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DECOMPOSITION OF SPACES OF DISTRIBUTIONS INDUCED
BY TENSOR PRODUCT BASES

KAMEN IVANOV, PENCHO PETRUSHEV AND YUAN XU

Abstract. Rapidly decaying kernels and frames (needlets) in the context of
tensor product Jacobi polynomials are developed based on several construc-
tions of multivariate C∞ cutoff functions. These tools are further employed to
the development of the theory of weighted Triebel-Lizorkin and Besov spaces
on [−1, 1]d. It is also shown how kernels induced by cross product bases can
be constructed and utilized for the development of weighted spaces of distri-
butions on products of multidimensional ball, cube, sphere or other domains.

1. Introduction

The purpose of this article is to introduce and study Triebel-Lizorkin and Besov
spaces on the d-dimensional cube Qd = [−1, 1]d with Jacobi weights and discuss
the respective spaces on the product domains Bd2 ×Qd1 , Bd1 ×Bd2 with Bd being
the unit ball in Rd as well as sets of the form Qd1 × Sd2 , Sd1 × Bd2 , Qd1 × T d2 ,
Qd1×Rd2 , Bd1×Rd2

+ , Qd1×Bd2×Rd3
+ , etc. Here Sd is the unit sphere in Rd+1, T d is

the simplex in Rd, and Rd
+ := [0,∞)d. In short, we are interested in developing the

theory of distribution spaces on some products of Qd1 , Bd2 , Sd3 , T d4 , Rd5 , or Rd6
+

with weights. There are two important components of such undertaking: (i) the
spaces need to be properly defined and (ii) building blocks need to be constructed
and used for characterization of the spaces. We maintain that for both tasks tensor
product orthogonal bases should be used.

1.1. The principle distinction between the spaces on [−1, 1]d and Bd.
It seems to us natural to introduce weighted smoothness spaces on [−1, 1]d or Bd

with weights by means of orthogonal polynomials. However, there is a surprising
difference between the orthogonal polynomial expansions on [−1, 1]d and Bd which
we would like to describe next.

Let us first briefly review the definition of Triebel-Lizorkin and Besov spaces
on Bd, given in [13]. Denote by Vd

n the space of all polynomials of total degree
n which are orthogonal to lower degree polynomials in L2(Bd, wµ) with weight
wµ(x) := (1− ‖x‖22)µ−1/2. The orthogonal projector Projn : L2(Bd, wµ) 7→ Vd

n can
be written in the form

(1.1) (Projn f)(x) =
∫

Bd

f(y)Pn(wµ; x, y)wµ(y)dy.
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To introduce weighted Triebel-Lizorkin (F -spaces) and Besov spaces (B-spaces) on
Bd (see [16], [23] for the general idea), let

(1.2) Φ0(x, y) := 1 and Φj(x, y) :=
∞∑

n=0

â
( n

2j−1

)
Pn(wµ;x, y), j ≥ 1,

where â ∈ C∞[0,∞) is a cutoff function such that supp â ⊂ [ 12 , 2] and |â| ≥ c > 0
on [3/5, 5/3].

The weighted F -space F s,q
p on Bd with s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, is defined

as the space of all distributions f on Bd such that

(1.3) ‖f‖F s,q
p

:=
∥∥∥
( ∞∑

j=0

(
2sj |Φj ∗ f(·)|)q

)1/q∥∥∥
Lp(wµ)

< ∞,

where Φj ∗ f(x) := 〈f, Φj(x, ·)〉 (as in (5.15)). The corresponding scale of weighted
Besov spaces Bs,q

p is defined via the (quasi-)norms

(1.4) ‖f‖Bs,q
p

:=
( ∞∑

j=0

(
2sj‖Φj ∗ f(·)‖Lp(wµ)

)q)1/q

.

We refer the reader to [13] for more detailed account of weighed F- and B-spaces
on the ball.

A “natural” attempt to introduce Triebel-Lizorkin and Besov spaces on [−1, 1]d

with weight

(1.5) wα,β(x) :=
d∏

i=1

(1− xi)αi(1 + xi)βi

would be to use directly the same idea as above. Namely, for multi-indices α, β, ν
the d-dimensional tensor product Jacobi polynomials are defined by

(1.6) P̃ (α,β)
ν (x) :=

d∏

j=1

P̃ (αj ,βj)
νj

(xj).

Set P̃
(α,β)
n (x, y) :=

∑
|ν|=n P̃

(α,β)
ν (x)P̃ (α,β)

ν (y) and with â as in (1.2) define

(1.7) Φ0(x, y) := 1 and Φj(x, y) :=
∞∑

n=0

â
( n

2j−1

)
P̃ (α,β)

n (x, y), j ≥ 1,

which can be viewed as an analogue of the kernels from (1.2).
The next step would be to define weighted Triebel-Lizorkin and Besov spaces

on [−1, 1]d with weight wα,β(x) exactly as in (1.3) and (1.4) using the kernels
Φj(x, y) from (1.7). Such a definition, however, is completely unacceptable due to
the poor localization of the kernels Φj(x, y) from (1.7). As is shown in [10] in
the particular case of Legendre or Chebyshev polynomials, kernels of the form (1.7)
have no localization whatsoever for some points x, y ∈ [−1, 1]d. In contrast, the
kernels Φj(x, y) from (1.2) decay rapidly away from the main diagonal in Bd×Bd.
Interestingly enough, the situation is quite the same on the interval [12], sphere
[14], simplex [10], and more surprisingly in the context of tensor product Hermite
[19] and Laguerre functions [11].
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1.2. The remedy for the problem. It appears that the tensor product Jacobi
polynomials are in a sense of a different nature compared to orthogonal polynomials
on the interval, ball or simplex as well as spherical harmonics and tensor product
Hermite and Laguerre functions. Truly multivariate cutoff functions need to be
employed. Our primary goal in this paper is to identify a natural class of cutoff
functions which will enable us to develop a meaningful theory of Triebel-Lizorkin
and Besov spaces on [−1, 1]d with weight wα,β(x) via tensor product Jacobi poly-
nomials.

The key is to consider multivariate cutoff functions Â with dyadic dilations
covering the whole spectrum and such that the kernels

(1.8) Φj(x, y) :=
∑

ν∈Nd
0

Â
( ν

2j−1

)
P̃ (α,β)

ν (x)P̃ (α,β)
ν (y)

decay rapidly away from the main diagonal in [−1, 1]d × [−1, 1]d. It turns out that
it suffices to consider compactly supported C∞ cutoff functions Â : [0,∞)d 7→ C
which obey the following
First Boundary Condition. For any t ∈ [0,∞)d which belongs to the coordinate
planes, i.e. t = (t1, . . . , tk−1, 0, tk+1, . . . , td) for some 1 ≤ k ≤ d,

(1.9)
∂m

∂tmk
Â(t) = 0, for m = 1, 2, . . . .

Sometimes, instead of this condition it will be more convenient to use the following
slightly more restrictive but for certain purposes better and easier to deal with
Second Boundary Condition. There exists a constant c∗ > 0 such that for
any τ ∈ [0,∞)d of the form τ = (τ1, . . . , τk−1, 0, τk+1, . . . , τd), 1 ≤ k ≤ d, Â(t) =
constant for t ∈ [τ, τ + c∗ek] with ek being the kth coordinate vector.

The point is that either of these conditions combined with Â being C∞ and
compactly supported yields the rapid decay of the kernels Φj(x, y) from (1.8) (see
Theorem 4.1). Then these kernels can be deployed to the definition of weighted
Triebel-Lizorkin and Besov spaces on [−1, 1]d by means of norms similar to the
norms in (1.3)-(1.4).

As will be seen the weights

(1.10) Wα,β(n; x) :=
d∏

i=1

(1− xi + n−2)αi+1/2(1 + xi + n−2)βi+1/2

will appear naturally in most estimates and results related to spaces on [−1, 1]d

with weight wα,β(x). Moreover, the inhomogeneity created by wα,β(x) and the
boundary of [−1, 1]d leads us to the introduction via Wα,β(·; ·) of a fourth parameter
ρ in the definition of weighted Triebel-Lizorkin and Besov spaces on [−1, 1]d. Thus
we introduce F -spaces by the norms

‖f‖F sρ
pq

:=
∥∥∥
( ∞∑

j=0

[
2sjWα,β(2j ; ·)−ρ/d|Φj ∗ f(·)|

]q)1/q∥∥∥
Lp(wα,β)

and B-spaces by the norms

‖f‖Bsρ
pq

:=
( ∞∑

j=0

[
2sj‖Wα,β(2j ; ·)−ρ/dΦj ∗ f(·)‖Lp(wα,β)

]q)1/q



4 KAMEN IVANOV, PENCHO PETRUSHEV AND YUAN XU

(see §§7-8). This allows to use for different purposes various scales of weighted F -
and B-spaces on [−1, 1]d. For instance, as will be seen the Besov spaces Bss

ττ appear
naturally in nonlinear approximation in Lp(wα,β).

As a next step we use kernels of the form (1.8) for the construction of building
blocks (needlets) {ϕξ}, {ψξ}. These are multiscale dual frames which enable us
to characterize the F - and B-space norms by the size of the needlet coefficients
{〈f, ϕξ〉} in appropriate sequence norms. They can be viewed as an analogue of
the ϕ-transform of Frazier and Jawerth [5, 6, 7].

The theory of weighted Triebel-Lizorkin and Besov spaces on [−1, 1]d and needlet
decompositions in dimensions d > 1 run parallel to their theory in dimension d = 1,
developed in [12], and on the ball [13]. Therefore, to spare the reader the repetition
of well established arguments we shall only exhibit the essential differences and refer
for the rest to [12, 13]. We shall place the emphasis on the development of mul-
tivariable cutoff functions and the associated tensor product Jacobi kernels which
defer substantially from the ones in the univariate case and are the main reason
for writing this paper. We shall also discuss the main points of the development of
Triebel-Lizorkin and Besov spaces and needlets on products of [−1, 1]d1 , Bd2 , Sd3 ,
Rd4 , or Rd5

+ with weights as mentioned above.
This paper is part of a broader undertaking for development of spaces of dis-

tributions in nonstandard settings such as on the sphere [14], ball [13] as well as
in the frameworks of Hermite [19] and Laguerre [11] expansions. It is also closely
related to the development of sub-exponentially localized Jacobi and other kernels
and needlets in [10].

1.3. Outline of the paper. A substantial part of the paper is devoted to the
development of multivariate cutoff functions and related tensor product Jacobi
kernels. In §2 we review some basic results from [10, 12] and prove new results about
admissible univariate cutoff functions and the localization of the respective kernels
induced by univariate Jacobi polynomials. In §3 we present several constructions
of multivariate admissible cutoff functions. We also construct cutoff functions of
“small” derivatives which enables us to develop tensor product kernels with sub-
exponential localization. In §4 the localization results of the corresponding tensor
product Jacobi polynomial are established. In §5 we give some auxiliary results
concerning a maximal operator and distributions on [−1, 1]d. We also establish some
Lp-multipliers for tensor product Jacobi polynomial expansions. In §6 we utilize
kernels associated to cutoff functions of type (b) and (c) to the construction of frame
elements (needlets). In §§7-8 we further use these kernels to define “correctly” the
weighted Triebel-Lizorlin and Besov spaces on [−1, 1]d with weight wα,β(x). We
also establish needlet decomposition of the F - and B-spaces. Section 9 is devoted to
nonlinear approximation from Jacobi needlets. In §10 we briefly consider weighted
spaces of distributions on Bd1 × [−1, 1]d. In §11 we discuss various aspects of
distribution spaces on product domains and tensor product bases. Section 12 is an
appendix, where we place the lengthy proof of a lemma from §10.
Some useful notation. Throughout we shall denote

‖f‖p :=
( ∫

[−1,1]d
|f(x)|pwα,β(x)dx

)1/p

, 0 < p < ∞,

and ‖f‖∞ := supx∈[−1,1]d |f(x)|. For x ∈ Rd we shall use the norms ‖x‖ = ‖x‖∞ :=
maxi |xi|, ‖x‖2 := (

∑
i |xi|2)1/2, and |x| = ‖x‖1 :=

∑
i |xi|. Πd

n will denote the set
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of all algebraic polynomials of total degree ≤ n in d variables. Positive constants
will be denoted by c, c1, c′, . . . and they may vary at every occurrence, a ∼ b will
stand for c1a ≤ b ≤ c2a.

2. Localized Jacobi kernels induced by univariate cutoff functions

Here we introduce the notion of admissible univariate cutoff functions and review
the localization properties of the associated kernels induced by Jacobi polynomials
established in [10, 12, 17]. We also obtain some new localization results.

2.1. Admissible univariate cutoff functions.

Definition 2.1. A function â ∈ C∞[0,∞) is said to be admissible if supp â ⊂ [0, 2]
and â(m)(0) = 0 for m ≥ 1. Furthermore, â is said to be admissible of type (a), (b)
or (c) if â is admissible and in addition obeys the respective condition:

(a) â(t) = 1, t ∈ [0, 1],
(b) supp â ⊂ [1/2, 2] or
(c) supp â ⊂ [1/2, 2] and

∑∞
j=0 |â(2−jt)|2 = 1 for t ∈ [1,∞).

We next introduce sets of C∞ functions with “small” derivatives. As a tool for
measuring the derivatives’ growth we use functions L satisfying the conditions:

L : [0,∞) 7→ [1,∞) is monotone increasing, L(0) = 1 and

M = M(L) := 1 +
∫ ∞

0

dt

(t + 1)L(t)
< ∞.

(2.1)

Typical examples of functions L satisfying (2.1) are L0,ε(t) := (1 + t)ε, ε > 0, and

(2.2) L`,ε(t) := ln(e + t) · · · ln · · · ln︸ ︷︷ ︸
`−1

(
exp · · · exp︸ ︷︷ ︸

`−1

1 + t
)

× [
ln · · · ln︸ ︷︷ ︸

`

(
exp · · · exp︸ ︷︷ ︸

`

1 + t
)]1+ε

,

where ` ∈ N and 0 < ε ≤ 1. Evidently, M(L`,ε) ≤ c(`)ε−1.
We shall use the standard notation Dk

j := ∂k

∂xk
j

.

Definition 2.2. Let L satisfy (2.1). Given constants γ, γ̃ > 0 and d ≥ 1, we define
S(d,L; γ, γ̃) to be the set of all functions Â ∈ C∞[0,∞)d, such that ‖Â‖∞ ≤ γ and

(2.3)
1
k!
‖Dk

j Â‖∞ ≤ γ
(
γ̃L(k − 1)

)k
, ∀k ∈ N, 1 ≤ j ≤ d.

The next statement asserts the existence of admissible univariate cutoff functions
with “small” derivatives.

Theorem 2.3. Let L and M be given by (2.1). Then the sets S(1,L; 1, 2M),
S(1,L; 2, 4M) and S(1,L; 8, 8M) contain admissible cutoff functions â of types (a),
(b), and (c), respectively, (see Definition 2.1) with values in [0, 1].

Proof. We shall proceed quite similarly as in the proof of Theorem 3.1 in [10].
We let χδ := 1

2δ1[−δ,δ] and select δj := 1
(j+1)L(j) for j ≥ 0. Apparently

∞∑

j=0

δj ≤ 1 +
∫ ∞

0

dt

(t + 1)L(t)
= M.
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We define
ϕm := χδ0 ∗ · · · ∗ χδm

and ϕ(t) := lim
m→∞

ϕm(t).

Just as in [9, Theorem 1.3.5] we have ϕ ∈ C∞, ϕ ≥ 0, suppϕ ⊂ [−M, M ] and

‖ϕ(k−1)‖∞ ≤ 1∏k−1
j=0 δj

≤ k!L(k − 1)k for k ≥ 1.

Furthermore, since
∫
R χδ = 1, we have

∫
R ϕ = 1 and 0 ≤ ϕ ≤ 1/2.

We now set ψ(t) := 2Mϕ(2Mt) and define g(t) := π
2

∫ t

−∞ ψ(s)ds. Evidently,
g ∈ C∞(R), supp g′ ⊂ [− 1

2 , 1
2 ], g(t) + g(−t) = π

2 for t ∈ R, 0 ≤ g ≤ π/2, ‖g′‖∞ ≤
(π/2)‖ψ‖∞ ≤ (π/2)M and

(2.4) ‖g(k)‖∞ ≤ π

2
‖ψ(k−1)‖∞ ≤ π

2
(2M)kk!L(k − 1)k for k ≥ 2.

Apparently â(t) := 2
π g(3

2 − t) is an admissible function of type (a) and â belongs
to S(1,L; 1, 2M). Also â(t)− â(2t) is an admissible function of type (b) belonging
to S(1,L; 2, 4M).

