)K2r ≤ D

with an absolute constant C.

Theorem 1.2 provides a corollary for Hilbert spaces that gives sufficient
conditions somewhat weaker than the known RIP conditions on D for the
Lebesgue-type inequality to hold. We formulate it as a theorem.

Theorem 1.3. Let X be a Hilbert space. Suppose K-sparse f ε satisfies A2
and ‖f0 − f ε‖ ≤ ε. Then the WOMP with weakness parameter t applied to
f0 provides

‖fC(t,U)K‖ ≤ Cε for K + C(t, U)K ≤ D

with an absolute constant C.

Theorem 1.3 implies the following corollary.

Corollary 1.1. Let X be a Hilbert space. Suppose any K-sparse f satisfies
A2. Then the WOMP with weakness parameter t applied to f0 provides

‖fC(t,U)K‖ ≤ CσK(f0,D) for K + C(t, U)K ≤ D

with an absolute constant C.

We show in Sections 3 that the RIP condition with parameters D and δ
implies the (D,D) unconditionality with U = (1+δ)1/2(1−δ)−1/2. Therefore,
Corollary 1.1 reads as follows in this case.

Corollary 1.2. Let X be a Hilbert space. Suppose D satisfies RIP condi-
tion with parameters D and δ. Then the WOMP with weakness parameter t
applied to f0 provides

‖fC(t,δ)K‖ ≤ CσK(f0,D) for K + C(t, δ)K ≤ D

with an absolute constant C.

6



We emphasize that in Theorem 1.2 we impose our conditions on an in-
dividual function f ε. It may happen that the dictionary does not satisfy
assumptions of `1X inequality and (K,D)-unconditionality (see Section 3)
but the given f0 can be approximated by f ε which does satisfy assumptions
A1 and A2. Even in the case of a Hilbert space our approach adds some-
thing new to the study based on the RIP. First of all, Theorem 1.3 shows
that it is sufficient to impose assumption A2 on an individual f ε in order
to obtain exact recovery and the Lebesgue-type inequality results. Second,
Corollary 1.1 shows that the condition A2, which is weaker than the RIP
condition, is sufficient for exact recovery and the Lebesgue-type inequality
results. Third, Corollary 1.2 shows that even if we impose our assumptions
in terms of RIP we do not need to assume that δ < δ0. In fact, the result
works for all δ < 1 with parameters depending on δ.

2 Almost optimality of the OMP

We prove Theorem 1.1 in this section. For the readers convenience we use
notations which are standard in signal processing. Let D = {φi}Ni=1 be a
dictionary in RM , M < N . By Φ denote an M × N matrix, consisting of
elements of D (φi ∈ RM is the i-th column of Φ). We say that x ∈ RN is
S-sparse if x has at most S nonzero coordinates.

Definition 2.1. A matrix Φ satisfies RIP (S, δ) if the inequality

(1− δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2 (2.1)

holds for all S-sparse x ∈ RN . The minimum of all constants δ, satisfying
(2.1), is called the isometric constant δS(Φ) = δS(D) = δRIPS (D).

In this section we study the OMP and use the “compressed sensing no-
tation” for the residual of the OMP. Set

rm := fm, m ≥ 0.

Consider the set
Ω = {1, . . . , N}.

Since f0 ∈ ΣK(D), there exists an x = (x1, x2, . . . , xN), supp x = T , T ⊂ Ω,
|T | = K such that

r0 = f0 = Φx.
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Denote by Tm the set of indices of φi picked by the OMP after m iterations.
According to the definition of the OMP for every m ≥ 0 we choose xm ∈ RN ,
satisfying the following relations

supp xm ⊂ Tm, |Tm| = m, while rm 6= 0, (2.2)

Gm(f,D) = Φxm,

rm = Φx− Φxm. (2.3)

Let N(x, ν) be the minimal integer such that

‖xΛ‖2 > ν, for all Λ ⊂ T, |Λ| ≥ N(x, ν) + 1. (2.4)

Theorem 2.1. There exists an absolute constant Ĉ such that for any δ, 0 <
δ < 0.001, an integer K ≥ K0 = K0(δ), and a dictionary D, δRIP2K (D) < δ the
following statement holds.The OMP recovers exactly every K-sparse signal x
within K + 6N(x, Ĉδ1/2K) iterations, in other words, rK+6N(x,Ĉδ1/2K) = 0.

Here is a direct corollary of Theorem 2.1.

Corollary 2.1. Let K-sparse x be such that |xi| = 1, i ∈ T , |T | = K.
Then under assumptions of Theorem 2.1 the OMP recovers x exactly within
(1 + 6Ĉδ1/2)K iterations.

Proof. Set
Γm := T \ Tm.

We fix
a := δ1/2. (2.5)

Consider m ∈ Z+ such that

|Tm|+ [aK] = m+ [aK] ≤ K. (2.6)

Assume that K ≥ K0 = K0(a) ≥ 1/a. Let zm be the maximal number,
satisfying the following inequality

|{i ∈ Γm : |xi| ≥ zm}| ≥ [aK], |{i ∈ Γm : |xi| ≤ zm}| ≥ |Γm| − [aK]. (2.7)

In other words zm is the [aK]th largest element out of {|xi|}i∈Γm . We use
the following lemma.

8



Lemma 2.1. Under (2.6) the following inequality is valid:

‖rm‖2 − ‖rm+1‖2 ≥ (zm)2(1− C1a).