To construct an admissible function of type (c) we write φ(t) := sin g(t), t ∈ R.
From above, φ(t)2 + φ(−t)2 = 1 for t ∈ R. We define

â(t) :=





φ(2t− 3
2 ) if t ∈ [ 12 , 1],

φ( 3
2 − t) if t ∈ (1, 2],

0 if R \ [ 12 , 2].

We claim that â is an admissible cutoff function of type (c) and â ∈ S(1,L; 8, 8M).
All required conditions on â are trivial to verify but the estimate

(2.5)
1
k!
‖â(k)‖∞ ≤ 8

(
8ML(k − 1)

)k
, k ≥ 1.

Let t0 ∈ (− 1
2 , 1

2 ) and set gk(t) :=
∑k

j=0
(t−t0)

j

j! g(j)(t0). It is easy to see that
φ(k)(t0) = [sin gk](k)(t0) and since sin gk(z) is an entire function, by the Cauchy
formula,

(2.6) φ(k)(t0) =
k!
2πi

∫

C

sin gk(z)
(z − t0)k+1

dz,

where C := {z ∈ C : |z − t0| = r} with r = 1
4ML(k−1) . By (2.4) we have for z ∈ C

and k ≥ 1

|gk(z)| ≤ π

2

(
1 +

M

4ML(k − 1)
+

k∑

j=2

(2M)jj!L(j − 1)j

j![4ML(k − 1)]j
)

≤ π

2

(
1 +

1
4

+
k∑

j=2

1
2j

)
=

7π

8

and hence | sin gk(z)| ≤ (e7π/8 + e−7π/8)/2 < 8 for z ∈ C. From this and (2.6) we
get

|φ(k)(t0)| ≤ 8k![4ML(k − 1)]k,

which implies (2.5). ¤
Remark 2.4. Theorem 2.3 is sharp in the sense that if

∫∞
0

dt
(t+1)L(t) = ∞, then

there is no admissible cutoff function â belonging to S(1,L; γ, γ̃) for any γ, γ̃ > 0.
The argument is precisely the same as in [10, Remark 3.2].
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2.2. Localized kernels induced by Jacobi polynomials. The Jacobi poly-
nomials P

(α,β)
n , n = 0, 1, . . . , form an orthogonal basis for the weighted space

L2([−1, 1], wα,β) with weight wα,β(t) := (1− t)α(1 + t)β . For various technical rea-
sons we shall assume that α, β ≥ −1/2. The Jacobi polynomials are traditionally
normalized by P

(α,β)
n (1) =

(
n+α

n

)
. It is well known that [22, (4.3.3)]

∫ 1

−1

P (α,β)
n (t)P (α,β)

m (t)wα,β(t)dt = δn,mh(α,β)
n ,

where

(2.7) h(α,β)
n =

2α+β+1

(2n + α + β + 1)
Γ(n + α + 1)Γ(n + β + 1)
Γ(n + 1)Γ(n + α + β + 1)

.

Hence

(2.8) P̃ (α,β)
n = (h(α,β)

n )−1/2P (α,β)
n

is the nth degree Jacobi polynomial normalized in L2([−1, 1], wα,β).
We are interested in kernels of the form

(2.9) Lα,β
n (x, y) =

∞∑

j=0

â
( j

n

)
P̃

(α,β)
j (x)P̃ (α,β)

j (y),

for smooth cutoff functions â : [0,∞) 7→ C.
In [17] (see also [1]) it was proved that the kernels Lα,β

n (x, y) decay rapidly away
from the main diagonal in [−1, 1]2 for compactly supported C∞ cutoff functions
â which are constants around t = 0. It was also proved in [10] that for such
cutoff functions with “small” derivatives the localization of these kernels is sub-
exponential. Furthermore, it was shown that the behavior of â at t = 0 plays a
critical role for the localization of Lα,β

n (x, y), in particular, the fact that â is C∞

and compactly supported does not guarantee rapid decay of the kernels Lα,β
n (x, y).

Here we extend that localization result from [17] to smooth cutoff functions â
with multiple zeros of their first derivatives at t = 0. To give this result we need
the quantities: wα,β(0; x) := 1 and

(2.10) wα,β(n; x) := (1− x + n−2)α+1/2(1 + x + n−2)β+1/2, n ≥ 1.

We shall also use the distance ρ(x, y) := | arccosx− arccos y| on [−1, 1].

Theorem 2.5. Let â ∈ C3k−1[0,∞) for some integer k ≥ 1, supp â ⊂ [0, 2], and
â(m)(0) = 0 for m = 1, 2, . . . , 3k−1. Then there exists a constant c > 0 of the form
c = c(k, α, β)‖â(3k−1)‖∞ such that the kernels from (2.9) satisfy

(2.11) |Lα,β
n (x, y)| ≤ c

n√
wα,β(n; x)

√
wα,β(n; y)

(
1 + nρ(x, y)

)−k
, x, y ∈ [−1, 1].

Consequently, if â is an admissible cutoff function, then the above estimate holds
for any k ≥ 1.

As in [17] estimate (2.11) follows by the localization of Lα,β
n (x, 1) given in the

next theorem. Denote Qα,β
n (x) := Lα,β

n (x, 1). It is readily seen that (see e.g. [17])

(2.12) Qα,β
n (x) = c?

∞∑

j=0

â
( j

n

) (2j + α + β + 1)Γ(j + α + β + 1)
Γ(j + β + 1)

P
(α,β)
j (x),

where c? := 2−α−β−1Γ(α + 1)−1.
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Theorem 2.6. Let â be as in Theorem 2.5 and α ≥ β ≥ −1/2. Then for any r ≥ 0

(2.13)
∣∣∣ dr

dxr
Qα,β

n (cos θ)
∣∣∣ ≤ c

n2α+2r+2

(1 + nθ)k
, 0 ≤ θ ≤ π.

Here c is of the form c = c(k, r, α)‖â(3k−1)‖∞.

Proof. We shall proceed quite similarly as in the proof of Theorem 4.2 in [10] and,
therefore, we shall use some notation and facts from that proof.

We shall only prove (2.13) for r = 0; then in general (2.13) follows by using
Markov’s inequality as in [10].

We trivially have (see (4.8) in [10]) |Qα,β
n (cos θ)| ≤ cn2α+2, which gives (2.13)

(r = 0) for 0 ≤ θ ≤ 1/n.
The following identity is crucial in estimating |Qα,β

n (cos θ)| [22, (4.5.3)]:

n∑
ν=0

(2ν + α + k + β + 1)Γ(ν + α + k + β + 1)
Γ(ν + β + 1)

P (α+k,β)
ν (x)(2.14)

=
Γ(n + α + k + 1 + β + 1)

Γ(n + β + 1)
P (α+k+1,β)

n (x).

We define A0(t) := (2t + α + β + 1)â
(

t
n

)
and inductively

(2.15) Ak+1(t) :=
Ak(t)

2t + α + k + β + 1
− Ak(t + 1)

2t + α + k + β + 3
, k ≥ 0.

We apply summation by parts k times starting from (2.12) and using every time
(2.14) and (2.15) to obtain

(2.16) Qα,β
n (x) = c?

∞∑

j=0

Ak(j)
Γ(j + α + k + β + 1)

Γ(j + β + 1)
P

(α+k,β)
j (x).

Observe first that A1(t) = â( t
n ) − â( t+1

n ) = 1
n

∫ 1

0
â′( t+s

n )ds and hence A
(m)
1 (t) =

1
nm+1

∫ 1

0
â(m+1)( t+s

n )ds, which leads to

|A(m)
1 (t)| ≤ 1

nm+1

∥∥â(m+1)
∥∥

L∞[ t
n , t+1

n ]
.

On the other hand, since â(`)(0) = 0 for ` = 1, 2, . . . , 3k − 1, then by Taylor’s
theorem

(2.17) |â(m+1)(z)| ≤ z2k−1

(2k − 1)!

∥∥â(2k+m)
∥∥

L∞[0,z]
whenever m + 1 ≤ k, z > 0.

Therefore,

(2.18) |A(m)
1 (t)| ≤ 1

nm+1

( t + 1
n

)2k−1∥∥â(2k+m)
∥∥

L∞[0, t+1
n ]

, m + 1 ≤ k, t > 0.

We next estimate |A(m)
l (t)| by induction on l. We claim that

(2.19) |A(m)
l (t)| ≤ c

(t + 1)m+2l−1

( t + l

n

)2k−1

max
2k≤`≤2k+m+l−1

∥∥â(`)
∥∥

L∞[0, t+l
n ]
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if m + l ≤ k, m ≥ 0, l ≥ 1, and 0 ≤ t ≤ 2n, where c = c(l,m), and hence, using
(2.17),

|Ak(t)| ≤ c(k)
(t + 1)2k−1

( t + k

n

)2k−1

max
2k≤`≤3k−1

∥∥â(`)
∥∥

L∞[0, t+k
n ]

(2.20)

≤ c(k)
n2k−1

∥∥â(3k−1)
∥∥
∞.

Indeed, estimate (2.18) gives (2.19) for l = 1. Suppose (2.19) holds for some l ≥ 1
and all m ≥ 0 such that m+ l ≤ k. Then by (2.15) Al+1(t) = − ∫ 1

0
G′l(t+ s)ds with

Gl(t) := Al(t)
2t+α+l+β+1 and hence A

(m)
l+1(t) = − ∫ 1

0
G

(m+1)
l (t + s)ds. We have

G
(m+1)
l (t) =

m+1∑
ν=0

(
m + 1

ν

)
A

(ν)
l (t)

(−2)m+1−ν(m + 1− ν)!
(2t + α + l + β + 1)m+2−ν

and using the inductive assumption

|A(m)
l+1(t)| ≤ c max

2k≤`≤2k+m+l

∥∥â(`)
∥∥

L∞[0, t+l+1
n ]

×
m+1∑
ν=0

1
(t + 1)ν+2l−1

( t + l + 1
n

)2k−1 1
(t + 1)m+2−ν

≤ c

(t + 1)m+2l+1

( t + l + 1
n

)2k−1

max
2k≤`≤2k+m+l

∥∥â(`)
∥∥

L∞[0, t+l+1
n ]

,

which confirms (2.19).
We next prove (2.13) (r = 0) for 1/n ≤ θ ≤ π/2. By (2.7) it readily follows that

h
(α+k,β)
n ≤ c2k/n and it is well known that (see e.g. (4.18) in [10])

|P (α+k,β)
n (cos θ)| ≤ c

n1/2θk+α+1/2
, 0 < θ ≤ π/2.

We use the above and (2.20) in (2.16) to obtain for 1/n ≤ θ ≤ π/2

|Qα,β
n (cos θ)| ≤ c‖â(3k−1)‖∞

2n∑

j=1

jα+k

n2k−1j1/2θk+α+1/2
≤ c‖â(3k−1)‖∞ n2α+2

(nθ)k+α+1/2
.

Hence, estimate (2.13) (with r = 0) holds for 1/n ≤ θ ≤ π/2.
Let π/2 < θ ≤ π − 1/n. Similarly as in [10]

|P (α+k,β)
n (cos θ)| ≤ c2knβ , π/2 ≤ θ ≤ π − 1/n.

Combining this with (2.16) and (2.20) we get for π/2 ≤ θ ≤ π − 1/n

|Qα,β
n (cos θ)| ≤ c‖â(3k−1)‖∞n−2k+1

2n∑

j=1

jβ+α+k ≤ c‖â(3k−1)‖∞nα+β+2

nk
,

which implies (2.13).
In the case π − 1/n ≤ θ ≤ π estimate (2.13) follows from the above estimate

exactly as in [10]. This completes the proof of estimate (2.13) in the case r = 0.
¤

Estimate (2.11) can be improved for admissible cutoff functions which are con-
stant around t = 0 and have “small” derivatives as in Theorem 2.3:
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Theorem 2.7. Let L and M be as in (2.1). Suppose â is an admissible cutoff
function of type (a), (b) or (c) which belongs to S(1,L; γ, γ̃M) for some γ, γ̃ > 0
(see Theorem 2.3). Then the kernels from (2.9) satisfy

(2.21) |Lα,β
n (x, y)| ≤ cn√

wα,β(n;x)
√

wα,β(n; y)
exp

{
− c̃nρ(x, y)
L(nρ(x, y))

}

for x, y ∈ [−1, 1], where c̃ = c′/γ̃M with c′ > 0 being an absolute constant and c
depends continuously only on α, β, γ, γ̃ and M .

In particular, the above result holds for L`,ε(t) from (2.2) with M = c(`)ε−1.

For the proof of this theorem one first uses Theorem 2.3 to prove the following
estimate for the kernels from (2.12) with â from above

∣∣∣ dr

dxr
Qα,β

n (cos θ)
∣∣∣ ≤ cn2α+2r+2 exp

{
− c̃nθ

L(nθ)

}
, 0 ≤ θ ≤ π,

and then proceeds exactly as in the proof of Theorem 4.1 in [10]. The proofs are
nearly identical to the ones in [10] and will be omitted.

Remark 2.8. Theorem 2.7 remains true if we require that â ∈ S(1,L; γ, γ̃M),
supp â ⊂ [0, 2], and â be a constant on [0, δ] for a fixed δ ∈ (0, 1). Then c and
c′ will depend on δ as well. However, we are not aware if Theorem 2.7 holds for
admissible cutoff functions which are not constants around t = 0. The method of
proof of Theorem 2.6 does not give such a result for all admissible cutoff functions.

In [10] results similar to Theorem 2.7 are proved on the sphere, ball, simplex
and in the context of Hermite and Jaguerre functions with L replaced by L`,ε. We
would like to point out here that with the same proofs these results hold for a
general function L as above.

We shall need

Lemma 2.9. There exists a constant c depending only on α, β such that

(2.22) |P̃ (α,β)
n (x)| ≤ c√

wα,β(n;x)
, x ∈ [−1, 1], n ≥ 1.

Proof. For x ∈ [−1 + n−2, 1− n−2] using

wα,β(n; x) ≤ 2α+β+1(1− x)α+1/2(1 + x)β+1/2

we get (2.22) from the inequality

sup
x∈[−1,1]

(1− x)α+1/2(1 + x)β+1/2|P̃ (α,β)
n (x)|2 ≤ 2e

π

(
2 +

√
α2 + β2

)

established in [4, Theorem 1]. For the remaining x estimate (2.22) follows from
above invoking Theorem 8.4.8 in [3, p. 108]. ¤

The next theorem shows that the kernels Lα,β
n from (2.9) are Lip 1 with respect

to the distance ρ(·, ·).
Theorem 2.10. Let â ∈ C3k−1[0,∞) for some k > 2α + 2β + 5, supp â ⊂ [0, 2],
and â(r)(0) = 0 for r = 1, 2, . . . , 3k − 1. Then for any x, y, ξ ∈ [−1, 1] such that
ρ(x, ξ) ≤ c∗n−1, n ≥ 1, c∗ > 0, the kernel Lα,β

n from (2.9) satisfies

(2.23) |Lα,β
n (x, y)− Lα,β

n (ξ, y)| ≤ cn2ρ(x, ξ)√
wα,β(n; x)

√
wα,β(n; y)

(
1 + nρ(x, y)

)−σ
,



SPACES OF DISTRIBUTIONS INDUCED BY TENSOR PRODUCT BASES 11

where σ = k − 2α − 2β − 5 and c depends only on k, α, β, c∗, and ‖â(3k−1)‖∞.
Consequently, if â is an admissible cutoff function, then the above estimate holds
for any σ > 0.

The proof of this theorem for α, β > −1/2 utilizes estimate (2.13) and is identical
with the proof of Theorem 2.2 in [12]. The limit cases α = −1/2 or β = −1/2 are
treated as in the proof of [10, Theorem 4.1]. We omit the details.

3. Multivariate cutoff functions

As was explained in the introduction, cutoff functions in d-variables will play a
prominent role in the development of weighted F - and B-spaces on [−1, 1]d. In this
section we introduce two kinds of admissible d-dimensional cutoff functions and
give several constructions of such functions.

3.1. Admissible d-dimensional cutoff functions. To define multivariate cutoff
functions we need to introduce some convenient notation. Given 1 ≤ k ≤ d we
define projk : Rd → Rd by

(3.1) projk(t1, . . . , td) := (t1, . . . , tk−1, 0, tk+1, . . . , td).

We also denote by Bp the part of the unit ball of the standard `p(Rd) norm contained
in the first octant, i.e.

Bp := {t ∈ [0,∞)d : ‖t‖p ≤ 1}, 1 ≤ p ≤ ∞.