Proof. According to (2.7), we can choose sets

Γm+ ⊂ Γm, |Γm+ | = [aK] (2.8)

and
Γm− := Γ \ Γm+ (2.9)

with the following property

min
i∈Tm

+

|xi| ≥ zm ≥ max
i∈Γm
−
|xi|. (2.10)

Consider w ∈ RN such that

wT∩Tm∪Γm
+

= xT∩Tm∪Γm
+
, wΩ\(T∩Tm∪Γm

+ ) = 0. (2.11)

We use several well-known properties of the OMP:

‖rm‖2 − ‖rm+1‖2 ≥ sup
φ∈D
〈rm, φ〉2, (2.12)

sup
φ∈D
|〈rm, φ〉| ≥ |〈r

m,Φu〉|
‖u‖1

, u ∈ RN, (2.13)

〈rm,Φu〉 = 0, if supp u ⊂ Tm. (2.14)

In particular
〈rm,Φxm〉 = 0. (2.15)

Using (2.13) for u = wΩ\Tm , we can estimate

| sup
φ∈D
〈rm, φ〉| ≥

|〈rm,ΦwΩ\Tm〉|
‖wΩ\Tm‖1

(2.14)
=
|〈rm,Φw〉|
‖wΩ\Tm‖1

(2.15)
=

|〈rm,Φ(w − xm)〉|
‖wΩ\Tm‖1

≥ |〈rm,Φ(w − xm)〉|
‖wΩ\Tm‖1/2

0 ‖wΩ\Tm‖2

.

Applying (2.8) and (2.11), we obtain from the above inequality

| sup
φ∈D
〈rm, φ〉| ≥ |〈r

m,Φ(w − xm)〉|
(|Γm+ |)1/2‖wΩ\Tm‖2

≥ |〈r
m,Φ(w − xm)〉|

(aK)1/2‖wΩ\Tm‖2

. (2.16)
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We estimate

‖rm‖2 = ‖Φ(x− xm)‖2
RIP

≥ (1− δ)‖x− xm‖2 ≥ (1− δ)‖(x− xm)Γm‖2

= (1− δ)‖xΓm‖2 = (1− δ)‖xΓm
+∪Γm

−
‖2

= (1− δ)(‖xΓm
+
‖2 + ‖xΓm

−
‖2)

(2.10),(2.8)

≥ (1− δ)((zm)2[aK] + ‖xΓm
−
‖2),

and

‖Φ(w − x)‖2 (2.11)
= ‖ΦxΓm

−
‖2

RIP

≤ (1 + δ)‖xΓm
−
‖2.

Combining two last inequalities, we obtain, for sufficiently largeK0 = K0(a) =
K0(ε),

‖rm‖2 − ‖Φ(w − x)‖2 ≥ (1− δ)(zm)2[aK]− 2δ‖xΓm
−
‖2

(2.10)

≥ (1− δ)(zm)2[aK]− 2δ(zm)2|Γm− |
(2.9)

≥ (1− δ)(zm)2[aK]− 2δ(zm)2K

≥ (1− 2δ)(zm)2(aK)− 2δ(zm)2K

= (zm)2aK((1− 2δ)− 2δ

a
)

(2.5)

≥ (zm)2aK(1− 4a). (2.17)

Following the technique from [11] we have

|〈rm,Φ(w − xm)〉| =
1

2

∣∣‖Φ(w − xm)‖2
2 + ‖rm‖2 − ‖Φ(w − xm)− rm‖2

∣∣
(2.3)
=

1

2

∣∣‖Φ(w − xm)‖2
2 + (‖rm‖2 − ‖Φ(w − x)‖2)

∣∣
(2.17)

≥
(
‖Φ(w − xm)‖2

2(zm)2aK(1− 4a)
)1/2

= ‖Φ(w − xm)‖2z
m(aK(1− 4a))1/2

RIP

≥ (1− δ)1/2‖w − xm‖zm(aK(1− 4a))1/2

≥ ‖w − xm‖zm(aK)1/2(1− c1a)

≥ ‖(w − xm)Ω\Tm‖zm(aK)1/2(1− c1a)
(2.2)
=

= ‖wΩ\Tm‖zm(aK)1/2(1− c1a). (2.18)
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Substituting (2.18) in (2.16) and (2.12), we finally get

‖rm‖2 − ‖rm+1‖2 ≥ 〈rm,Φ(w − xm)〉2

aK‖wΩ\Tm‖2
2

≥
‖wΩ\Tm‖2(zm)2aK(1− c1a)2

aK‖wΩ\Tm‖2
2

≥ (zm)2(1− C1a).

We continue to prove Theorem 2.1. Without loss of generality we may
assume that T = {1, . . . , K} and that the sequence {|xi|}Ki=1 decreases. Then
using the inequality |T ∩ Tm| ≤ m and the definition (2.7), we have

zm ≥ |xm+[aK]| ≥ |xm+1+[aK]|.

Applying Lemma 2.1, we have for m ≥ 1, m+ [aK] ≤ K,

‖rm−1‖2 − ‖rm‖2 ≥ (zm−1)2(1− C1a) ≥ x2
m+[aK](1− C1a). (2.19)

First we bound ‖rK‖ from above

‖rK‖2 = ‖r0‖2 −
K∑
m=1

(
‖rm−1‖2 − ‖rm‖2

)
(r0=Φx)

= ‖Φx‖2 −
K∑
m=1

(
‖rm−1‖2 − ‖rm‖2

)
RIP

≤ (1 + δ)
K∑
i=1

x2
i −

K−[aK]∑
m=1

(
‖rm−1‖2 − ‖rm‖2

)
(2.19)

≤ (1 + δ)
K∑
i=1

x2
i −

K−[aK]∑
m=1

x2
m+[aK](1− C1a)

≤ (1 + δ)
K∑
i=1

x2
i −

K∑
i=1+[aK]

x2
i (1− C1a)

≤ (δ + C1a)
K∑
i=1

x2
i +

[aK]∑
i=1

x2
i

|xi|≤1

≤ (δ + C1a)K + [aK] ≤ KC2a
(2.5)
= KC2δ

1/2. (2.20)
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Then using RIP, we can estimate ‖rK‖ from below

‖rK‖2 ≥ (1− δ)
∑

i∈T\TK

x2
i . (2.21)

Set

Ĉ :=
C2

1− δ
.

Combining this definition with (2.20) and (2.21), we obtain∑
i∈T\TK

x2
i ≤ ĈKδ1/2.

Thus, using (2.4), we conclude that

|T \ TK | ≤ N(x, ĈKδ1/2). (2.22)

It is known that (see Lemma 1.2 from [1] and Lemma 1 from [2])

δ2S(Φ) ≤ 3δS(Φ).

Then the condition δ < 0.001 implies that

δ10K(Φ) ≤ δ16K(Φ) ≤ 27δ2K(Φ) ≤ 27δ ≤ 0.03. (2.23)

Now we can apply the improvement of Zhang’s theorem obtained by Wang
and Shim ([11], Theorem 3.1). It claims that under (2.23) we have

rK+6|T\TK | = 0,

Therefore, taking into account (2.22), we finally get

rK+6N(x,ĈKδ1/2) = 0.

As corollaries of Theorem 2.1 we obtain Theorem 1.1 and the following
result.

Theorem 2.2. For any ε1, ε2 > 0 there exist δ = δ(ε1, ε2) > 0 and K0 =
K0(ε1, ε2) such that for any dictionary D, δRIP2K (D) < δ, K ≥ K0, the follow-
ing statement holds. If r0 = f0 ∈ ΣK(D) and its nonzero coefficients belong
to [−1, 1] \ (−ε1, ε1), then rdK(1+ε2)e = 0.
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Proof. It is clear that for any Λ ⊂ T we have

‖xΛ‖2 ≥ ε21|Λ|.

Hence according to (2.4) we get

N(x, ν) ≤ ν

ε21
.

Then

6N(x, ĈKδ1/2) ≤ K6
Ĉδ1/2

ε21
.

Thus, to complete the proof it remains to choose δ = δ(ε1, ε2) such that

6
Ĉδ1/2

ε21
≤ ε2.

Lemma 2.2. Assume that p < 1 and numbers xi, 1 ≤ i ≤ K, K ≥ K0(p)
are uniformly distributed on [−1, 1] independent random variables. Then

|{i : |xi| < p}| ≤ 2pK

with probability greater than 1− exp(−C(p)K).

Proof. For i, 1 ≤ i ≤ K, we set ξi = 0, if |xi| ≥ p, and ξi = 1, otherwise. So
ξi has Bernoulli distribution with

P{ξi = 1} = p, P{ξi = 0} = 1− p, Eξi = p.

By Hoeffding’s inequality (see, for instance, [10], p. 198, inequality (4.22))
we obtain

P

{
1

K

K∑
i=1

ξi − p ≥ p

}
≤ exp(−Kp2/2).

Clearly,

|{i : |xi| < p}| =
K∑
i=1

ξi.

Therefore,

P {|{i : |xi| < p}| ≤ 2p} = P

{
1

K

K∑
i=1

ξi ≤ 2p

}
≥ 1− exp(−Kp2/2).
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We now give a proof of Theorem 1.1 from the Introduction.

Proof. Let
κ := κ(δ) := Ĉδ1/2.

According to Lemma 2.1 with probability greater than 1− exp(−C(δ)K) we
have ∣∣{i : |xi| < κ1/3}

∣∣ ≤ 2κ1/3K (2.24)

To prove the theorem we need to estimate N(x,κK). Consider Λ ⊂ T such
that

‖xΛ‖2 ≤ κK.

Then we estimate

|Λ| = |{i ∈ Λ : |xi| < κ1/3}|+ |{i ∈ Λ : |xi| ≥ κ1/3}|

≤ |{i ∈ Λ : |xi| < κ1/3}|+ κK
(κ1/3)2

(2.24)

≤ 2κ1/3K + κ1/3K = 3κ1/3K.

Therefore, by definition (2.4) we have

N(x,κK) ≤ 3κ1/3K = 3(Ĉ)1/3δ1/6K.

To complete the proof it remains to apply Theorem 2.1 for δ < 0.001 provid-
ing

N(x,κK) < εK/6.

3 Lebesgue-type inequalities

We discuss here the Lebesgue-type inequalities for the WCGA with τ = {t},
t ∈ (0, 1]. We repeat the above assumptions A1 and A2 with remarks on the
corresponding properties of dictionaries. For a given f0 let sparse element
(signal)

f := f ε =
∑
i∈T

xigi

be such that ‖f0 − f ε‖ ≤ ε and |T | = K. For A ⊂ T denote

fA := f εA :=
∑
i∈A

xigi.
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Here are two assumptions that we will use.
A1. We say that f =

∑
i∈T xigi satisfies the Nikol’skii-type `1X inequal-

ity with parameter r if∑
i∈A

|xi| ≤ C1|A|r‖fA‖, A ⊂ T, r ≥ 1/2. (3.1)

We say that a dictionary D has the Nikol’skii-type `1X property with param-
eters K, r if any K-sparse element satisfies the Nikol’skii-type `1X inequality
with parameter r.