Definition 3.1. A cutoff function Â ∈ C∞[0,∞)d is said to be admissible of first
kind or simply admissible if supp Â ⊂ [0, 2]d and Â obeys the First Boundary
Condition, introduced in §1.2, i.e. for any t ∈ [0,∞)d of the form t = projk t for
some 1 ≤ k ≤ d we have Dm

k Â(t) = 0 for m = 1, 2, . . . .
Furthermore, Â is said to be of type (a), (b), or (c) if in addition
(a) Â(t) = 1 for t ∈ B1,
(b) Â(t) = 0 for t ∈ 1

2B1, or

(c) Â is of type (b) and
∑∞

j=0 |Â(2−jt)|2 = 1 for t ∈ [0,∞)d \ [0, 1)d.

Definition 3.2. A cutoff function Â ∈ C∞[0,∞)d is said to be admissible of
second kind and type (a), (b), or (c) if supp Â ⊂ [0, 2]d, Â(t) = Â(projk t) for
every t = (t1, . . . , td) ∈ [0,∞)d such that tk ≤ 1

2‖t‖∞ and

(a) Â(t) = 1 if t ∈ B1,
(b) Â(t) = 0 if t ∈ 1

2B1, or

(c) Â is of type (b) and
∑∞

j=0 |Â(2−jt)|2 = 1 for t ∈ [0,∞)d \ [0, 1)d.

We first note that if Â is admissible of second kind, then for all τ ∈ [0,∞)d such
that τ = projk τ for some 1 ≤ k ≤ d, the function Â(t) is a constant on the segment
t ∈ [τ, τ + 1

4d−2ek], i.e. Â obeys the Second Boundary Condition from §1.2 with
constant c∗ = 1

4d−2 . Consequently, any admissible cutoff function of second kind
is admissible of first kind as well. To see the above one simply has to observe that

1
4d−2 is the `∞-distance of the set

( d⋂

k=1

{
tk ≥ 1

2
‖t‖∞

}) ⋂{
‖t‖1 ≥ 1

2

}
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from the coordinate hyperplanes. Note also that for d = 1 the set of admissible
cutoff functions of first kind and type (a) coincides with the set of admissible cutoff
functions of second kind and type (a); the same for types (b) and (c).

Remark 3.3. As was explained in the introduction the fact that the admissible
cutoff functions satisfy the First Boundary Condition (see §1.2) is crucial for the
rapid decay of the associated tensor product Jacobi polynomial kernel from (2.9);
this will be established in the next section.

An important reason for introducing admissible cutoff functions of second kind
is that such cutoff functions with “small” derivatives (§3.4, §3.6) allow to construct
tensor product Jacobi polynomial kernel of sub-exponential localization (see The-
orems 4.2 and 10.5), while as for now we are unable to achieve such localization
with admissible cutoff functions of first kind.

It is easy to construct admissible cutoff functions of type (a) as products of
univatiate cutoff functions of type (a).

Lemma 3.4. Let âj, j = 1, . . . , d, be admissible univariate functions of type (a).
Then

(3.2) Â(t) =
d∏

j=1

âj(tj)

is an admissible d-dimensional cutoff function of second kind and type (a).

Proof. By the definition evidently Â ∈ C∞[0,∞)d, supp Â ⊂ 2B∞ and Â(t) = 1 if
t ∈ B∞ ⊃ B1. Furthermore, Â(t) = Â(projk t) for all t ∈ [0,∞)d such that ‖t‖∞ < 2
and tk ≤ 1. From this and supp Â ⊂ 2B∞ it follows that Â(t) = Â(projk t) for all
t = (t1, . . . , td) ∈ [0,∞)d such that tk ≤ 1

2‖t‖∞. ¤
The construction of admissible cutoff functions of type (b) is straightforward

using admissible cutoff functions of type (a):

Lemma 3.5. If Â1, Â2 are admissible of type (a) (any kind), then

(3.3) Â(t) = Â1(t)− Â2(2t)

is admissible of type (b).

For the definition of F - and B-spaces on [−1, 1]d we shall utilize admissible
cutoff functions Â of type (b) with the property that the dyadic dilations of supp Â
essentially cover the whole spectrum. More precisely, we shall need admissible
functions Â, which obey the following dyadic covering condition:

(3.4)
For any t ∈ [0,∞)d with ‖t‖∞ = 1 there is 0 < γ ≤ 1 such that

inf
λ∈[γ,2γ]

|Â(λt)| ≥ c > 0.

Note that this condition yields
∑∞

j=0 |Â(2−jt)| ≥ c > 0 for t ∈ [0,∞)d \ B∞ which
justifies our terminology.

From the constructions of admissible cutoff functions below it will be clear that it
is easy to construct admissible functions Â of type (b) which satisfy condition (3.4).

The following lemma will be instrumental in the development of F - and B-spaces.
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Lemma 3.6. For any admissible function Â of first or second kind and type (b)
satisfying the dyadic covering condition (3.4) there exists an admissible function B̂
of type (b) (and the same kind) such that

(3.5)
∞∑

j=0

Â(2−jt)B̂(2−jt) = 1 for t ∈ [0,∞)d\B∞.

Proof. We shall only prove this lemma for an admissible function of second kind,
since the case of first kind cutoff functions is easier.

We define B̂(t) := 0 for t ∈ 1
2B1 and t ∈ [0,∞)d\2B∞. For the remaining

t ∈ [0,∞)d we set

(3.6) B̂(t) :=
Â(t)∑∞

j=−∞ |Â(2−jt)|2 .

For every t ∈ [0,∞)d the sum in the denominator of (3.6) is non-zero on account
of property (3.4) and contains no more that 2 + log2 d non-zero terms. Hence
B̂ ∈ C∞[0,∞)d. On the other hand, for t ∈ [0,∞)d\B∞ we have 2−jt /∈ 2B∞ for
j < 0 and the sum in the denominator of (3.6) reduces to j ≥ 0. Hence (3.5) is
trivially satisfied. Finally, if t ∈ [0,∞)d and tk ≤ 1

2‖t‖∞ for some 1 ≤ k ≤ d,
then 2−jtk ≤ 1

2‖2−jt‖∞ for j ∈ Z and Â(2−jt) = Â(projk(2−jt)), which implies
B̂(t) = B̂(projk t). ¤

The construction of admissible cutoff functions of type (c) will require some care.
We shall give several constructions of cutoff functions below.

3.2. Construction of admissible cutoff functions via quasi-norms. One ap-
proach for constructing admissible d-dimensional cutoff functions is based on the
following lemma.

Lemma 3.7. Suppose the function N : Rd → R is in C∞(Rd\{0}) and for t ∈ Rd

obeys

N (αt) = αN (t), α > 0,(3.7)

‖t‖∞ ≤ N (t) ≤ ‖t‖1,(3.8)

N (t) = N (projm t) provided |tm| ≤ 1
2
‖t‖∞, m = 1, . . . , d.(3.9)

If â is an admissible univariate function of type (a), (b) or (c), then

Â(t) = â(N (t))

is an admissible d-dimensional function of second kind and type (a), (b) or (c),
respectively.

The proof is straightforward.
A simple way to construct a function N satisfying the conditions of Lemma 3.7

is the following. Let ĉ be an even real-valued function, whose restriction on [0,∞)
is an admissible univariate function of type (a), satisfying 0 ≤ ĉ ≤ 1. For d ∈ N
and t ∈ Rd\{0} set

(3.10) N (t) :=
d∑

m=1

|tm|
d∏

j=1

ĉ
( tj

tm

)
,
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where ĉ
(

τ
0

)
:= 0 for every real τ , including τ = 0. For t = 0 by continuity we set

N (0) = 0.
Given t 6= 0 let k be such that ‖t‖∞ = |tk|. If |tm| ≤ 1

2‖t‖∞, then |tk/tm| ≥ 2
and hence ĉ

(
tk

tm

)
= 0. Observing also that ĉ

( tj

tm

)
= 1 if |tj | ≤ |tm| we see that

(3.10) can be rewritten as

(3.11) N (t) =
∑

1≤m≤d, |tm|> 1
2‖t‖∞

|tm|
∏

1≤j≤d, |tj |>|tm|
ĉ
( tj

tm

)
.

It follows immediately from (3.11) that N belongs to C∞(Rd\{0}) and satisfies
condition (3.7). If m is such that |tm| ≤ 1

2‖t‖∞, then |tm| does not participate in
the right-hand side of (3.11) and henceN satisfies (3.9). The inequalityN (t) ≤ ‖t‖1
follows from 0 ≤ ĉ ≤ 1. Finally, from (3.11) and 0 ≤ ĉ ≤ 1 we get N (t) ≥ |tk| =
‖t‖∞ and thus (3.8) is also satisfied. Thus, we have proved

Corollary 3.8. Let N be given by (3.10), where ĉ is an even real-valued function,
whose restriction on [0,∞) is an admissible univariate function of type (a), satis-
fying 0 ≤ ĉ ≤ 1. If â is an admissible univariate function of type (a), (b) or (c),
then

Â(t) = â(N (t))

is an admissible d-dimensional function of second kind and type (a), (b) or (c),
respectively.

3.3. Construction of admissible d-dimensional cutoff functions via norms.
From (3.10)-(3.11) it follows that N is a quasi-norm. A necessary and sufficient
condition for N to be a norm is the convexity of the unit ball B = {t : N (t) ≤ 1}.

The construction of the boundary ∂B = {t : N (t) = 1} of the unit ball of a
norm N satisfying the conditions of Lemma 3.7 can be carried out by induction on
the dimension. First, one gets the boundaries of the d−1 dimensional unit balls on
every coordinate hyperplane. Second, one extends them into the first octant by line
segments of length 1

2 . Third, one completes the surface of the unit ball boundary
in the first octant by convex C∞ blending. Finally, one extends it by symmetry to
the remaining octants and defines the norm from the ball in a standard way.

If instead of convex C∞ blending in the above scheme it is used a C∞ blend-
ing satisfying (3.8), then one obtains a quasi-norm N satisfying all conditions of
Lemma 3.7. We shall not further elaborate on this construction.

3.4. Construction of admissible cutoff functions via quasi-norms with
“small” derivatives. In analogy to Theorem 2.3 we construct here admissible
d-dimensional cutoff functions with “small” derivatives.

In this construction we shall utilize classes of C∞ functions of this type:

R(a, b, F ; γ, γ̃) :=
{

f ∈ C∞[a, b] :
1
k!
‖f (k)‖L∞[a,b] ≤ γ

(
γ̃F (k)

)k
, ∀k ∈ N

}
,

where F is a given positive non-decreasing function defined at least on N, and
γ, γ̃ > 0 are parameters independent of k. Obviously, the sum and the product of
two functions from such classes also belong to a class like that (as the parameters
γ, γ̃ may vary). More importantly, the composition of two functions also belongs
to such a class as the following lemma shows.
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Lemma 3.9. Let F (v) > 0 for v ∈ [1,∞) and let ln F (v)v be convex on [1,∞).
If f ∈ R(a1, b1, F ; γ1, γ̃1), g ∈ R(a2, b2, F ; γ2, γ̃2) and the range of f is in [a2, b2],
then the composition g ◦ f ∈ R(a1, b1, F ; γ2, γ̃1(γ1γ̃2F (1) + 1)).

Proof. In order to find an estimate for Dk(g ◦ f) we apply Faà di Bruno’s formula
in the form

(3.12)
1
k!

Dk(g ◦ f) =
∑

m∈Mk

|m|!
m1! . . .mk!

(D|m|g) ◦ f

|m|!
k∏

j=1

(Djf

j!

)mj

,

where

Mk = {m ∈ Nk
0 :

k∑

j=1

jmj = k}.

Note that
∑k

j=1 jmj = k implies that at most O(
√

k) of mj can be non-zero. We
assume that (·)0 = 1 in the product in (3.12) even if the argument may be 0.

Applying the estimates on the derivatives of f and g we get from (3.12)

1
k!
‖Dk(g ◦ f)‖∞(3.13)

≤
∑

m∈Mk

|m|!
m1! . . . mk!

γ2(γ̃2F (|m|))|m|
k∏

j=1

γ
mj

1 (γ̃1F (j))jmj

= γ2γ̃
k
1

k∑
n=1

(γ1γ̃2)nF (n)n
∑

m∈Mk, |m|=n

n!
m1! . . .mk!

k∏

j=1

F (j)jmj .

Now, from the convexity of v ln F (v) we get

(3.14) ` ln F (`) + j ln F (j) ≤ ln F (1) + (` + j − 1) ln F (` + j − 1) ∀`, j > 1.

If in a multi-index m we increase m1 and m`+j−1 by 1 and decrease m` and mj by
1, then the quantities

∑k
j=1 jmj and

∑k
j=1 mj remain unchanged. Observing that

this operation decreases
∑k

j=2 mj by 1 and applying inductively (3.14) we obtain

that among all m ∈Mk with |m| = n the largest value of the product
∏k

j=1 F (j)jmj

is attained for m1 = n− 1,mk−n+1 = 1, and mj = 0 if j 6= 1 and j 6= k−n + 1, i.e.

(3.15)
k∏

j=1

F (j)jmj ≤ F (1)n−1F (k − n + 1)k−n+1.

Using (3.15) and

∑

m∈Mk, |m|=n

n!
m1! . . . mk!

=
(

k − 1
n− 1

)
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(see e.g. [20, Section 5.5]) in (3.13) and further applying (3.14) with ` = n, j =
k − n + 1 we finally get

1
k!
‖Dk(g ◦ f)‖∞ ≤ γ2γ̃

k
1

k∑
n=1

(γ1γ̃2)nF (n)n

(
k − 1
n− 1

)
F (1)n−1F (k − n + 1)k−n+1

≤ γ2γ̃
k
1F (k)k

k∑
n=1

(
k − 1
n− 1

)
F (1)n(γ1γ̃2)n

= γ2γ̃
k
1F (k)kγ1γ̃2F (1)(γ1γ̃2F (1) + 1)k−1

≤ γ2

[
γ̃1(γ1γ̃2F (1) + 1)F (k)

]k
. ¤

We shall utilize Lemma 3.9 to the composition of admissible cutoff functions
with “small” derivatives in the sense of Definition 2.2 (see Theorem 2.3), where L
obeys an additional convexity condition. Namely, we shall assume that

(3.16) L satisfies (2.1) and (t + 1) lnL(t) is convex on [0,∞).

The functions L0,ε and L`,ε from (2.2) are examples of functions L satisfying
this condition.

Theorem 3.10. Let L satisfy (3.16) and let M be given by (2.1). Then the set
S(d,L; 8, 10d(2d− 1)M(8(d + 2)M + 1)) contains an admissible cutoff function Â,
0 ≤ Â ≤ 1, of second kind and any type: (a), (b) or (c) (see Definition 3.2).

Proof. Set Â(t) = â(N (t)), where â ∈ S(1,L; 8, 8M), 0 ≤ â ≤ 1, is an admissible
function of any type (a), (b) or (c) from Theorem 2.3 and N = Nd is given by
(3.10) with ĉ|[0,∞) ∈ S(1,L; 1, 2M), 0 ≤ ĉ ≤ 1, being an admissible function of type
(a) from Theorem 2.3. Then Â is an admissible multivariate cutoff function of the
same type as â according to Corollary 3.8. Moreover, 0 ≤ Â ≤ 1.

In estimating Dk
j Â(t1, . . . , td) we may assume without loss of generality that

j = d. Further, we consider only

(3.17)
1

4d− 2
≤ td ≤ 2,

because Dk
dÂ(t1, . . . , td) = 0 if 0 ≤ td < 1

4d−2 or td > 2.
In order to apply Lemma 3.9 with g = â and f = N (as a function of td) we

need upper bounds for Dk
dN (t1, . . . , td). From (3.10) we write

N (t) =:
d∑

m=1

Fm(t), Fm(t) := tm

d∏

j=1

ĉ
( tj

tm

)
.

Then for m = 1, . . . , d− 1 we have

Dk
dFm(t) = (Dk ĉ)

( td
tm

)
t1−k
m

d−1∏

j=1

ĉ
( tj

tm

)
,

which on account of (3.17) and since Dk ĉ(τ) = 0 for τ /∈ [1, 2] and 0 ≤ ĉ ≤ 1 implies

(3.18)
1
k!
|Dk

dFm(t)| ≤ (
8(2d− 1)ML(k − 1)

)k



SPACES OF DISTRIBUTIONS INDUCED BY TENSOR PRODUCT BASES 17

for all (t1, . . . , td−1) ∈ [0,∞)d−1. Using the formulas for derivatives of a product
we get

Dk
dFd(t) = tdD

k
d

( d−1∏

j=1

ĉ
( tj

td

))
+ kDk−1

d

( d−1∏

j=1

ĉ
( tj

td

))
(3.19)

= td
∑

|m|=k

k!
m1! . . . md−1!

d−1∏

j=1

D
mj

d

(
ĉ
( tj

td

))

+
∑

|m|=k−1

k!
m1! . . .md−1!

d−1∏

j=1

D
mj

d

(
ĉ
( tj

td

))
.