A2. We say that f =
∑

i∈T xigi has incoherence property with parame-
ters D and U if for any A ⊂ T and any Λ such that A∩Λ = ∅, |A|+ |Λ| ≤ D
we have for any {ci}

‖fA −
∑
i∈Λ

cigi‖ ≥ U−1‖fA‖. (3.2)

We say that a dictionary D is (K,D)-unconditional with a constant U if for
any f =

∑
i∈T xigi with |T | ≤ K inequality (3.2) holds.

The term unconditional in A2 is justified by the following remark. The
above definition of (K,D)-unconditional dictionary is equivalent to the fol-
lowing definition. Let D be such that any subsystem of D distinct elements
e1, . . . , eD from D is linearly independent and for any A with |A| ≤ K and
any coefficients {ci} we have

‖
∑
i∈A

ciei‖ ≤ U‖
D∑
i=1

ciei‖.

Let D be the Riesz dictionary with depth D and parameter δ ∈ (0, 1).
This class of dictionaries is a generalization of the class of classical Riesz
bases. We give a definition in a general Hilbert space (see [10], p. 306).

Definition 3.1. A dictionary D is called the Riesz dictionary with depth D
and parameter δ ∈ (0, 1) if, for any D distinct elements e1, . . . , eD of the
dictionary and any coefficients a = (a1, . . . , aD), we have

(1− δ)‖a‖2
2 ≤ ‖

D∑
i=1

aiei‖2 ≤ (1 + δ)‖a‖2
2.

We denote the class of Riesz dictionaries with depth D and parameter δ ∈
(0, 1) by R(D, δ).
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It is clear that the term Riesz dictionary with depth D and parameter
δ ∈ (0, 1) is another name for a dictionary satisfying the Restricted Isometry
Property with parameters D and δ. The following simple lemma holds.

Lemma 3.1. Let D ∈ R(D, δ) and let ej ∈ D, j = 1, . . . , s. For f =∑s
i=1 aiei and A ⊂ {1, . . . , s} denote

SA(f) :=
∑
i∈A

aiei.

If s ≤ D then
‖SA(f)‖2 ≤ (1 + δ)(1− δ)−1‖f‖2.

Lemma 3.1 implies that if D ∈ R(D, δ) then it is (D,D)-unconditional
with a constant U = (1 + δ)1/2(1− δ)−1/2.

We need the concept of cotype of a Banach space X. We say that X
has cotype q ≥ 2 if for any finite number of elements ui ∈ X we have the
inequality (

Average±‖
∑
i

±ui‖q
)1/q

≥ Cq

(∑
i

‖ui‖q
)1/q

.

It is known that the Lp spaces with 2 ≤ p < ∞ have cotype q = p and Lp
spaces with 1 < p ≤ 2 have cotype 2.

Remark 3.1. Suppose D is (K,K)-unconditional with a constant U . As-
sume that X is of cotype q with a constant Cq. Then D has the Nikol’skii-type
`1X property with parameters K, 1− 1/q and C1 = 2UC−1

q .

Proof. Our assumption about (K,K)-unconditionality implies: for any A,
|A| ≤ K, we have

‖
∑
i∈A

±xigi‖ = ‖
∑
i∈A+

xigi −
∑
i∈A−

xigi‖ ≤ 2U‖
∑
i∈A

xigi‖.

Therefore, by q-cotype assumption

‖
∑
i∈A

xigi‖q ≥ (2U)−qCq
q

∑
i∈A

|xi|q.
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This implies

∑
i∈A

|xi| ≤ |A|1−1/q

(∑
i∈A

|xi|q
)1/q

≤ 2UC−1
q |A|1−1/q‖

∑
i∈A

xigi‖.

The above proof also gives the following individual function version of
Remark 3.1.

Remark 3.2. Suppose f =
∑

i∈T xigi has incoherence property with param-
eters D and U . Assume that X has cotype q with a constant Cq. Then f
satisfies the Nikol’skii-type `1X inequality with parameter r = 1 − 1/q and
C1 = 2UC−1

q .

It is known that a Hilbert space has cotype 2. Therefore, Remark 3.2
shows that assumption A2 implies assumption A1 with r = 1/2. This
explains how Theorem 1.3 is derived from Theorem 1.2.

We note that the (K,CK)-unconditionality assumption on the dictio-
nary D in a Hilbert space H is somewhat weaker than the assumption
D ∈ R(CK, δ). Also, our theorems do not assume that the dictionary sat-
isfies assumptions A1 and A2; we only assume that the individual function
f , a K-sparse approximation of a given f0, satisfies A1 and A2.

In assumption (3.2) we always have U ≥ 1. In the extreme case U = 1
assumption (3.2) is a strong assumption that leads to strong results.

Proposition 3.1. Let X be a uniformly smooth Banach space. Assume that
f =

∑
i∈T xigi, |T | = K, and the set of indices T has the following property.

For any g ∈ D distinct from gi, i ∈ T , and any ci, c we have

‖
∑
i∈T

cigi − cg‖ ≥ ‖
∑
i∈T

cigi‖. (3.3)

Then the WCGA with tk 6= 0, k = 1, 2, . . . , recovers f exactly after K
iterations.

Proof. It is known (see, for instance, [10], Lemma 6.9, p. 342) that (3.3)
implies

Ff (g) = 0, g ∈ D \ {gi}i∈T .
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Thus, at the first iteration the WCGA picks ϕ1 ∈ {gi}i∈T . Then f1 has the
form

∑
i∈T cigi and we repeat the above argument. Then ϕ2 ∈ {gi}i∈T \{ϕ1}.