For 1 ≤ tj/td ≤ 2 the function tj/td of td belongs to S(1,L; 2, 2(2d−1)). Hence, by
Lemma 3.9 with F (v) = L(v− 1) it follows that ĉ(tj/td) ∈ S(1,L; 1, 10(2d− 1)M).
Using this and (3.17) in (3.19) we get

1
k!
|Dk

dFd(t)| ≤ 2
∑

|m|=k

d−1∏

j=1

(
10(2d− 1)ML(mj − 1)

)mj(3.20)

+
∑

|m|=k−1

d−1∏

j=1

(
10(2d− 1)ML(mj − 1)

)mj

≤ 3
( ∑

|m|=k

1
)(

10(2d− 1)ML(k − 1)
)k

≤ 3
(
10d(2d− 1)ML(k − 1)

)k
.

We recall that the terms in (3.20) with mj = 0 are considered equal 1. Now,
combining (3.18) and (3.20) we get for all (t1, . . . , td−1) ∈ [0,∞)d−1 and td in
(3.17)

(3.21)
1
k!
|Dk

dN (t)| ≤ (d + 2)
(
10d(2d− 1)ML(k − 1)

)k
,

i.e. N ∈ S(d,L; d + 2, 10d(2d − 1)M). Now, Lemma 3.9 with F (v) = L(v − 1),
g = â, f = N and (3.21) prove the theorem. ¤

Remark 3.11. The arguments from the above proof also imply that (2.3) holds
for the mixed derivatives of order k. However, Theorem 3.10 is sufficient for our
purposes in this paper.

Remark 3.12. In Definition 3.2 B1 can be replaced by B∞, but this will lead to
some complications in the construction of admissible functions by semi-norms, as
well as bigger constants in Theorem 3.10.

For L = L`,ε the admissible multivariate cutoff function in Theorem 3.10 is from
the class S(d,L`,ε; γ0, γ̃0/ε2), where the second parameter is of order ε−2 and not
of order ε−1 as in the univariate case. This is due to the method of construction via
composition of two functions from S(1,L`,ε; γ, γ̃/ε). The composition necessarily
belongs to S(1,L`,ε; γ0, γ̃0/ε2) unless better estimates for the derivatives are known.
A different construction that leads to a smaller value of the second parameter is
given in Subsections 3.5-3.6.
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3.5. Construction of admissible cutoff functions by univariate products.
Another natural approach for constructing admissible d-dimensional cutoff func-
tions resembles the construction of d-dimensional wavelets from univariate father
wavelets.

From Lemmas 3.4-3.5 we immediately get

Lemma 3.13. Let â1,j , â2,j, j = 1, . . . , d, be admissible univariate functions of
type (a). Then

(3.22) B̂(t) =
d∏

j=1

â1,j(tj)−
d∏

j=1

â2,j(2tj)

is an admissible d-dimensional cutoff function of second kind and type (b).

In the univariate case all admissible functions of type (c) are among the admissi-
ble functions of type (b) constructed via (3.22). Unfortunately, in dimensions d ≥ 2
representation (3.22) does not provide any admissible d-dimensional function of
type (c). In order to get such cutoff functions we employ two other one-dimensional
techniques.

Lemma 3.14. Let Â be given by (3.2) with âj satisfying 0 ≤ âj(t) ≤ 1. We define
a cutoff function Ĉ in two ways, namely,

(3.23) Ĉ(t) :=





1− Â2(2t), t ∈ B∞,

Â(t)
√

2− Â2(t), t ∈ 2B∞\B∞,

0, t /∈ 2B∞.

or

(3.24) Ĉ(t) :=





0, t ∈ 1
2B∞,

cos(π
2 Â(2t)), t ∈ B∞\1

2B∞,

sin(π
2 Â(t)), t ∈ 2B∞\B∞,

0, t /∈ 2B∞.

Then the function Ĉ ≥ 0 from (3.23) or (3.24) is admissible of second kind and
type (c).

The proof of this lemma is straightforward.

Remark 3.15. The cutoff functions constructed in this subsection satisfy a stronger
form of Definition 3.2 with B1 replaced by B∞.

3.6. Construction of admissible cutoff functions from univariate prod-
ucts with “small” derivatives. The admissible cutoff functions from univariate
products from §3.5 allow better estimates on the derivatives than those in §3.4.

Theorem 3.16. Let L satisfy (3.16) and let M be given by (2.1). Let γ, γ̃ > 0 be
such that the set S(1,L; γ, γ̃M) contains an admissible univariate cutoff function
â, 0 ≤ â(t) ≤ 1, of type (a) according to Theorem 2.3.

(a) If Â is defined by (3.2) with âj = â, then Â is an admissible cutoff function
of second kind and type (a) and Â ∈ S(d,L; γ, γ̃M).

(b) If B̂ is defined by (3.22) with â1,j = â1,j = â, then B̂ is an admissible cutoff
function of second kind and type (b) and B̂ ∈ S(d,L; 2γ, 2γ̃M).
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(c) If Ĉ is defined by (3.24) with Â from (3.2), where âj = â, then Ĉ is admissible
of second kind and type (c) and Ĉ ∈ S(d,L; 1, (πγ + 2)γ̃M).

Proof. It is established in Lemmas 3.4, 3.13 and 3.14 that Â, B̂, Ĉ are admissible
cutoff functions of the respective type. The fact that Â ∈ S(d,L; γ, γ̃M) follows
immediately by (3.2), 0 ≤ â(t) ≤ 1 and Definition 2.2. Also B̂ ∈ S(d,L; 2γ, 2γ̃M)
follows by (3.22) and Definition 2.2, as the constant 2γ̃ replaces γ̃ because of the
multiplier 2 in the arguments of the functions in the second product in (3.22).

To find bounds on the derivatives of Ĉ(t) for 1/2 ≤ ‖t‖∞ ≤ 2 we fix 1 ≤ j ≤ d.
Consider Ĉ(t) = (g ◦ f)(tj) as function of tj ∈ [1/2, 1], where for ‖t‖∞ ≤ 1 we
set f(tj) = â(2tj) and g(x) = cos(λx) with λ = π

2

∏d
m=1,m6=j â(2tm) and for 1 <

‖t‖∞ ≤ 2 we set f(tj) = â(tj) and g(x) = sin(λx) with λ = π
2

∏d
m=1,m6=j â(tm).

We apply Lemma 3.9 as f ∈ S(1,L; γ, 2γ̃M), g ∈ S(1,L; 1, π/2) and get g ◦ f ∈
S(1,L; 1, (πγ + 2)γ̃M). For tj ∈ [1, 2] we use f(tj) = â(tj) and g(x) = sin(λx)
with λ = π

2

∏d
m=1,m6=j â(tm). We apply Lemma 3.9 as f ∈ S(1,L; γ, γ̃M), g ∈

S(1,L; 1, π/2) and get g ◦ f ∈ S(1,L; 1, (πγ/2 + 1)γ̃M). Consequently, in all cases
Ĉ ∈ S(d,L; 1, (πγ + 2)γ̃M). ¤

Remark 3.17. In cases (a) and (b) of Theorem 3.16 it sufices to require L to
satisfy (2.1) instead of (3.16).

4. Localized tensor product Jacobi polynomial kernels

Denote by P̃
(αj ,βj)
n (1 ≤ j ≤ d) the nth degree Jacobi polynomial normalized

in L2([−1, 1], wαj ,βj ), see §2.2. Then for multi-indexes α = (α1, . . . , αd) and β =
(β1, . . . , βd) the d-dimensional tensor product Jacobi polynomials are defined by

(4.1) P̃ (α,β)
ν (x) :=

d∏

j=1

P̃ (αj ,βj)
νj

(xj).

Recall our standing assumption: αj , βj ≥ −1/2. Evidently, {P̃ (α,β)
ν }ν∈Nd

0
is an

orthonormal basis for L2([−1, 1]d, wα,β) with wα,β being the product Jacobi weight
defined in (1.5).

We are interested in kernels of the form

(4.2) Λn(x, y) :=
∑

ν∈Nd
0

Â
(ν

n

)
P̃ (α,β)

ν (x)P̃ (α,β)
ν (y), x, y ∈ [−1, 1]d.

Define

(4.3) Wα,β(n; x) :=
d∏

j=1

wαj ,βj (n;xj),

where wαj ,βj (n; xj) is given in (2.10). We shall also use the distance on [−1, 1]d

defined by

(4.4) ρ(x, y) = max
1≤j≤d

| arccosxj − arccos yj |.

Theorem 4.1. Suppose Â ∈ C3k−1[0,∞)d for some k ≥ 1, supp Â ⊂ [0, 2]d, and
for any t ∈ [0, 2]d of the form t = (t1, . . . , t`−1, 0, t`+1, . . . , td), 1 ≤ ` ≤ d, i.e.
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t = proj` t, Â satisfies Dm
` Â(t) = 0 for m = 1, 2, . . . , 3k− 1. Then the kernels from

(4.2) satisfy

(4.5) |Λn(x, y)| ≤ cnd

√
Wα,β(n; x)

√
Wα,β(n; y)

(
1 + nρ(x, y)

)−k
, x, y ∈ [−1, 1]d.

Here the constant c depends on k, d, α, β and ‖D3k−1
` Â‖∞, ` = 1, . . . , d, but not on

x, y and n. Consequently, for an admissible cutoff function Â the above estimate
holds for any k > 0.

Proof. Without loss of generality we may assume that ρ(x, y) = | arccosxd −
arccos yd|. We write Λn from (4.2) as

(4.6) Λn(x, y) =
2n−1∑
ν1=0

· · ·
2n−1∑

νd−1=0

[ ∞∑
νd=0

Â
(ν1

n
, . . . ,

νd

n

)
P̃ (αd,βd)

νd
(xd)P̃ (αd,βd)

νd
(yd)

]

×
d−1∏

j=1

P̃ (αj ,βj)
νj

(xj)
d−1∏

j=1

P̃ (αj ,βj)
νj

(yj).

For any ν1, . . . , νd−1 we estimate the inner sum in (4.6) by using Theorem 2.5. We
get

(4.7)
∣∣∣
∞∑

νd=0

Â
(ν1

n
, . . . ,

νd

n

)
P̃ (αd,βd)

νd
(xd)P̃ (αd,βd)

νd
(yd)

∣∣∣

≤ cn√
wαd,βd

(n; xd)
√

wαd,βd
(n; yd)

(
1 + nρ(x, y)

)−k
.

For the Jacobi polynomials from the outer products we apply (2.22), αj , βj ≥ −1/2,
and use that νj < 2n to obtain

(4.8) |P̃ (αj ,βj)
νj

(t)| ≤ c√
wαj ,βj (νj ; t)

≤ c√
wαj ,βj (n; t)

, t = xj , yj .

Combining the above two estimates and the fact that the total number of terms in
the outer sums in (4.6) is (2n)d−1 proves the theorem. ¤

We next show that estimate (4.5) can be improved for cutoff functions of “small”
derivatives given by Theorem 3.10 or Theorem 3.16.

Theorem 4.2. Let Â be an admissible cutoff function which belongs to S(d,L; γ, γ̃M)
with L and M as in (2.1) and γ, γ̃ > 0 (see Definition 2.2). Then the kernels from
(4.2) satisfy

(4.9) |Λn(x, y)| ≤ cnd

√
Wα,β(n; x)

√
Wα,β(n; y)

exp
{
− c̃nρ(x, y)
L(nρ(x, y))

}

for x, y ∈ [−1, 1]d. Here c̃ = c′/γ̃M with c′ > 0 being an absolute constant and the
constant c > 0 depends on d, M , α, β, γ and γ̃, but not on x, y and n.

The proof of Theorem 4.2 is the same as the proof of Theorem 4.1 with the role
of Theorem 2.5 played by Theorem 2.7 and Remark 2.8.

The next theorem shows that the kernels Λn(x, y) from (4.2) are Lip1 in x and
y with respect to the distance ρ(·, ·); it is needed for our further development.
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Theorem 4.3. Under the hypotheses of Theorem 4.1 with k > 2maxi{αi +βi}+5
for all x, y, ξ ∈ [−1, 1]d such that ρ(x, ξ) ≤ c∗n−1, n ≥ 1, c∗ > 0, the kernel Λn

from (4.2) satisfies

(4.10) |Λn(x, y)− Λn(ξ, y)| ≤ cnd+1ρ(x, ξ)√
Wα,β(n;x)

√
Wα,β(n; y)

(
1 + nρ(x, y)

)−σ
,

where σ = k − 2maxi{αi + βi} − 5 and c > 0 depends only on k, d, α, β, c∗, and
‖D3k−1

` Â‖∞, ` = 1, . . . , d. Therefore, for an admissible cutoff function Â the above
estimate holds for any σ > 0.

Proof. Apparently it suffices to prove estimate (4.10) for all ξ ∈ [−1, 1]d of the
form ξ = x + δei such that ρ(x, x + δei) ≤ c∗n−1 and 1 ≤ i ≤ d with ei being the
ith coordinate vector.

As in the proof of Theorem 4.1, without loss of generality we may assume that
ρ(x, y) = | arccosxd− arccos yd| =: ρd(x, y). Assuming that ξ = x+ δei is as above,
we consider two cases for i.

Case 1: i = d. Then we have

Λn(x, y)− Λn(x + δed, y)

=
2n−1∑
ν1=0

· · ·
2n−1∑

νd−1=0

[ ∞∑
νd=0

Â
(ν1

n
, . . . ,

νd

n

)(
P̃ (αd,βd)

νd
(xd)−P̃ (αd,βd)

νd
(xd+δ)

)
P̃ (αd,βd)

νd
(yd)

]

×
d−1∏

j=1

P̃ (αj ,βj)
νj

(xj)
d−1∏

j=1

P̃ (αj ,βj)
νj

(yj).

Applying Theorem 2.10 to the inner sum we get

∣∣∣
∞∑

νd=0

Â
(ν1

n
, . . . ,

νd

n

)(
P̃ (αd,βd)

νd
(xd)− P̃ (αd,βd)

νd
(xd + δ)

)
P̃ (αd,βd)

νd
(yd)

∣∣∣

≤ cn2ρ(x, x + δei)√
wαd,βd

(n;xd)
√

wαd,βd
(n; yd)

(
1 + nρd(x, y)

)−σ
.

For the Jacobi polynomials P̃
(αj ,βj)
νj (xj) and P̃

(αj ,βj)
νj (yj) from the outer products

we apply estimates (4.8) and combining these with the above we arrive at (4.10).
Case 2: i 6= d. Let x, x + δei ∈ [−1, 1]d and ρ(x, x + δei) ≤ c∗n−1. We have

Λn(x, y)− Λn(x + δei, y)

=
2n−1∑
ν1=0

· · ·
2n−1∑

νd−1=0

[ ∞∑
νd=0

Â
(ν1

n
, . . . ,

νd

n

)
P̃ (αd,βd)

νd
(xd)P̃ (αd,βd)

νd
(yd)

]
(4.11)

×
d−1∏

j=1, j 6=i

P̃ (αj ,βj)
νj

(xj)
(
P̃ (αi,βi)

νi
(xi)− P̃ (αi,βi)

νi
(xi + δ)

) d−1∏

j=1

P̃ (αj ,βj)
νj

(yj).

As is well known that d
dt [P

(α,β)
m (t)] = m+α+β+1

2 P
(α+1,β+1)
m−1 (t) (see [22, (4.21.7)]).

Combining this with estimate (2.22) from Lemma 2.9 and h
(α,β)
m ∼ h

(α,β)
m−1 ∼ m−1

(see (2.7)) give
∣∣∣ d

dt
P̃ (α,β)

m (t)
∣∣∣ ≤ cm√

wα+1,β+1(m− 1, t)
≤ cm√

wα,β(m, t)
(√

1− t2 + m−1
) .
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We use this to obtain for θ, θ′ ∈ [0, π] with |θ − θ′| ≤ c∗m−1, m ≥ 2,

|P̃ (α,β)
m (cos θ)− P̃ (α,β)

m (cos θ′)| ≤ cm| cos θ − cos θ′|√
wα,β(m, cos θ)

(
sin θ + m−1

)(4.12)

≤ cm sin | θ−θ′
2 | sin | θ+θ′

2 |√
wα,β(m, cos θ)

(
sin θ + m−1

) ≤ cm|θ − θ′|√
wα,β(m, cos θ)

.

Note that (4.12) is trivial for m = 0, 1. Therefore,

(4.13) |P̃ (αi,βi)
νi

(xi)− P̃ (αi,βi)
νi

(xi + δ)| ≤ cνiρ(x, x + δei)√
wαi,βi

(νi, xi)
≤ cnρ(x, ξ)√

wαi,βi
(n, xi)

.

Now, we use (4.7) to estimate the inner sum in (4.11), (4.8) to estimate the Jacobi
polynomials P̃

(αj ,βj)
νj (xj) (j 6= i) and P̃

(αj ,βj)
νj (yj) from the outer products in (4.11),

and we also use (4.13) to obtain again (4.10). Here as well as in Case 1 we took
into account that the number of terms in the outer sums is (2n)d−1. ¤

Lower bound estimates for the Lp-norms of the kernels Λn(x, y) in x or y can
also be easily derived from the corresponding results in dimension one.

Proposition 4.4. Let Â be admissible and |Â(t)| ≥ c > 0 for t ∈ [1, 1 + δ]d, δ > 0.
Then for n ≥ 1/δ

(4.14)
∫

[−1,1]d
|Λn(x, y)|2wα,β(y)dy ≥ cndWα,β(n;x)−d, x ∈ [−1, 1]d,

where c > 0 depends only on δ, α, β, and d.

Proof. By the definition of Λn(x, y) in (4.2) and the orthogonality of the Jacobi
polynomials, it follows that∫

[−1,1]d
|Λn(x, y)|2wα,β(y)dy =

∑

ν∈Nd
0

|Â(ν/n)|2[P̃ (α,β)
ν (x)]2

≥
∑

ν∈[n,n+δn]d

|Â(ν/n)|2[P̃ (α,β)
ν (x)]2 ≥ c

d∏

i=1

n+bδnc∑
νi=n

[P̃ (αi,βi)
νi

(xi)]2

and the stated lower bound follows from the respective result in the univariate case,
given in [12, Proposition 2.4]. ¤

The rapidly decaying polynomial kernels Λn(x, y) from (4.2) can be utilized as in
the univariate case [12, Proposition 2.6] for establishing Nikolski type inequalities:

Proposition 4.5. For 0 < q ≤ p ≤ ∞ and g ∈ Πd
n,

(4.15) ‖g‖p ≤ cn(2d+2
∑d

i=1 min{0,max{αi,βi}})(1/q−1/p)‖g‖q,

furthermore, for any s ∈ R,

(4.16) ‖Wα,β(n; ·)sg(·)‖p ≤ cnd(1/q−1/p)‖Wα,β(n; ·)s+1/p−1/qg(·)‖q.

5. Additional auxiliary results

5.1. The maximal inequality. We let Mt (0 < t < ∞) be the maximal operator
defined by

(5.1) Mtf(x) := sup
I3x

(
1

µ(I)

∫

I

|f(y)|twα,β(y) dy

)1/t

, x ∈ [−1, 1]d,
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where the sup is over all boxes (rectangles) I ⊂ [−1, 1]d with sides parallel to the
coordinate axces containing x. Here µ(E) :=

∫
E

wα,β(y) dy.
We denote by B(ξ, r) the “ball” (box) centered at ξ ∈ [−1, 1]d of radius r > 0

with respect to the distance ρ(·, ·) on [−1, 1]d, i.e.

(5.2) B(ξ, r) := {x ∈ [−1, 1]d : ρ(x, ξ) < r}.
We next show that for 0 < δ ≤ π

(5.3) µ(B(y, δ)) ∼ δd
d∏

i=1

(√
1− y2

i + δ
)2γi+1

, γi :=
{

αi if 0 ≤ yi ≤ 1,
βi if −1 ≤ yi < 0.

Let yi =: cos φi, 0 ≤ φi ≤ π, and ϕ′i := max{φi − δ, 0}, ϕ′′i := min{φi + δ, π}.
Evidently

µ(B(y, δ)) =
d∏

i=1

∫ cos ϕ′i

cos ϕ′′i

(1− xi)αi(1 + xi)βidxi

=
d∏

i=1

∫ ϕ′′i

ϕ′i

(1− cos θi)αi(1 + cos θi)βi sin θidθi

∼ δd
d∏

i=1

(sinφi + δ)2γi+1 = δd
d∏

i=1

(√
1− y2

i + δ
)2γi+1

,

which confirms (5.3).
By (5.3) it follows that µ(B(y, 2δ)) ≤ cµ(B(y, δ)), i.e. µ is a doubling measure

on [−1, 1]d and, therefore, the Fefferman-Stein vector-valued maximal inequality is
valid (see [21]): Assuming that 0 < p < ∞, 0 < q ≤ ∞ and 0 < t < min{p, q}, then
for any sequence of functions {fk}∞k=1 on [−1, 1]d,

(5.4)
∥∥∥
( ∞∑

k=1

|Mtfk(·)|q
)1/q∥∥∥

p
≤ c

∥∥∥
( ∞∑

k=1

|fk(·)|q
)1/q∥∥∥

p
.

We need to estimate (Mt1B(y,δ))(x). Such estimates readily follow by (5.3) and
the respective univaruate result in [12, Lemma 2.7].

Lemma 5.1. Let y ∈ [−1, 1]d and 0 < r ≤ π, and suppose γi, i = 1, . . . , d, are
defined as in (5.3). Then for any x ∈ [−1, 1]d

(5.5) (Mt1B(y,r))(x) ∼
d∏

j=1

(
1 +

ρ(yj , xj)
r

)−1/t(
1 +

ρ(yj , xj)
r + ρ(yj , 1)

)−(2γj+1)/t

and hence
(5.6)

(Mt1B(y,r))(x) ≥ c

d∏

j=1

(
1 +

ρ(yj , xj)
r

)−(2γj+2)/t

≥ c
(
1 +

ρ(y, x)
r

)−(2|γ|+2d)/t

.

Here ρ(yj , xj) := | arccos yj − arccosxj | and ρ(y, x) is defined in (4.4).

We also want to record the following useful inequality which follows easily from
the case d = 1, proved in [12, (2.22)]:

(5.7) Wα,β(n; x) ≤ cWα,β(n; y)(1 + nρ(x, y))d+2
∑d

i=1 max{αi,βi},

for x, y ∈ [−1, 1]d and n ≥ 1, where Wα,β(n; x) is from (4.3).
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5.2. Distributions on [−1, 1]d. Here we introduce and give some basic facts
about distributions on [−1, 1]d. We shall use as test functions the set D :=
C∞[−1, 1]d, where the topology is induced by the semi-norms

(5.8) |φ|µ := ‖Dµφ(t)‖∞ for all multi-indices µ.

Observe that the tensor product Jacobi polynomials {P̃ (α,β)
ν } belong to D and

more importantly the test functions φ ∈ D can be completely characterized by the
coefficients of their Jacobi expansions. Denote

(5.9) Nk(φ) := sup
ν∈Nd

0

(|ν|+ 1)k|〈φ, P̃ (α,β)
ν 〉|,

where 〈f, g〉 :=
∫
[−1,1]d

f(x)g(x)wα,β(x)dx.

Lemma 5.2. (i) φ ∈ D if and only if |〈φ, P̃
(α,β)
ν 〉| = O((|ν|+ 1)−k) for all k.

(ii) For every φ ∈ D we have φ =
∑

ν∈Nd
0
〈φ, P̃

(α,β)
ν 〉P̃ (α,β)

ν , where the convergence
is in the topology of D.

(iii) The topology in D can be equivalently defined by the norms Nk(·), k ≥ 0.

The proofs of this lemma is easy and similar to the proof of Lemma 2.8 in [12].
The space D′ of distributions on [−1, 1]d is defined as the set of all continuous

linear functionals on D. The pairing of f ∈ D′ and φ ∈ D will usually be denoted by
〈f, φ〉 := f(φ). As will be shown it is in a sense consistent with the inner product
〈f, g〉 in L2(wα,β). We shall need the representation of distributions from D′ in
terms of Jacobi polynomials.

Lemma 5.3. (i) A linear functional f on D belongs to D′ if and only if there exists
k ≥ 0 such that

(5.10) |f(φ)| = |〈f, φ〉| ≤ ckNk(φ) for all φ ∈ D,

(ii) For any f ∈ D′ there exist constants c > 0 and k ≥ 0 such that

(5.11) |f(P̃ (α,β)
ν )| = |〈f, P̃ (α,β)

ν 〉| ≤ ck(|ν|+ 1)k for all ν ∈ Nd
0, and

(5.12) f(φ) = lim
n→∞

〈Sn, φ〉 =
∑

ν∈Nd
0

〈f, P̃ (α,β)
ν 〉〈φ, P̃ (α,β)

ν 〉 for φ ∈ D,

where Sn :=
∑
|ν|≤n〈f, P̃

(α,β)
ν 〉P̃ (α,β)

ν and the series converges absolutely.
(iii) For any sequence {cν}ν∈Nd

0
satisfying |cν | ≤ A(|ν|+1)` for ν ∈ Nd

0 and some
constants A and `, the sequence

sn :=
∑

|ν|≤n

cνP (α,β)
ν

converges in D′ as n → ∞ to some distribution F ∈ D′ such that 〈F, P̃
(α,β)
ν 〉 = cν

for ν ∈ Nd
0.

Proof. Part (i) of the lemma follows by the definition of D′ and Lemma 5.2 as in
the classical case.

Estimate (5.11) is immediate from (5.10) and (5.9). Further, we have for φ ∈ D
lim

n→∞
〈Sn, φ〉 = lim

n→∞
f
( ∑

|ν|≤n

〈φ, P̃ (α,β)
ν 〉P (α,β)

ν

)
= f(φ),
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which confirms (5.12). Here we used Lemma 5.2, (ii).
To prove part (iii), we observe that 〈sn, φ〉 =

∑
|ν|≤n cν〈φ, P̃

(α,β)
ν 〉 for φ ∈ D and

using the assumption and Lemma 5.2 we get |cν ||〈φ, P̃
(α,β)
ν 〉| ≤ c(|ν|+ 1)`−k for an

arbitrary k ≥ 0. Therefore, the series
∑

ν∈Nd
0
cν〈φ, P̃

(α,β)
ν 〉 converges absolutely and

hence

(5.13) F (φ) := lim
n→∞

〈sn, φ〉 =
∑

ν∈Nd
0

cν〈φ, P̃ (α,β)
ν 〉, φ ∈ D,

is a well defined linear functional. We claim that F is bounded. Indeed, for φ ∈ D
|F (φ)| ≤

∑

ν∈Nd
0

|cν ||〈φ, P̃ (α,β)
ν 〉| ≤ A

∑

ν∈Nd
0

(|ν|+ 1)`|〈φ, P̃ (α,β)
ν 〉|

≤ AN`+d+1(φ)
∑

ν∈Nd
0

(|ν|+ 1)−d−1 ≤ cN`+d+1(φ),

which shows that F ∈ D′.
Finally, F (P̃ (α,β)

ν ) = limn→∞〈sn, φ〉 = cν is immediate by (5.13). ¤
To simplify our notation, we introduce the following “convolution”: For functions

Φ : [−1, 1]d × [−1, 1]d → C and f : [−1, 1]d → C, we define

(5.14) Φ ∗ f(x) :=
∫

[−1,1]d
Φ(x, y)f(y)wα,β(y) dy

and extend it to D′ by duality, i.e. assuming that f ∈ D′ and Φ : [−1, 1]d ×
[−1, 1]d → C is such that Φ(x, y) belongs to D as a function of y, we define Φ ∗ f
by

(5.15) Φ ∗ f(x) := 〈f, Φ(x, ·)〉.
Here on the right f acts on Φ(x, y) as a function of y.

5.3. Lp-multipliers. We shall need Lp-multipliers for tensor product Jacobi poly-
nomial expansions. Since we cannot find any such multipliers in the literature
we next derive simple but non-optimal multipliers satisfying the First Boundary
Condition (§1.2) of a certain order.

Theorem 5.4. Let m ∈ Cr[0,∞)d for r sufficiently large (r > 6 maxi{αi + βi} +
6

∑
i max{αi, βi}+6d+20 will do) and suppose m satisfies the following condition:

For any t ∈ [0,∞)d of the form t = (t1, . . . , t`−1, 0, t`+1, . . . , td), 1 ≤ ` ≤ d, we have
Ds

`m(t) = 0 for s = 1, 2, . . . , r. Also, assume

(5.16) |Dτm(t)| ≤ c(1 + ‖t‖∞)−|τ | for t ∈ [0,∞)d and |τ | ≤ r,

with c > 0 independent of t. Then the operator Tmf :=
∑

ν∈Nd
0
m(ν)〈f, P̃

(α,β)
ν 〉P̃ (α,β)

ν

is bounded on Lp(wα,β) for 1 < p < ∞.

Proof. We shall utilize a standard decomposition of unity argument. Let Ĉ be
an admissible cutoff function of type (c). Then B̂ = |Ĉ|2 ≥ 0 is admissible of
type (b) and

∑∞
j=0 B̂(2−jt) = 1 for t ∈ [0,∞)d \ [0, 1)d. We define Φ0(x, y) :=

m(0)P̃ (α,β)
0 (x)P̃ (α,β)

0 (y) and

Φj(x, y) :=
∑

ν∈Nd
0

B̂
( ν

2j−1

)
m(ν)P̃ (α,β)

ν (x)P̃ (α,β)
ν (y), j ≥ 1.
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Consider the kernels KN :=
∑N

j=0 Φj . We shall prove that

(5.17) ‖KN ∗ f‖p ≤ c‖f‖p for f ∈ Lp(wα,β)

with c > 0 a constant independent of f and N . As a consequence of this, it is easy
to show that for any f ∈ Lp(wα,β) one has Tmf = limN→∞KNf in Lp(wα,β) and
‖Tmf‖p ≤ c‖f‖p as claimed.

To prove (5.17) we shall employ the theory of generalized Caldeón-Zygmund
operators. Note first that by Parseval’s identity

(5.18) ‖KN ∗ f‖2 ≤ c‖f‖2 for f ∈ L2(wα,β).

Following Stein [21], p. 29, denote

(5.19) V (x, y) := inf{µ(B(y, δ)) : x ∈ B(y, δ)} = µ(B(y, ρ(x, y))),

where the last equality follows from the definition of ρ(·, ·). We shall show that

(5.20) |KN (x, y)−KN (x, ȳ)| ≤ c
ρ(y, ȳ)
ρ(x, ȳ)

[V (x, ȳ)]−1

whenever ρ(x, ȳ) ≥ 2ρ(y, ȳ). Then (5.17) will follow for 1 < p ≤ 2 by (5.18) and
(5.20) using the proposition on pp. 29-30 and Theorem 3 on p. 19 in [21]. After
that a standard duality argument leads to estimate (5.17) in the case 2 < p < ∞.

We now turn to the proof of (5.20). Fix x, y, ȳ ∈ [−1, 1]d, x 6= ȳ, and define

γi :=
{

αi if 0 ≤ ȳi ≤ 1,
βi if −1 ≤ ȳi < 0.

By (5.19) and (5.3) it follows that

(5.21) V (x, ȳ) ∼ ρ(x, ȳ)d
d∏

i=1

(√
1− ȳ2

i + ρ(x, ȳ)
)2γi+1

.

Let Âj(t) := B̂(t)m(2j−1t). We have supp B̂ ⊂ [0, 2]d\ 1
2B1 and by (5.16) it read-

ily follows that |Dτ [m(2j−1t)]| ≤ c for t ∈ [0, 2]d \ 1
2B1 and |τ | ≤ r, where the con-

stant c > 0 is independent of j. Therefore, ‖Dτ Âj‖∞ = ‖Dτ [B̂(·)m(2j−1·)]‖∞ ≤ c

for |τ | ≤ r with c > 0 independent of j. Now, it is evident that Âj satisfies the as-
sumptions of Theorem 4.3 for some k > 2 maxi{αi +βi}+2

∑
i max{αi, βi}+2d+6

and hence, using also (5.7), we get

(5.22) |Φj(x, y)− Φj(x, ȳ)| ≤ c2j(d+1)ρ(y, ȳ)
Wα,β(2j , ȳ)(1 + 2jρ(x, ȳ))σ

if ρ(y, ȳ) ≤ 2−j , where σ = k − 2maxi{αi + βi} − 5.
If ρ(y, ȳ) > 2−j and ρ(x, ȳ) ≥ 2ρ(y, ȳ) (hence ρ(x, y) ≥ ρ(y, ȳ) and ρ(x, ȳ) ≤

2ρ(x, y) ≤ 3ρ(x, ȳ)), then estimate (5.22) follows by Theorem 4.1 applied separately
to Φj(x, y) and Φj(x, ȳ) and using (5.7). Therefore, (5.22) holds whenever ρ(x, ȳ) ≥
2ρ(y, ȳ).