After K iterations all gi, i ∈ T , will be taken and therefore we will have
fK = 0.

Proposition 3.1 can be applied in the following situation. Assume that
Ψ = {ψi}∞i=1 is a monotone basis for a uniformly smooth Banach space X.
Then any f =

∑K
i=1 xiψi will be recovered by the WCGA after K iterations.

In particular, this applies to the Haar basis in Lp, 1 < p <∞.
We now proceed to main results of this section.

Theorem 3.1. Let X be a Banach space with ρ(u) ≤ γu2. Suppose for a
given f0 we have ‖f0−f ε‖ ≤ ε with K-sparse f := f ε satisfying A1 and A2.
Then for any k ≥ 0 we have for K +m ≤ D

‖fm‖ ≤ ‖fk‖ exp

(
−c1(m− k)

K2r

)
+ 2ε,

where c1 := t2

32γC2
1U

2 .

Proof. Let

f := f ε =
∑
i∈T

xigi, |T | = K, gi ∈ D.

Denote by Tm the set of indices of gi picked by the WCGA after m iterations,
Γm := T \ Tm. Denote by A1(D) the closure in X of the convex hull of the
symmetrized dictionary D± := {±g, g ∈ D}. We will bound ‖fm‖ from
above. Assume ‖fm−1‖ ≥ ε. Let m > k. We bound from below

Sm := sup
φ∈A1(D)

|Ffm−1(φ)|.

Denote Am := Γm−1. Then

Sm ≥ Ffm−1(fAm/‖fAm‖1),

where ‖fA‖1 :=
∑

i∈A |xi|. Next, by Lemma 6.9, p. 342, from [10] we obtain

Ffm−1(fAm) = Ffm−1(f
ε) ≥ ‖fm−1‖ − ε.

Thus
Sm ≥ ‖fAm‖−1

1 (‖fm−1‖ − ε).
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By (3.1) we get

‖fAm‖1 ≤ C1|Am|r‖fAm‖ ≤ C1K
r‖fAm‖.

Then

Sm ≥
‖fm−1‖ − ε
C1Kr‖fAm‖

. (3.4)

From the definition of the modulus of smoothness we have for any λ

‖fm−1 − λϕm‖+ ‖fm−1 + λϕm‖ ≤ 2‖fm−1‖
(

1 + ρ

(
λ

‖fm−1‖

))
(3.5)

and by (1) from the definition of the WCGA and Lemma 6.10 from [10], p.
343, we get

|Ffm−1(ϕm)| ≥ t sup
g∈D
|Ffm−1(g)| =

t sup
φ∈A1(D)

|Ffm−1(φ)| = tSm.

Then either Ffm−1(ϕm) ≥ tSm or Ffm−1(−ϕm) ≥ tSm. Both cases are treated
in the same way. We demonstrate the case Ffm−1(ϕm) ≥ tSm. We have for
λ ≥ 0

‖fm−1 + λϕm‖ ≥ Ffm−1(fm−1 + λϕm) ≥ ‖fm−1‖+ λtSm.

From here and from (3.5) we obtain

‖fm‖ ≤ ‖fm−1 − λϕm‖ ≤ ‖fm−1‖+ inf
λ≥0

(−λtSm + 2‖fm−1‖ρ(λ/‖fm−1‖)).

We discuss here the case ρ(u) ≤ γu2. Using (3.4) we get

‖fm‖ ≤ ‖fm−1‖
(

1− λt

C1Kr‖fAm‖
+ 2γ

λ2

‖fm−1‖2

)
+

ελt

C1Kr‖fAm‖
.

Let λ1 be a solution of

λt

2C1Kr‖fAm‖
= 2γ

λ2

‖fm−1‖2
, λ1 =

t‖fm−1‖2

4γC1Kr‖fAm‖
.

Our assumption (3.2) gives

‖fAm‖ = ‖(f ε −Gm−1)Am‖ ≤ U‖f ε −Gm−1‖
≤ U(‖f0 −Gm−1‖+ ‖f0 − f ε‖) ≤ U(‖fm−1‖+ ε).
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Specify

λ =
t‖fAm‖

16γC1KrU2
.

Then, using ‖fm−1‖ ≥ ε we get

λ

λ1

=
‖fAm‖2

4‖fm−1‖2
≤ 1

and obtain

‖fm‖ ≤ ‖fm−1‖
(

1− t2

32γC2
1U

2K2r

)
+

εt2

16γC2
1U

2K2r
.

Denote c1 := t2

32γC2
1U

2 . Then

‖fm‖ ≤ ‖fk‖ exp

(
−c1(m− k)

K2r

)
+ 2ε.

Theorem 3.2. Let X be a Banach space with ρ(u) ≤ γu2. Suppose K-sparse
f ε satisfies A1, A2 and ‖f0 − f ε‖ ≤ ε. Then the WCGA with weakness
parameter t applied to f0 provides

‖fC(t,γ,C1)U2 ln(U+1)K2r‖ ≤ CUε for K + C(t, γ, C1)U2 ln(U + 1)K2r ≤ D

with an absolute constant C and C(t, γ, C1) = C2γC
2
1 t
−2.

We formulate an immediate corollary of Theorem 3.2 with ε = 0.

Corollary 3.1. Let X be a Banach space with ρ(u) ≤ γu2. Suppose K-sparse
f satisfies A1, A2. Then the WCGA with weakness parameter t applied to f
recovers it exactly after C(t, γ, C1)U2 ln(U+1)K2r iterations under condition
K + C(t, γ, C1)U2 ln(U + 1)K2r ≤ D.