Let 2−j1−1 ≤ ρ(x, ȳ) < 2−j1 . Then using Φ0(x, y) = Φ0(x, ȳ) we write

|KN (x, y)−KN (x, ȳ)| ≤
j1∑

j=1

|Φj(x, y)− Φj(x, ȳ)|+
N∑

j=j1+1

|Φj(x, y)− Φj(x, ȳ)|

=: F1 + F2.
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For F1 we have using (5.22) and (5.21)

F1 ≤ cρ(y, ȳ)
∏d

i=1

(√
1− ȳ2

i + 2−j1
)2γi+1

j1∑

j=1

2j(d+1)

≤ cρ(y, ȳ)2j1(d+1)

∏d
i=1

(√
1− ȳ2

i + 2−j1
)2γi+1

≤ cρ(y, ȳ)

ρ(x, ȳ)d+1
∏d

i=1

(√
1− ȳ2

i + ρ(x, ȳ)
)2γi+1 ≤ c

ρ(y, ȳ)
ρ(x, ȳ)

[V (x, ȳ)]−1.

To estimate F2 we first observe that
(√

1− ȳ2
i +2−j

)
(1+2j−j1) ≥

√
1− ȳ2

i +2−j1 .
Then, using again (5.22) and (5.21), we get

F2 ≤ cρ(y, ȳ)
N∑

j=j1+1

2j(d+1)

∏d
i=1

(√
1− ȳ2

i + 2−j
)2γi+1(1 + 2j−j1

)σ

≤ cρ(y, ȳ)
∞∑

j=j1+1

2j(d+1)

∏d
i=1

(√
1− ȳ2

i + 2−j1
)2γi+1(1 + 2j−j1

)σ−2
∑

i γi−d

≤ cρ(y, ȳ)2j1(d+1)

∏d
i=1

(√
1− ȳ2

i + 2−j1
)2γi+1

∞∑

j=j1+1

2−(j−j1)(σ−2
∑

i γi−2d−1)

≤ cρ(y, ȳ)

ρ(x, ȳ)d+1
∏d

i=1

(√
1− ȳ2

i + ρ(x, ȳ)
)2γi+1 ≤ c

ρ(y, ȳ)
ρ(x, ȳ)

[V (x, ȳ)]−1,

where we used that σ > 2
∑

i γi + 2d + 1. The above estimates of F1 and F2 yield
(5.20). This completes the proof of the proposition. ¤

6. Construction of building blocks (Needlets)

The construction of frames (needlets) on [−1, 1]d has two basic components: (i)
a Calderón type decomposition formula and (ii) a cubature formula.

6.1. Cubature formula and subdivision of [−1, 1]d. For the construction of
needlets we shall employ the Gaussian quadrature formula on [−1, 1] with weight
wα,β(t) := (1−t)α(1−t)β . Given j ≥ 0, denote by ξm =: cos θm, m = 1, 2, . . . , 2j+1,
the zeros of the Jacobi polynomial P

(α,β)
2j+1 ordered so that 0 < θ1 < · · · < θ2j+1 < π

and set
Xα,β

j := {ξm : 1 ≤ m ≤ 2j+1}.
It is well known that uniformly (see [8])

(6.1) θ1 ∼ 2−j , π − θ2j+1 ∼ 2−j , θm+1 − θm ∼ 2−j , and hence θm ∼ m2−j .

As is well known [22] the zeros of the Jacobi polynomial P
(α,β)
2j+1 serve as knots of

the Gaussian quadrature

(6.2)
∫

[−1,1]

f(t)wα,β(t)dt ∼
∑

ξ∈Xα,β
j

cξf(ξ),

which is exact for all algebraic polynomials that are of degree 2j+2−1. Furthermore,
the coefficients cξ are all positive and satisfy (see e.g. [15])

(6.3) cξ ∼ 2−jwα,β(ξ)(1− ξ2)1/2.
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Tiling of [−1, 1]. With {ξm} as above we write

Iξm := [(ξm+1 + ξm)/2, (ξm−1 + ξm)/2], m = 2, 3, . . . , 2j+1 − 1,

and
Iξ1 := [(ξ2 + ξ1)/2, 1], Iξ2j+1 := [−1, (ξ2j+1

+ ξ2j+1−1)/2].

We define
Iα,β

j := {Iξm : 1 ≤ m ≤ 2j+1}.
For multi-indices α = (α1, . . . , αd), β = (β1, . . . , βd) and j ≥ 0, 1 ≤ i ≤ d, we

denote by Xαi,βi

j the zeroes of the Jacobi polynomial P
(αi,βi)
2j+1 and write

(6.4) Xj := Xα1,β1
j × · · · × Xαd,βd

j .

Now, for ξ = (ξ1, . . . , ξd) ∈ Xj we set cξ := cξ1 · · · cξd
, where cξi

is the corresponding
coefficient of the Gaussian quatrature (6.2) with α = αi and β = βi. Evidently, the
cubature formula

(6.5)
∫

[−1,1]d
f(x)wα,β(x)dx ∼

∑

ξ∈Xj

cξf(ξ)

is exact for all polynomials in d-variables of degree 2j+2 − 1 in each variable and
by (6.3) the coefficients {cξ} are positive and satisfy

(6.6) cξ ∼ 2−djWα,β(2j ; ξ),

where Wα,β(2j ; ξ) is defined in (4.3).

Tiling of [−1, 1]d. For ξ = (ξ1, . . . , ξd) ∈ Xj , we write

(6.7) Iξ := Iξ1 × · · · × Iξd
, Iξi ∈ Iαi,βi

j .

Evidently, [−1, 1]d = ∪ξ∈Xj Iξ and the interiors of the tiles {Iξ}ξ∈Xj do not overlap.
With B(y, r) defined in (5.2) it easily follows from the univariate case that there

exist constants c1, c2 > 0 such that

(6.8) B(ξ, c12−j) ⊂ Iξ ⊂ B(ξ, c22−j), ξ ∈ Xj .

By (5.3) it follows that

(6.9) µ(Iξ) :=
∫

Iξ

wα,β(x) dx ∼ 2−jWα,β(2j ; ξ) ∼ cξ, ξ ∈ Xj , j ≥ 0.

The next lemma is of an independent interest and is instrumental in the subse-
quent development.

Lemma 6.1. Let P ∈ Πd
2j , j ≥ 0, and ξ ∈ Xj. Suppose x′, x′′ ∈ [−1, 1]d and

ρ(x′, ξ) ≤ c?2−j, ρ(x′′, ξ) ≤ c?2−j. Then for any σ > 0

|P (x′)− P (x′′)| ≤ cσ2jρ(x′, x′′)
∑

η∈Xj

|P (η)|
(1 + 2jρ(ξ, η))σ

,

where cσ > 0 depends only on σ, α, β, d, and c?.

The proof of this lemma is merely a repetition of the proof of the univariate
result in [12, Lemma 9.2] and will be omitted.
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6.2. Needlets on [−1, 1]d. The construction of needlet systems is now standard
and follows a well established scheme. We begin with two cutoff functions Â, B̂ of
type (b) which satisfy (see Lemma 3.6):

(6.10)
∞∑

j=0

Â(2−jt) B̂(2−jt) = 1, t ∈ [0,∞)d \ B∞.

We define Φ0(x, y) = Ψ0(x, y) := P̃0(x)P̃0(y),

Φj(x, y) :=
∑

ν∈Nd
0

Â
( ν

2j−1

)
P̃ν(x)P̃ν(y), j ≥ 1, and(6.11)

Ψj(x, y) :=
∑

ν∈Nd
0

B̂
( ν

2j−1

)
P̃ν(x)P̃ν(y), j ≥ 1.(6.12)

Let Xj be the set of knots of cubature formula (6.5), defined in (6.4), and let {cξ}
be its coefficients. We define the jth level needlets by

(6.13) ϕξ(x) := c1/2
ξ Φj(x, ξ) and ψξ(x) := c1/2

ξ Ψj(x, ξ), ξ ∈ Xj .

We write X := ∪∞j=0Xj , where equal points from different levels Xj are considered
as distinct elements of X , so that X can be used as an index set. We define the
analysis and synthesis needlet systems Φ and Ψ by

(6.14) Φ := {ϕξ}ξ∈X , Ψ := {ψξ}ξ∈X .

Theorem 4.1 and (5.7) imply that the needlets decay rapidly, namely,

(6.15) |ϕξ(x)|, |ψξ(x)| ≤ cσ2jd/2

√
Wα,β(2j ; ξ)

(
1 + 2jρ(ξ, x)

)−σ
, x ∈ [−1, 1]d, ∀σ.

We next give estimates on the norms of the needlets, which can be proved ex-
actly as in the case d = 1, upon using (6.15) and the lower bound estimate from
Proposition 4.4: For 0 < p ≤ ∞,

(6.16) ‖ϕξ‖p ∼ ‖ψξ‖p ∼ ‖1̃Iξ
‖p ∼

( 2dj

Wα,β(2j ; ξ)

)1/2−1/p

, ξ ∈ Xj .

Here 1̃Iξ
:= µ(Iξ)−1/21Iξ

with 1E being the characteristic function of the set E.
Moreover, there exist constants c∗, c¦ > 0 such that

(6.17) ‖ϕξ‖L∞(B(ξ,c∗2−j)), ‖ψξ‖L∞(B(ξ,c∗2−j)) ≥ c¦
( 2dj

Wα,β(2j ; ξ)

)1/2

.

The needlet decomposition of D′ and Lp follows as in the univariate case (see
[12, Proposition 3.1]) by the definition of needlets and their superb localization.

Proposition 6.2. (i) For f ∈ D′, we have

f =
∞∑

j=0

Ψj ∗ Φj ∗ f in D′, and(6.18)

f =
∑

ξ∈X
〈f, ϕξ〉ψξ in D′.(6.19)

(ii) If f ∈ Lp(wα,β), 1 ≤ p ≤ ∞, then (6.18)−(6.19) hold in Lp(wα,β). Moreover,
if 1 < p < ∞, then the convergence in (6.18)− (6.19) is unconditional.
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Remark 6.3. (i) Pick Â ≥ 0 a cutoff function of type (c) (see Definition 3.1).
Then we can choose B̂ = Â in the constuction of needlets in (6.10)-(6.13) and
obtain ϕξ = ψξ. Consequently, (6.19) becomes f =

∑
ξ∈X 〈f, ψξ〉ψξ and it is easy

to prove that (see e.g. [12]) ‖f‖2 =
( ∑

ξ∈X |〈f, ψξ〉|2
)1/2

for f ∈ L2(wα,β), which

shows that Ψ is a tight frame for L2(wα,β).
(ii) If Â ≥ 0 is an admissible cutoff function of second kind and type (c) (see

Definition 3.2) which belongs to S(d,L; γ, γ̃M), then Theorem 4.2 implies sup-
exponential localization of the needlets, namely,

(6.20) |ψξ(x)| ≤ c2jd/2

√
Wα,β(2j ; ξ)

exp
{
− c̃2jρ(ξ, x)
L(2jρ(ξ, x))

}
, x ∈ [−1, 1]d.

7. Weighted Triebel-Lizorkin spaces on [−1, 1]d

We next utilize the general idea of using spectral or orthogonal decomposi-
tions (see e.g. [16, 23]) to introduce weighted Triebel-Lizorkin spaces on [−1, 1]d.
The theory of these spaces is entirely parallel to their theory in the univariate case,
developed in [12]. Therefore, we shall only state the main results, provide the
important ingredients and refer the reader to [12] for the proofs.

Given an admissible cutoff function Â of type (b) (see Definition 3.1) satisfy-
ing the dyadic covering condition (3.4) we define a sequence of kernels {Φj} by
Φ0(x, y) := P̃0(x)P̃0(y) and

(7.1) Φj(x, y) :=
∑

ν∈Nd
0

Â
( ν

2j−1

)
P̃ν(x)P̃ν(y), j ≥ 1.

Definition 7.1. For s, ρ ∈ R, 0 < p < ∞, and 0 < q ≤ ∞ the weighted Triebel-
Lizorkin space F sρ

pq := F sρ
pq (wα,β) is defined as the set of all f ∈ D′ such that

(7.2) ‖f‖F sρ
pq

:=
∥∥∥
( ∞∑

j=0

[
2sjWα,β(2j ; ·)−ρ/d|Φj ∗ f(·)|

]q)1/q∥∥∥
p

< ∞

with the usual modification when q = ∞.

Note that the above definition is independent of the choice of Â as long as Â is
an admissible function of type (b), satisfying (3.4) (see Theorem 7.3 below).

Also, F sρ
pq is a (quasi-)Banach space which is continuously embedded in D′, i.e.

there exist k and c > 0 such that

|〈f, φ〉| ≤ c‖f‖F sρ
pq
Nk(φ) for all f ∈ F sρ

pq , φ ∈ D.

We next introduce the sequence spaces fsρ
pq associated to F sρ

pq . Here we assume
that {Xj}∞j=0 and X := ∪∞j=0Xj are the sets of points from the definition of needles
with associated neighborhoods {Iξ}, given in (6.7).

Definition 7.2. Suppose s, ρ ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then fsρ
pq is

defined as the space of all complex-valued sequences h := {hξ}ξ∈X such that

(7.3) ‖h‖fsρ
pq

:=
∥∥∥
( ∞∑

j=0

2sjq
∑

ξ∈Xj

[|hξ|Wα,β(2j ; ξ)−ρ/d1̃Iξ
(·)]q

)1/q∥∥∥
p

< ∞

with the usual modification for q = ∞. Here as before 1̃Iξ
:= µ(Iξ)−1/21Iξ

.
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The “analysis” and “synthesis” operators associated to the needlet systems Φ,
Ψ are defined by

(7.4) Sϕ : f → {〈f, ϕξ〉}ξ∈X and Tψ : {hξ}ξ∈X →
∑

ξ∈X
hξψξ.

As in [12] one shows that the operator Tψ is well defined on fsρ
pq , namely, for any

h ∈ fsρ
pq , Tψh :=

∑
ξ∈X hξψξ converges in D′. Moreover, the operator Tψ : fsρ

pq → D′
is continuous, i.e. there exist constants k > 0 and c > 0 such that

(7.5) |〈Tψh, φ〉| ≤ cNk(φ)‖h‖fsρ
pq

, for all h ∈ fsρ
pq , φ ∈ D.

Our main result in this section asserts that the weighet F -spaces can be charac-
terized by the needlet coefficients of the distributions.

Theorem 7.3. Let s, ρ ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. The operators Sϕ : F sρ
pq →

fsρ
pq and Tψ : fsρ

pq → F sρ
pq are bounded and Tψ ◦ Sϕ = Id on F sρ

pq . Consequently,
f ∈ F sρ

pq if and only if {〈f, ϕξ〉}ξ∈X ∈ fsρ
pq . Furthermore,

‖f‖F sρ
pq
∼ ‖{〈f, ϕξ〉}‖fsρ

pq
∼

∥∥∥
( ∞∑

j=0

2sjq
∑

ξ∈Xj

[|〈f, ϕξ〉|Wα,β(2j ; ξ)−ρ/d|ψξ(·)|]q
)1/q∥∥∥

p
.

(7.6)

In addition, the definition of F sρ
pq is independent of the particular selection of the

type (b) cutoff function Â satisfying (3.4).

To us the spaces F ss
pq are more natural than the spaces F sρ

pq with ρ 6= s since they
embed “correctly” with respect to the smoothness index s.

Proposition 7.4. Let 0 < p < p1 < ∞, 0 < q, q1 ≤ ∞, and −∞ < s1 < s < ∞.
Then we have the continuous embedding

(7.7) F ss
pq ⊂ F s1s1

p1q1
if s/d− 1/p = s1/d− 1/p1.

The proof of this proposition is quite similar to the proof of the respective em-
bedding result on Bd in [13, Proposition 4.11] and will be omitted.

We have the following identification of spaces F 00
p2 .

Proposition 7.5. We have

F 00
p2 ∼ Lp(wα,β), 1 < p < ∞,

with equivalent norms. Consequently, for any f ∈ Lp(wα,β), 1 < p < ∞,

‖f‖p ∼
∥∥∥
( ∞∑

j=0

∑

ξ∈Xj

(|〈f, ϕξ〉||ψξ(·)|)2
)1/2∥∥∥

p
.

The proof of this proposition uses the multipliers from Theorem 5.4 and can be
carried out exactly as in the case of spherical harmonic expansions in [14, Proposi-
tion 4.3]. We omit it.
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8. Weighted Besov spaces on [−1, 1]d

To define weighted Besov spaces on [−1, 1]d we use again the sequence of kernels
{Φj} introduced in (7.1) with Â a cutoff function of type (b) obeying (3.4). We
shall keep the development of these spaces short since the proofs of the results are
the same as in the univariate case, given in [12].

Definition 8.1. Let s, ρ ∈ R and 0 < p, q ≤ ∞. The weighted Besov space Bsρ
pq :=

Bsρ
pq(wα,β) is defined as the set of all f ∈ D′ such that

(8.1) ‖f‖Bsρ
pq

:=
( ∞∑

j=0

(
2sj‖Wα,β(2j ; ·)−ρ/dΦj ∗ f(·)‖p

)q)1/q

< ∞,

where the `q-norm is replaced by the sup-norm if q = ∞.

Note that as in the case of weighted Triebel-Lizorkin spaces the above definition
is independent of the particular choice of Â and Bsρ

pq is a (quasi-)Banach space
which is continuously embedded in D′.

We next introduce the sequence spaces bsρ
pq associated to Bsρ

pq . To this end we
use some of the notation established in the previous section.

Definition 8.2. Let s, ρ ∈ R and 0 < p, q ≤ ∞. Then bsρ
pq is defined to be the space

of all complex-valued sequences h := {hξ}ξ∈X such that

(8.2) ‖h‖bsρ
pq

:=
( ∞∑

j=0

2j(s−d/p+d/2)q
[ ∑

ξ∈Xj

(
Wα,β(2j ; ξ)−ρ/d+1/p−1/2|hξ|

)p]q/p)1/q

is finite, with the usual modification for p = ∞ or q = ∞.

The analysis and synthesis operators Sϕ and Tψ defined in (7.4) play an im-
portant role here. As for weighted Triebel-Lizorkin spaces the operator Tψ is well
defined on bsρ

pq, i.e. for any h ∈ bsρ
pq, Tψh :=

∑
ξ∈X hξψξ converges in D′. Also, the

operator Tψ : bsρ
pq → D′ is continuous.

The following characterization of weighted Besov spaces is the main result of this
section.

Theorem 8.3. Let s, ρ ∈ R and 0 < p, q ≤ ∞. Then the operators Sϕ : Bsρ
pq → bsρ

pq

and Tψ : bsρ
pq → Bsρ

pq are bounded and Tψ ◦ Sϕ = Id on Bsρ
pq . Consequently, for

f ∈ D′ we have that f ∈ Bsρ
pq if and only if {〈f, ϕξ〉}ξ∈X ∈ bsρ

pq. Moreover,

‖f‖Bsρ
pq
∼ ‖{〈f, ϕξ〉}‖bsρ

pq
∼

( ∞∑

j=0

2sjq
[ ∑

ξ∈Xj

(
Wα,β(2j ; ξ)−ρ/d‖〈f, ϕξ〉ψξ‖p

)p]q/p)1/q

.

In addition, the definition of Bsρ
pq is independent of the particular selection of the

type (b) cutoff function Â satisfying (3.4).

The parameter ρ in the definition of Bsρ
pq allows to consider various scales of

weighted Besov spaces. The spaces Bs0
pq can be regarded as “classical” Besov spaces.

However, to us more natural are the spaces Bss
pq (ρ = s) which in contrast to Bs0

pq ,
first, embed “correctly” with respect to the smoothness index s, and secondly, the
right smoothness spaces in nonlinear n-term weighted approximation from needles
are defined in terms of spaces Bss

pq (see §9 below).
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Proposition 8.4. Let 0 < p ≤ p1 ≤ ∞, 0 < q ≤ q1 ≤ ∞, and −∞ < s1 ≤ s < ∞.
Then we have the continuous embedding

(8.3) Bss
pq ⊂ Bs1s1

p1q1
if s/d− 1/p = s1/d− 1/p1.

This proposition is an immediate consequence of estimate (4.16).

9. Application of weighted Besov spaces to nonlinear approximation

We now consider nonlinear n-term approximation for a needlet system {ψη}η∈X
with ϕη = ψη, defined as in (6.11)-(6.14) with B̂ = Â, Â ≥ 0, i.e. Â ≥ 0 is a first or
second kind admissible cutoff function of type (c) (see Definitions 3.1-3.2). Then
{ψη} are real-valued.

Let Σn be the nonlinear set of all functions g of the form

g =
∑

ξ∈Λ

aξψξ,

where Λ ⊂ X , #Λ ≤ n, and Λ is allowed to vary with g. Denote by σn(f)p the
error of best Lp(wα,β)-approximation to f ∈ Lp(wα,β) from Σn, i.e.

σn(f)p := inf
g∈Σn

‖f − g‖p.

We consider approximation in Lp(wα,β), 0 < p < ∞.
Assume 0 < p < ∞, s > 0, and 1/τ := s/d + 1/p and denote briefly Bs

τ := Bss
ττ .

By Theorem 8.3 and (6.16) it follows that

(9.1) ‖f‖Bs
τ
∼

( ∑

ξ∈X
‖〈f, ψξ〉ψξ‖τ

p

)1/τ

.

Exactly as in [14, Proposition 6.1] this leads to the embedding of Bs
τ into Lp(wα,β),

which plays an important role in the proof of the main result of this section:

Theorem 9.1. [Jackson estimate] If f ∈ Bs
τ , then

(9.2) σn(f)p ≤ cn−s/d‖f‖Bs
τ
, n ≥ 1,

where c > 0 depends only on s, p, and Â.

The proofs of this theorem can be carried out exactly as the proofs of the Jackson
estimate in [14, Theorem 6.2]. We omit it.

It is an important open problem to prove the companion to (9.2) Bernstein
estimate: If g ∈ Σn and 1 < p < ∞, then

(9.3) ‖g‖Bs
τ
≤ cns/d‖g‖p.

If true this estimate would enable one to characterize the rates (approximation
spaces) of nonlinear n-term approximation in Lp(wα,β) (1 < p < ∞) from needlet
systems.

10. Weighted Triebel-Lizorkin and Besov spaces on Bd1 × [−1, 1]d2

Our aim is to briefly describe how the theory of weighted spaces of distributions
on the product set Bd1 × [−1, 1]d2 can be developed via tensor product orthogonal
polynomials.
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10.1. Localized kernels for orthogonal polynomials on the ball. Localized
polynomial kernels on the unit ball Bd in Rd have been developed in [18] and
utilized in [13] to the development of Triebel-Lizorkin and Besov spaces on Bd with
weight

wµ(x) := (1− ‖x‖22)µ−1/2, µ ≥ 0.

Here, we compile all needed results from [13, 18] and give some new facts.
Denote by Vn the set of all polynomials of degree n in d variables which are

orthogonal to the lower degree polynomials in L2(Bd, wµ) and let Pn(wµ, x, y) be
the kernel of the orthogonal projector Projn : L2(Bd, wµ) → Vn, i.e.

(10.1) (Projn f)(x) =
∫

Bd

f(y)Pn(wµ; x, y)wµ(y)dy.

An explicit representation of the reproducing kernel Pn(wµ, x, y) is given in [24]:

(10.2) Pn(wµ;x, y) = cµ
n + λ

λ

∫ 1

−1

Cλ
n(t(x, y; u))(1− u2)µ−1du, µ > 0,

where

t(x, y; u) := 〈x, y〉+ u
√

1− ‖x‖22
√

1− ‖y‖22 and λ := µ +
d− 1

2
.

For an admissible univariate cutoff function â (see Definition 2.1), denote

(10.3) Lµ
n(x, y) :=

∞∑

j=0

â
( j

n

)
Pj(wµ;x, y)

Analogues of Theorems 4.1 and 4.2 on Bd are established in [18]. Denote

(10.4) Wµ(n; x) :=
(√

1− ‖x‖22 + n−1
)2µ

and

(10.5) ρ(x, y) := arccos
(
〈x, y〉+

√
1− ‖x‖22

√
1− ‖y‖22

)
,

which is a distance on Bd.

Theorem 10.1. Given an admissible univariate function â, for any σ > 0 there
exists a constant c > 0 such that

(10.6) |Lµ
n(x, y)| ≤ cnd

√
Wµ(n; x)

√
Wµ(n; y)

(
1 + nρ(x, y)

)−σ
, x, y ∈ Bd.

Furthermore, for any x, y, ξ ∈ Bd such that ρ(x, ξ) ≤ c∗n−1

(10.7) |Lµ
n(x, y)− Lµ

n(ξ, y)| ≤ cnd+1ρ(x, ξ)√
Wµ(n; x)

√
Wµ(n; y)

(
1 + nρ(x, y)

)−σ
.

This theorem was established in [18] (Theorem 4.2 and Proposition 4.7) in the
case of admissible cutoff functions â which are constant around t = 0. Its proof
hinges on the localization of the kernels Qα,β

n from (2.12). Due to Theorem 2.6 now
Theorem 10.1 holds for admissible cutoff functions â in the sense of Definition 2.1
with the proof from [18].

We shall need two additional estimates with the first being the analogue of
Lemma 2.9 on Bd.
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Lemma 10.2. For x, y ∈ Bd,

(10.8) |Pn(wµ; x, y)| ≤ cnd−1

√
Wµ(n; x)

√
Wµ(n; y)

.

Proof. The proof of this lemma relies on the following estimate that follows from
Theorem 3.1 in [2]: If a and b are constants such that |a|+ |b| ≤ 1, then
∣∣∣∣
∫ 1

−1

Cλ
n(au + b)(1− u2)µ−1du

∣∣∣∣ ≤ cn2λ−2µ−1

(|a|+ n−1
√

1− |a| − |b|+ n−2
)−µ

(
1 + n

√
1− |a| − |b|)λ−µ

.

Denote briefly A(x) :=
√

1− ‖x‖22. We apply the above inequality with a =
A(x)A(y) and b = 〈x, y〉. Setting ‖x‖2 =: cos θ and ‖y‖2 =: cos φ, 0 ≤ θ, φ ≤ π, we
have

1− |a| − |b| ≥ 1− ‖x‖2 · ‖y‖2 −
√

1− ‖x‖22
√

1− ‖y‖22 = 1− cos(θ − φ)

= 2 sin2 θ − φ

2
≥ c(θ − φ)2 ≥ c(sin θ − sin φ)2 = c (A(x)−A(y))2 ,

and hence

(10.9) |Pn(wµ; x, y)| ≤ cn2λ−2µ
(
A(x)A(y) + n−1|A(x)−A(y)|+ n−2

)−µ
.

Here we used that
(
1+n

√
1− |a| − |b|)λ−µ ≥ 1. Now, from A(x), A(y) ≥ 0 it easily

follows that

(10.10) A(x)A(y) + n−1|A(x)−A(y)|+ n−2 ∼ (A(x) + n−1)(A(y) + n−1).

This coupled with (10.9) yields (10.8). ¤
The next lemma gives an analogue of estimate (4.12) on the ball.

Lemma 10.3. For any x, y, ξ ∈ Bd such that ρ(x, ξ) ≤ c∗n−1,

(10.11) |Pn(wµ; x, y)− Pn(wµ; ξ, y)| ≤ cndρ(x, ξ)√
Wµ(n; x)

√
Wµ(n; y)

,

where the constant c > 0 depends only on µ, d, and c∗.

The proof of this lemma is somewhat lengthy and will be given in the appendix.

10.2. Localized cross product basis kernels. We consider orthogonal polyno-
mials on Bd1 × [−1, 1]d2 with weight

wµ,α,β(x) := wµ(x′)wα,β(x′′), x = (x′, x′′), x′ ∈ Bd1 , x′′ ∈ [−1, 1]d2 ,

where wµ(x′) := (1 − ‖x′‖22)µ−1/2, µ ≥ 0, and wα,β(x′′) :=
∏d2

j=1 wαj ,βj (x
′′
j ) with

αj , βj ≥ −1/2 as in (1.5).
Denote by Vn the set of all algebraic polynomials of degree n in d1 variables which

are orthogonal to the lower degree polynomials in L2(Bd1 , wµ) and let Pn(wµ, x′, y′)
be the kernel of the orthogonal projector Projn : L2(Bd1 , wµ) → Vn, see (10.1)-
(10.2).

We are interested in kernels of the form

(10.12) Λn(x, y) :=
∑

(j,ν)∈N0×Nd2
0

Â
( j

n
,
ν

n

)
Pj(wµ; x′, y′)P̃ (α,β)

ν (x′′)P̃ (α,β)
ν (y′′).
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Here Â ∈ C∞[0,∞)1+d2 is an admissible cutoff function in the sense of Defini-
tion 3.1 and P̃

(α,β)
ν are the tensor product Jacobi polynomials defined as in (4.1).

To estimate the localization of Λn(x, y) we need the weight

(10.13) Wµ,α,β(n; x) := Wµ(n; x′)Wα,β(n; x′′),

where Wµ(n;x′) is defined as in (10.4) and Wα,β(n;x′′) as in (4.3). We also need
the distance ρ∗(x, y) on Bd1 × [−1, 1]d2 defined by

ρ∗(x, y) := max
{

ρ(x′, y′), max
1≤j≤d2

| arccosx′′j − arccos y′′j |
}

,

where ρ(x′, y′) is the distance on Bd1 defined as in (10.5).
We now give the localization of the kernels Λn(x, y) from (10.12):

Theorem 10.4. If Â ∈ C∞[0,∞)1+d2 is an admissible cutoff function in the sense
of Definition 3.1, then for any σ > 0 there exists a constant c > 0 such that

(10.14) |Λn(x, y)| ≤ cnd1+d2

√
Wµ,α,β(n; x)

√
Wµ,α,β(n; y)

(
1 + nρ∗(x, y)

)−σ

for x, y ∈ Bd1 × [−1, 1]d2 .

This theorem is an immediate consequence of Theorems 4.1,10.1, and Lemma 10.2.
(see the proof of Theorem 4.1).

The analogue of Theorem 4.2 reads as follows:

Theorem 10.5. Let Â be an admissible cutoff function which belongs to the class
S(d2 +1,L; γ, γ̃M) for some L and M as in (2.1) and γ, γ̃ > 0 (see Definition 2.2).
Then the kernels from (10.12) satisfy

(10.15) |Λn(x, y)| ≤ cnd1+d2

√
Wµ,α,β(n; x)

√
Wµ,α,β(n; y)

exp
{
− c̃nρ∗(x, y)
L(nρ∗(x, y))

}

for x, y ∈ Bd1 × [−1, 1]d2 . Here c̃ = c′/γ̃M , where c′ > 0 is an absolute constant.

Here the argument is the same as for the proof of Theorem 4.2 (see the proof of
Theorem 4.1) using Theorem 4.2 and [10, Theorem 6.1].

An analogue of Theorem 4.3 is also valid:

Theorem 10.6. If Â ∈ C∞[0,∞)1+d2 is an admissible cutoff function, then for
any σ > 0 and for all x, y, ξ ∈ Bd1 × [−1, 1]d2 such that ρ(x, ξ) ≤ c∗n−1, n ≥ 1,
c∗ > 0, the kernel Λn from (10.12) satisfies

(10.16) |Λn(x, y)− Λn(ξ, y)| ≤ cnd1+d2+1ρ(x, ξ)√
Wµ,α,β(n;x)

√
Wµ,α,β(n; y)

(
1 + nρ(x, y)

)−σ
,

where c > 0 depends only on σ, d, α, β, c∗, and Â.

The proof of this theorem is quite similar to the proof of Theorem 4.3 and relies
on Theorems 4.3,10.1, and Lemma 10.3.
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10.3. Construction of needlets on Bd1 × [−1, 1]d2 . An important component
of our theory is the construction of frames on Bd1 × [−1, 1]d2 . To this end one uses
a Caldeón type formula based on localized kernels as the kernels in (10.12) and a
cubature formula. A cubature formula on Bd1× [−1, 1]d2 exact for sufficiently large
degree polynomials can be constructed as product of the cubature formula on Bd1

from [18, §5] and the cubature on [−1, 1]d2 from §6.1. Once the components are in
place, the construction is carried out exactly as in §6.2. We skip the details.

10.4. Spaces of distributions on Bd1 × [−1, 1]d2 . It is natural to use as test
functions the set D := C∞(Bd1 × [−1, 1]d2), where the topology is defined by the
semi-norms |φ|µ := ‖Dµφ‖∞ for all multi-indices µ. Just as in the case of tensor
product Jacobi polynomials (§5.2) the test functions φ ∈ D can be characterized by
their cross polynomial expansions on Bd1 × [−1, 1]d2 . The space D′ of distributions
on Bd1 × [−1, 1]d2 is defined as the set of all continuous linear functionals on D.