Proof. We use the above notations Tm and Γm := T \ Tm. Let k ≥ 0 be
fixed. Suppose

2n−1 < |Γk| ≤ 2n.

For j = 1, 2, . . . , n, n + 1 consider the following pairs of sets Aj, Bj: An+1 =
Γk, Bn+1 = ∅; for j ≤ n, Aj := Γk \ Bj with Bj ⊂ Γk is such that |Bj| ≥
|Γk| − 2j−1 and for any set J ⊂ Γk with |J | ≥ |Γk| − 2j−1 we have

‖fBj
‖ ≤ ‖fJ‖.
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We note that this implies that if for some Q ⊂ Γk we have

‖fQ‖ < ‖fBj
‖ then |Q| < |Γk| − 2j−1. (3.6)

For a given b > 1, to be specified later, denote by L the index such that
(B0 := Γk)

‖fB0‖ < b‖fB1‖,

‖fB1‖ < b‖fB2‖,

. . .

‖fBL−2
‖ < b‖fBL−1

‖,

‖fBL−1
‖ ≥ b‖fBL

‖.

Then
‖fBj
‖ ≤ bL−1−j‖fBL−1

‖, j = 1, 2, . . . , L. (3.7)

We now proceed to a general step. Let m > k and let A,B ⊂ Γk be such
that A = Γk \B. As above we bound Sm from below. It is clear that Sm ≥ 0.
Denote Am := A ∩ Γm−1. Then

Sm ≥ Ffm−1(fAm/‖fAm‖1).

Next,
Ffm−1(fAm) = Ffm−1(fAm + fB − fB).

Then fAm + fB = f ε − fΛ with Ffm−1(fΛ) = 0. Moreover, it is easy to see
that Ffm−1(f

ε) ≥ ‖fm−1‖ − ε. Therefore,

Ffm−1(fAm + fB − fB) ≥ ‖fm−1‖ − ε− ‖fB‖.

Thus
Sm ≥ ‖fAm‖−1

1 max(0, ‖fm−1‖ − ε− ‖fB‖).

By (3.1) we get

‖fAm‖1 ≤ C1|Am|r‖fAm‖ ≤ C1|A|r‖fAm‖.

Then

Sm ≥
‖fm−1‖ − ‖fB‖ − ε

C1|A|r‖fAm‖
. (3.8)
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From the definition of the modulus of smoothness we have for any λ

‖fm−1 − λϕm‖+ ‖fm−1 + λϕm‖ ≤ 2‖fm−1‖(1 + ρ(
λ

‖fm−1‖
))

and by (1) from the definition of the WCGA and Lemma 6.10 from [10], p.
343, we get

|Ffm−1(ϕm)| ≥ t sup
g∈D
|Ffm−1(g)| =

t sup
φ∈A1(D)

|Ffm−1(φ)|.

From here we obtain

‖fm‖ ≤ ‖fm−1‖+ inf
λ≥0

(−λtSm + 2‖fm−1‖ρ(λ/‖fm−1‖)).

We discuss here the case ρ(u) ≤ γu2. Using (3.8) we get

‖fm‖ ≤ ‖fm−1‖
(

1− λt

C1|A|r‖fAm‖
+ 2γ

λ2

‖fm−1‖2

)
+
λt(‖fB‖+ ε)

C1|A|r‖fAm‖
.

Let λ1 be a solution of

λt

2C1|A|r‖fAm‖
= 2γ

λ2

‖fm−1‖2
, λ1 =

t‖fm−1‖2

4γC1|A|r‖fAm‖
.

Our assumption (3.2) gives

‖fAm‖ ≤ U(‖fm−1‖+ ε).

Specify

λ =
t‖fAm‖

16γC1|A|rU2
.

Then λ ≤ λ1 and we obtain

‖fm‖ ≤ ‖fm−1‖
(

1− t2

32γC2
1U

2|A|2r

)
+

t2(‖fB‖+ ε)

16γC2
1 |A|2rU2

. (3.9)

Denote c1 := t2

32γC2
1U

2 and c2 := t2

16γC2
1U

2 . This implies for m2 > m1 ≥ k

‖fm2‖ ≤ ‖fm1‖(1− c1/|A|2r)m2−m1 +
c2(m2 −m1)

|A|2r
(‖fB‖+ ε).
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Define m0 := k and, inductively,

mj = mj−1 + β|Aj|2r, j = 1, . . . , n.

At iterations from mj−1 + 1 to mj we use A = Aj and obtain from (3.9) that

‖fm‖ ≤ ‖fm−1‖(1− u) + 2u(‖fB‖+ ε), u := c1|A|−2r.

Using 1− u ≤ e−u and
∑∞

k=0(1− u)k = 1/u we derive from here

‖fmj
‖ ≤ ‖fmj−1

‖e−c1β + 2(‖fBj
‖+ ε).

We continue it up to j = L. Denote η := e−c1β. Then

‖fmL
‖ ≤ ‖fk‖ηL + 2

L∑
j=1

(‖fBj
‖+ ε)ηL−j.

We bound the ‖fk‖. It follows from the definition of fk that ‖fk‖ is the error
of best approximation of f0 by the subspace Φk. Representing f0 = f+f0−f
we see that ‖fk‖ is not greater than the error of best approximation of f by
the subspace Φk plus ‖f0 − f‖. This implies ‖fk‖ ≤ ‖fB0‖ + ε. Therefore
using (3.7) we continue

≤ (‖fB0‖+ ε)ηL + 2
L∑
j=1

(‖fBL−1
‖(ηb)L−jb−1 + εηL−j)

≤ b−1‖fBL−1
‖

(
(ηb)L + 2

L∑
j=1

(ηb)L−j

)
+

2ε

1− η
.

We will specify β later. However, we note that it will be chosen in such a
way that guarantees η < 1/2. Choose b = 1

2η
. Then

‖fmL
‖ ≤ ‖fBL−1

‖8e−c1β + 4ε. (3.10)

By (3.2) we get

‖fΓmL‖ ≤ U(‖fmL
‖+ ε) ≤ U(‖fBL−1

‖8e−c1β + 5ε).

If ‖fBL−1
‖ ≤ 10Uε then by (3.10)

‖fmL
‖ ≤ CUε.
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If ‖fBL−1
‖ ≥ 10Uε then making β sufficiently large to satisfy 16Ue−c1β < 1

so that β = C3 ln(U+1)
c1

, we get

U(‖fBL−1
‖8e−c1β + 5ε) < ‖fBL−1

‖

and therefore
‖fΓmL‖ < ‖fBL−1

‖.

This implies (see (3.6)
|ΓmL| < |Γk| − 2L−2.

We begin with f0 and apply the above argument (with k = 0). As a result we
either get the required inequality or we reduce the cardinality of support of f
from |T | = K to |ΓmL1 | < |T |−2L1−2, mL1 ≤ β22rL1 . We continue the process
and build a sequence mLj

such that mLj
≤ β22rLj and after mLj

iterations
we reduce the support by at least 2Lj−2. We also note that mLj

≤ β22rK2r.
We continue this process till the following inequality is satisfied for the first
time

mL1 + · · ·+mLn ≥ 24rβK2r. (3.11)

Then, clearly,
mL1 + · · ·+mLn ≤ 24r+1βK2r.

Using the inequality

(a1 + · · ·+ an)θ ≤ aθ1 + · · ·+ aθn, aj ≥ 0, θ ∈ (0, 1]

we derive from (3.11)

2L1−2 + · · ·+ 2Ln−2 ≥
(
22r(L1−2) + · · ·+ 22r(Ln−2)

) 1
2r

≥ 2−2
(
22rL1 + · · ·+ 22rLn

) 1
2r

≥ 2−2
(
(β)−1(mL1 + · · ·+mLn)

) 1
2r ≥ K.

Thus, after not more than N := 24r+1βK2r iterations we recover f exactly
and then ‖fN‖ ≤ ‖f0 − f‖ ≤ ε.

Theorem 1.2 from the Introduction follows from Theorems 3.2 and 3.1.
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4 Discussion

We begin with presenting some known results about exact recovery and the
Lebesgue-type inequalities for incoherent dictionaries. In this case we use an-
other natural generalization of the WOMP. This generalization of the WOMP
was introduced in [9]. In the paper [5] we proved Lebesgue-type inequalities
for that algorithm. We now formulate the corresponding results. We recall a
generalization of the concept of M -coherent dictionary to the case of Banach
spaces (see, for instance, [10]).

Let D be a dictionary in a Banach space X. The coherence parameter of
this dictionary is defined as

M(D) := sup
g 6=h;g,h∈D

sup
Fg

|Fg(h)|.

In general, a norming functional Fg is not unique. This is why we take
supFg

over all norming functionals of g in the definition of M(D). We do
not need supFg

in the definition of M(D) if for each g ∈ D there is a unique
norming functional Fg ∈ X∗. Then we define D∗ := {Fg, g ∈ D} and call
D∗ a dual dictionary to a dictionary D. It is known that the uniqueness of
the norming functional Fg is equivalent to the property that g is a point of
Gateaux smoothness:

lim
u→0

(‖g + uy‖+ ‖g − uy‖ − 2‖g‖)/u = 0

for any y ∈ X. In particular, if X is uniformly smooth then Ff is unique for
any f 6= 0. We considered in [9] the following greedy algorithm which gener-
alizes the Weak Orthogonal Greedy Algorithm to a Banach space setting.

Weak Quasi-Orthogonal Greedy Algorithm (WQOGA). Let t ∈
(0, 1] and f0 be given. Find ϕ1 := ϕq,t1 ∈ D (here and below index q stands
for quasi-orthogonal) such that

|Fϕ1(f0)| ≥ t sup
g∈D
|Fg(f0)|.

Next, we find c1 satisfying

Fϕ1(f − c1ϕ1) = 0.

Denote f1 := f q,t1 := f − c1ϕ1.
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We continue this construction in an inductive way. Assume that we
have already constructed residuals f0, f1, . . . , fm−1 and dictionary elements
ϕ1, . . . , ϕm−1. Now, we pick an element ϕm := ϕq,tm ∈ D such that

|Fϕm(fm−1)| ≥ t sup
g∈D
|Fg(fm−1)|.

Next, we look for cm1 , . . . , c
m
m satisfying

Fϕj
(f −

m∑
i=1

cmi ϕi) = 0, j = 1, . . . ,m. (4.1)

If there is no solution to (4.1) then we stop, otherwise we denote Gm :=
Gq,t
m :=

∑m
i=1 c

m
i ϕi and fm := f q,tm := f −Gm with cm1 , . . . , c

m
m satisfying (4.1).