For an admissible cutoff function Â : [0,∞)1+d2 7→ C of type (b) obeying condi-
tion (3.4) we define Φ0(x, y) := P0(wµ; x′, y′)P̃ (α,β)

0 (x′′)P̃ (α,β)
0 (y′′) and

Φj(x, y) :=
∑

(m,ν)∈N0×Nd2
0

Â
( m

2j−1
,

ν

2j−1

)
Pm(wµ; x′, y′)P̃ (α,β)

ν (x′′)P̃ (α,β)
ν (y′′), j ≥ 1.

Then the weighted Triebel-Lizorkin space F sρ
pq := F sρ

pq (wµ,α,β) with s, ρ ∈ R,
0 < p < ∞, and 0 < q ≤ ∞, is defined as the set of all f ∈ D′ such that

(10.17) ‖f‖F sρ
pq

:=
∥∥∥
( ∞∑

j=0

[
2sjWµ,α,β(2j ; ·)−ρ/(d1+d2)|Φj ∗ f(·)|

]q)1/q∥∥∥
p

< ∞

with the usual modification when q = ∞. Here Φj ∗ f is defined as in (5.15).
The weighted Besov space Bsρ

pq := Bsρ
pq(wµ,α,β) with s, ρ ∈ R and 0 < p, q ≤ ∞,

is defined as the set of all f ∈ D′ such that

(10.18) ‖f‖Bsρ
pq

:=
( ∞∑

j=0

[
2sj‖Wµ,α,β(2j ; ·)−ρ/(d1+d2)Φj ∗ f(·)‖p

]q)1/q

< ∞,

where the `q-norm is replaced by the sup-norm if q = ∞.
Without going into further details, we note that the theory of Triebel-Lizorkin

and Besov space on Bd1 × [−1, 1]d2 with weight wµ,a,b(x) can be further developed
in analogy to the spaces on [−1, 1]d from §§7-8. Also, needlets on Bd1 × [−1, 1]d2

can be deployed for the decomposition of the F - and B-spaces on Bd1 × [−1, 1]d2

as in §§7-8. The point is that all ingredients needed for this theory are either in
place or can easily be developed.

11. Discussion

Although this paper is mainly concerned with weighted Triebel-Lizorkin and
Besov space on [−1, 1]d it is one of our goals to show how the theory of F - and
B-spaces can be developed on products of [−1, 1]d1 , Bd2 , Sd3 , T d4 , Rd5 , or Rd6

+ with
weights. For Bd1 × [−1, 1]d2 a sketch of the main ingredients of the theory was
given in the previous section. We belive that the most natural way to define and
develop this sort of spaces is via orthogonal decompositions, where kernels like the
ones from (2.9), (4.2) or (10.12) play a prominent role.

We would like to turn again our attention to the fundamental question of what
kind of cutoff functions Â can be used in the case of cross product bases. As was
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already mentioned in the introduction, as for univariate Jacobi polynomials (see
(2.9)) univariate cutoff functions â induce rapidly decaying kernels on the sphere
[14], ball [13], simplex [10], and in the context of tensor product Hermite [19] and
Laguerre functions [11]. Note that cutoff functions â which are constants around
t = 0 are sufficient for the development of the theory in these cases. However, as
was already seen truly multivariate cutoff functions Â need to be used in the case
of product Jacobi polynomials or cross product bases. Moreover, the localization of
the respective kernels depends on the behavior of Â at the boundary of [0,∞)d, i.e.
at the coordinate planes. This is intimately related to the impact of the behavior
of the univariate cutoff functions â at t = 0 on the localization of the kernels on
the interval, ball, sphere, etc. This behavior appears as a boundary condition on
Â and becomes an important issue.

The key observation is that (as in Theorem 2.5) the localization results given
in the theorems described below hold under the condition that the compactly sup-
ported C∞ univariate cutoff function â satisfies

â(m)(0) = 0 for m = 1, 2, . . .

These are: (1) Theorem 4.2 in [18] on the ball, (2) Theorem 2.2 in [14] on the
sphere, (3) Theorem 7.1 in [10] on the simplex, (4) Corollary 1 in [19] for tensor
product Hermite functions, (5) Theorems 3.2, 3.7, 3.8 in [11] for tensor product
Laguerre functions. The proofs of these results utilize the scheme of the proof of
Theorem 2.5 with very little variations and will be omitted. Consequently, the cross
product basis kernels induced by an admissible cutoff function Â (see Definition 3.1)
obtained from any combination of the above mentioned bases on [−1, 1]d1 , Bd2 , Sd3 ,
T d4 , Rd5 , or Rd6

+ will decay rapidly as in Theorems 4.1, 10.4. Further modifications
and extensions as in Theorems 4.2, 4.3, 10.5, 10.6 are also almost automatic.

The construction of needlets on products of two or more of the sets [−1, 1]d1 ,
Bd2 , Sd3 , T d4 , Rd5 , or Rd6

+ follows easily the pattern of the construction on [−1, 1]d

from §6, based on tensor product basis kernels and product cubature formulas.
The ensuing program for developing weighted Triebel-Lizorkin and Besov spaces

on products of sets as above can be carried out as for the spaces on [−1, 1]d devel-
oped in this article.

12. Appendix: Proof of Lemma 10.3.

For µ = 0 the expression of Pn(wµ; x, y) in (10.2) simplifies considerably as
µ → 0; the integral becomes a sum of two terms, as shown in [24]. This case is
easier than the case µ > 0. We omit its proof.

Assume µ > 0. The proof hinges on the following lemma which is an immediate
consequence of Lemma 3.5 in [2].

Lemma 12.1. Suppose µ > 0, 0 < |a| < 1, η ∈ C∞[−1, 1] with supp η ⊂ [− 1
2 , 1].

If |b| ≤ 1− |a|, then
∣∣∣∣
∫ 1

−1

Cλ
n(at + b)η(t)(1− t)µ−1dt

∣∣∣∣ ≤
cn2λ−2µ−1

|a|µ
(
1 + n

√
1− |a + b|

)λ−µ
.

The proof of Lemma 10.3 will be divided into two parts.

Case 1: A(x)A(y) ≤ 16c∗(n−1ρ(x, y) + n−2), where c∗ is the constant from the
hypothesis of Lemma 10.3. We shall need the following estimate for Gegenbauer
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polynomials, which follows from (2.22):

(12.1) |Cλ
n(t)| ≤ cn2λ−1

(
1 + n

√
1− t2

)−λ

, t ∈ [−1, 1].

Denote by Iu the interval with end points t(x, y;u) and t(ξ, y;u). Then using the
identity d

dtC
λ
n(t) = 2λCλ+1

n−1(t) [22, (4.7.27)], we obtain

E : = |Pn(wµ; x, y)− Pn(wµ; ξ, y)|

≤ cn

∫ 1

−1

∣∣Cλ
n(t(x, y; u))− Cλ

n(t(ξ, y; u))
∣∣ (1− u2)µ−1du(12.2)

≤ cn

∫ 1

−1

‖Cλ+1
n−1‖L∞(Iu)|t(x, y; u)− t(ξ, y; u)|(1− u2)µ−1du.

By (12.1) it follows that

‖Cλ+1
n−1‖L∞(Iu) ≤ c n2λ+1

[(
1 + n

√
1− t(x, y;u)2

)−λ−1

(12.3)

+
(
1 + n

√
1− t(ξ, y; u)2

)−λ−1
]

.

If t(x, y;u) ≥ 0, then

1− t(x, y; u)2 ≥ 1− t(x, y; u) ≥ 1− 〈x, y〉 −A(x)A(y)

= 1− cos ρ(x, y) = 2 sin2(ρ(x, y)/2) ≥ (2/π2)ρ(x, y)2,

and similarly if t(x, y;u) < 0, then

1− t(x, y; u)2 ≥ 1 + t(x, y; u) ≥ 1 + 〈x, y〉 −A(x)A(y)

= 1− 〈x,−y〉 −A(x)A(−y) ≥ (2/π2)ρ(x,−y)2.

The above estimates along with (12.3) and ρ(x, ξ) ≤ c∗n−1 yield

‖Cλ+1
n−1‖L∞(Iu) ≤ c n2λ+1 (1 + nρ(x, y))−λ−1 if t(x, y; u) ≥ 0, and

‖Cλ+1
n−1‖L∞(Iu) ≤ c n2λ+1 (1 + nρ(x,−y))−λ−1 if t(x, y;u) < 0.

We use these inequality in (12.2) to obtain

E ≤ cn2λ+2

∫ 1

−1

|t(x, y;u)− t(ξ, y; u)|
(1 + nρ(x, y))λ+1

(1− u2)µ−1du

+cn2λ+2

∫ 1

−1

|t(x, y;u)− t(ξ, y; u)|
(1 + nρ(x,−y))λ+1

(1− u2)µ−1du =: E1 + E2.

To estimate E1 and E2 we shall need the inequality (see [18, Lemma 4.1])

(12.4) |A(x)−A(y)| ≤
√

2ρ(x, y), x, y ∈ Bd,

which implies

A(y) + n−1 ≤ A(x) + n−1 +
√

2ρ(x, y)(12.5)

≤
√

2(A(x) + n−1)(1 + nρ(x, y)).

On the other hand, by (10.10), (12.4), and our assumption it follows that

(A(x) + n−1)(A(y) + n−1) ≤ c
(
A(x)A(y) + n−1|A(x)−A(y)|+ n−2

)
(12.6)

≤ cn−2(1 + nρ(x, y)).
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This along with (12.5) gives

(12.7) A(y)2 ≤
√

2(A(x) + n−1)(A(y) + n−1)(1 + nρ(x, y)) ≤ cn−2(1 + nρ(x, y))2.

As in [18, p. 136] we have using (12.4)

|t(x, y;u)− t(ξ, y; u)| ≤ | cos ρ(x, y)− cos ρ(ξ, y)|+
√

2|1− u|A(y)ρ(x, ξ)

≤ ρ(x, ξ)
(
ρ(x, y) + ρ(ξ, y)

)
+
√

2A(y)ρ(x, ξ).(12.8)

Combining this with (12.7) and ρ(x, ξ) ≤ cn−1 we get

|t(x, y; u)− t(ξ, y;u)| ≤ cn−1ρ(x, ξ)(1 + nρ(x, y)).

This estimate coupled with (12.6) leads to

(12.9) E1 ≤ cndρ(x, ξ)
n2µ

(1 + nρ(x, y))µ
≤ cndρ(x, ξ)

(A(x) + n−1)µ(A(y) + n−1)µ
.

To estimate E2 we observe that t(x, y;u) = −t(x,−y;−u) and hence

|t(x, y; u)− t(ξ, y; u)| = |t(x,−y;−u)− t(ξ,−y;−u)|.
Consequently, E2 can be estimated exactly as E1 with the same bound as in (12.9).
These two estimates yield (10.11).

Case 2: A(x)A(y) > 8c∗(n−1ρ(x, y) + n−2). In this case by (10.10) and (12.4) it
readily follows that

(12.10) A(x)A(y) ∼ (A(x) + n−1)(A(x) + n−1).

Let η+ be a C∞ function such that η+(u) = 1 for 1
2 ≤ u ≤ 1, and η+(u) = 0 for

−1 ≤ u ≤ − 1
2 . Define η−(u) := 1− η+(u). Then on account of (10.2), we can write

Pn(wµ;x, y) = P+
n (wµ; x, y) + P−n (wµ;x, y),

where

P±n (wµ;x, y) := cµ
n + λ

λ

∫ 1

−1

Cλ
n(t(x, y; u))η±(u)(1− u2)µ−1du.

Since t(x, y;−u) = −t(x,−y; u) and Cλ
n(−t) = (−1)nCλ

n(t), we only need to prove
(10.11) for P+

n (wµ; ·, ·). We write t(x, y;u) as

t(x, y; u) = B(x, y) + A(x)A(y)(u− 1) with B(x, y) := cos ρ(x, y),

In going further, we have

(12.11) P+
n (wµ;x, y)− P+

n (wµ; ξ, y) = J1 + J2,

where

J1 :=cµ
n + λ

λ

∫ 1

−1

[
Cλ

n

(
B(x, y) + A(x)A(y)(u− 1)

)

−Cλ
n

(
B(ξ, y) + A(x)A(y)(u− 1)

)]
η+(u)(1− u2)µ−1du,

J2 :=cµ
n + λ

λ

∫ 1

−1

[
Cλ

n

(
B(ξ, y) + A(x)A(y)(u− 1)

)

−Cλ
n

(
B(ξ, y) + A(ξ)A(y)(u− 1)

)]
η+(u)(1− u2)µ−1du.
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To estimate |J1|, we again use d
dsCλ

n(s) = 2λCλ+1
n−1(s) to write

J1 = 2cµ(n + λ)
∫ B(x,y)

B(ξ,y)

∫ 1

−1

Cλ+1
n−1

(
s + A(x)A(y)(u− 1)

)
η+(u)(1− u2)µ−1duds.

We estimate the inner integral above using Lemma 12.1 with η(t) = η+(t)(1+t)µ−1,
b = s−A(x)A(y) and a = A(x)A(y). We get

|J1| ≤ c
n2(λ+1)−2µ

[A(x)A(y)]µ

∣∣∣
∫ B(x,y)

B(ξ,y)

1
(1 + n

√
1− |s|)λ+1−µ

ds
∣∣∣.

As in (12.8)

|B(x, y)−B(ξ, y)| ≤ ρ(x, ξ)(ρ(x, y) + ρ(ξ, y)) ≤ cρ(x, ξ)(ρ(x, y) + n−1).

On the other hand 1−B(x, y) = 1−cos ρ(x, y) ≥ cρ(x, y)2 and similarly 1−B(ξ, y) ≥
cρ(ξ, y)2. Therefore,

(12.12) |J1| ≤ c
nd+1

[A(x)A(y)]µ
(ρ(x, y) + n−1)ρ(x, ξ)

(1 + nmin{ρ(x, y), ρ(ξ, y)})λ+1−µ
≤ cndρ(x, ξ)

[A(x)A(y)]µ
,

where we used that ρ(x, y) ≤ ρ(ξ, y) + ρ(x, ξ) ≤ ρ(ξ, y) + c∗n−1.
To estimate |J2|, we again use d

dsCλ
n(s) = 2λCλ+1

n−1(s) to express J2 as

−2cµ(n+λ)A(y)
∫ A(x)

A(ξ)

∫ 1

−1

Cλ+1
n−1

(
B(ξ, y)+sA(y)(u−1)

)
η+(u)(1+u)µ−1(1−u)µduds.

We estimate the inner integral by using Lemma 12.1 with η(t) = η+(t)(1 + t)µ−1,
b = B(ξ, y)− sA(y), a = sA(y), and λ, µ replaced by λ + 1, µ + 1 to obtain

|J2| ≤ cn2(λ+1)−2(µ+1)

A(y)µ
(
1 + n

√
1−B(ξ, y)

)λ−µ

∣∣∣
∫ A(x)

A(ξ)

s−µ−1ds
∣∣∣.

and using that |A(x)−A(ξ)| ≤ √
2ρ(x, ξ) (see (12.4))

(12.13) |J2| ≤ cnd−1ρ(x, ξ)
A(y)µ min{A(x)µ+1, A(ξ)µ+1} .

By the same token and since by assumption ρ(x, ξ) ≤ c∗n−1 we have

A(ξ) ≥ A(x)− |A(x)−A(ξ)| ≥ A(x)−
√

2ρ(x, ξ) ≥ A(x)−
√

2c∗n−1.

If A(x) ≥ 2
√

2c∗n−1, then from above A(ξ) ≥ A(x)/2. These two estimates and
(12.13) imply that |J2| has the bound of |J1| from (12.12), and using (12.10) esti-
mate (10.11) holds for |P+

n (wµ;x, y)− P+
n (wµ; ξ, y)|.

Let A(x) < 2
√

2c∗n−1. We claim that A(y) < 4
√

2c∗n−1. Indeed, suppose
A(y) ≥ 4

√
2c∗n−1. Then A(y) ≥ A(x)/2 and using (12.4), we get

√
2ρ(x, y) ≥ |A(x)−A(y)| ≥ A(y)−A(x) ≥ A(y)/2

and hence A(x)A(y) > 8c∗n−1ρ(x, y) ≥ 2
√

2c∗n−1A(y) yielding A(x) > 2
√

2c∗n−1,
that is a contradiction. Therefore, A(x)A(y) < 16c∗n−2. Thus A(x), A(y) obey
the conditions of Case 1 and hence estimate (10.11) holds true. This complete the
proof of Lemma 10.3. ¤
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