Remark 4.1. Note that (4.1) has a unique solution if det(Fϕj
(ϕi))

m
i,j=1 6=

0. Applying the WQOGA in the case of a dictionary with the coherence
parameter M := M(D) gives, by a simple well known argument on the linear
independence of the rows of the matrix (Fϕj

(ϕi))
m
i,j=1, the conclusion that

(4.1) has a unique solution for any m < 1 + 1/M . Thus, in the case of
an M-coherent dictionary D, we can run the WQOGA for at least [1/M ]
iterations.

In the case t = 1 we call the WQOGA the Quasi-Orthogonal Greedy
Algorithm (QOGA). In the case of QOGA we need to make an extra as-
sumption that the corresponding maximizer ϕm ∈ D exists. Clearly, it is the
case when D is finite.

It was proved in [9] (see also [10], p. 382) that the WQOGA is as good
as the WOMP in the sense of exact recovery of sparse signals with respect
to incoherent dictionaries. The following result was obtained in [9].

Theorem 4.1. Let t ∈ (0, 1]. Assume that D has coherence parameter M .
Let K < t

1+t
(1 + 1/M). Then for any f0 of the form

f0 =
K∑
i=1

aigi,

where gi are distinct elements of D, the WQOGA recovers it exactly after K
iterations. In other words, f q,tK = 0.
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It is known (see [10], pp. 303–305) that the bound K < 1
2
(1 + 1/M) is

sharp for exact recovery by the OGA.
We introduce a new norm, associated with a dictionary D, by the formula

‖f‖D := sup
g∈D
|Fg(f)|, f ∈ X.

We define best m-term approximation in the norm Y as follows

σm(f)Y := inf
g∈Σm(D)

‖f − g‖Y .

In [5] the norm Y was either the norm X of our Banach space or the norm
‖ · ‖D defined above. The following two Lebesgue-type inequalities were
proved in [5].

Theorem 4.2. Assume that D is an M-coherent dictionary. Then for
m ≤ 1

3M
we have for the QOGA

‖fm‖D ≤ 13.5σm(f)D. (4.2)

Theorem 4.3. Assume that D is an M-coherent dictionary in a Banach
space X. There exists an absolute constant C such that, for m ≤ 1/(3M),
we have for the QOGA

‖fm‖X ≤ C inf
g∈Σm(D)

(‖f − g‖X +m‖f − g‖D).

Corollary 4.1. Using the inequality ‖g‖D ≤ ‖g‖X , Theorem 4.3 obtains

‖fm‖X ≤ C(1 +m)σm(f)X .

Inequality (4.2) is a perfect (up to a constant 13.5) Lebesgue-type in-
equality. It indicates that the norm ‖ · ‖D used in [5] is a suitable norm for
analyzing performance of the QOGA. Corollary 4.1 shows that the Lebesgue-
type inequality (4.2) in the norm ‖ · ‖D implies the Lebesgue-type inequality
in the norm ‖ · ‖X .

Thus, results of this paper complement the above discussed results from
[9] and [5]. Results from [9] and [5] deal with incoherent dictionaries and use
the QOGA for exact recovery and the Lebesgue-type inequalities. Results of
this paper deal with dictionaries which satisfy assumptions A1 and A2 and
we analyze the WCGA here. In the case of a Hilbert space, assumptions A1
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and A2 are satisfied if D has RIP. It is well known that the RIP condition is
much weaker than the incoherence condition in the case of a Hilbert space.
It is interesting to note that we do not know how the coherence parameter
M(D) is related to properties A1 and A2 in the case of a Banach space.

We now give a few applications of Theorem 1.2 for specific dictionaries
D. We begin with the case when D is a basis Ψ for X. In some of our
examples we take X = Lp, 2 ≤ p < ∞. Then it is known that ρ(u) ≤ γu2

with γ = (p− 1)/2.
Example 1. Let X be a Banach space with ρ(u) ≤ γu2 and with cotype

q. Let Ψ be a normalized inX unconditional basis forX. Then U ≤ C(X,Ψ).
By Remark 3.1 Ψ satisfies A1 with r = 1− 1

q
. Theorem 1.2 gives

‖fC(t,X,Ψ)K2−2/q‖ ≤ CσK(f0,Ψ). (4.3)

We note that (4.3) provides some progress in Open Problem 7.1 (p. 91) from
[8].

Example 2. Let Ψ be a uniformly bounded orthogonal system normal-
ized in Lp(Ω), 2 ≤ p < ∞, Ω is a bounded domain. Then we can take
r = 1/2. The inequality

‖g‖p ≤ CK1/2−1/p‖g‖2

for K-sparse g implies that

‖SA(f)‖p ≤ CK1/2−1/p‖SA(f)‖2 ≤ CK1/2−1/p‖f‖2 ≤ CK1/2−1/p‖f‖p.

Therefore U ≤ CK1/2−1/p. Theorem 1.2 gives

‖fC(t,p,D)K2/p′ lnK‖p ≤ CσK(f0,Ψ)p. (4.4)

Inequality (4.4) provides some progress in Open Problem 7.2 (p. 91) from
[8].

Theorem 1.2 can also be applied for quasi-greedy bases and other greedy-
type bases (see [10]). We plan to discuss these applications in detail in our
future work.

In this paper we limit ourselves to the case of Banach spaces satisfying
the condition ρ(u) ≤ γu2. In particular, as we mentioned above the Lp spaces
with 2 ≤ p <∞ satisfy this condition. Clearly, the Lp spaces with 1 < p ≤ 2
are also of interest. For the clarity of presentation we do not discuss the case
ρ(u) ≤ γuq in this paper. The technique from Section 3 works in this case
too and we will present the corresponding results in our future work.
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