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Abstract

In this paper, we present a residual-based a posteriori error estimate for the finite volume
discretization of steady diffusion-convection-reaction equations defined on general surfaces in R3,
which are often implicitly represented as level sets of smooth functions. Reliability and efficiency
of the proposed a posteriori error estimator are rigorously proved. Numerical experiments are
also conducted to verify the theoretical results and demonstrate the robustness of the error
estimator.
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1 Introduction

In the area of numerical solution of partial differential equations (PDEs), a posteriori error estima-
tors are computable quantities in terms of the approximate solutions, and provide a reliable and
efficient measurement for the errors of the discrete solution without knowing the exact solution.
Reliability is often referred to that the true error can be bounded from above by the error estimator
and efficiency implies that the true error is also locally bounded from below by the error estimator.
A posteriori error estimates have played a very important role in adaptive meshes generation and
algorithm designing for numerical PDEs. Theoretical and systematical studies of a posteriori error
estimators for finite element approximation began in the late of 1970s [5], and since then a vast
number of literatures gradually appeared, see [2, 4, 6, 7, 9, 11, 14, 29, 37] and the references cited
therein. We would like to point out that elegant analysis on residual-based a posteriori estimates
of finite volume approximations for elliptic equations can be found in [1, 13].

Numerical solution of PDEs defined on smooth surfaces (or manifolds) in R? recently attracted
a lot of attentions due to its applications in various area, such as surface diffusion, global and
local geophysical flows, ice formation, brain warping and so on [27, 32, 33, 34]. Thus it is of
interest to investigate useful a posteriori error estimates for these type of problems. Some of a
priori error analysis of second-order and fourth-order problems have been done for finite element
methods [22, 23, 24] and finite volume methods [8, 20, 19]. Recently, a posteriori error estimates of
finite element methods for discretizing the Laplace-Beltrami operator on surfaces were rigorously

*Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA. Email: ju@math.sc.edu.
This author’s research is supported in part by the National Science Foundation under grant number DMS-0609575
and the Department of Energy under grant number DE-FG02-07TER64431.

tDepartment of Mathematics, University of South Carolina, Columbia, SC 29208, USA. Email: tianl@math.sc.edu.

Division of Mathematical Sciences, School of Physical & Mathematical Sciences, Nanyang Technological Univer-
sity, 637616, Singapore, Email: desheng@ntu.edu.sg. The author’s research is partially supported by the National
Research Foundation of Singapore under the grant number NRF2007IDM-IDM002-010 and the Ministry of Education
under the grant number M58110011.



1 INTRODUCTION 2

analyzed in [3, 15, 28] while similar study for finite volume methods is still lacking as far as we
know. In this paper, we will rigorously derive a residual-based explicit a posteriori error estimator
(in the sense of energy norm) for the finite volume discretization of the elliptic equations defined
on a smooth surface which is represented as the zero level set of a signed distance function d to the
surface.

The paper is organized as follows: in Section 1.1, we will briefly review the model problem
defined on surfaces and define some notations to facilitate our analysis. Then the finite volume
discretization of the problem is given in Section 2. In Section 3, we will derive a residual-based a
posteriori estimate for the discretization in terms of the approximate solution, and prove its relia-
bility and efficiency. Some numerical experiments are included in Section 4, to verify the theoretical
results. In addition, we also numerically demonstrate that the a posteriori error estimator is quite
robust, i.e., the constants in the a posteriori estimates are almost uniform across all test problems.
Finally, concluding remarks are given in Section 5.

1.1 Model problem

Let S in R? be an open bounded C*“-hypersurface [22, 26] with & € AU {0} and 0 < a < 1,
and we assume that S is represented globally by some oriented distance function (or say level set
function) d = d(x) defined in some open subset U of R3 such that S = {x € Uld(x) = 0} with
d € CH® and Vd # 0. The unit outward normal to S (with increasing d) at x is given by

_ Vd(x)
 [Vd(x)]

1i(x) = (n1(x),n2(x), n3(x))

where || denotes the Euclidean norm and V denotes the standard gradient operator in R3. Without
loss of generality, we assume that |Vd| = 1.

Let Vs = (Vs1,Vs2, Vs 3) = V—(1d- V)i denote the tangential (surface) gradient operator, and
As =V, - Vg be the so-called Laplace—Beltrami operator on S [26]. We use the standard notation
for Sobolev spaces LP(S), W™P(S), and H™(S) = W™2(S) on S. To make space H™(S) well
defined, it is customary to assume k + o« > max{1,m}, see [31]. To avoid technical complexities,
we further assume that S and S are sufficiently smooth (say, of class C?) and S # () for the rest
of the paper unless stated otherwise.

We consider the following steady diffusion-convection-reaction equation imposed on S,

—Vs - (a(x)Vsu(x)) + Vs - (U(x)u(x)) + b(x)u(x) = f(x) VxeS (1.1)
where the data in (1.1) is assumed to satisfy:

Assumption 1 f € L%(S), a(x) is uniformly continuous on S, v € (WH>°(8))3, and b € L*(S).
Additionally, a(x) > a1 >0, b(x) > as >0 and Vs - 9(x)/2 + b(x) > a3 > 0 for any x € S.

For simplicity, we take the homogeneous Dirichlet boundary condition:
u(x) =0, Vx € 08S. (1.2)

Note that our discussion here can be extended to more general cases such as a = a(x) being a
symmetric positive-definite tensor.
For any u, ¢ € H}(S), define the bilinear functional A to be

Alu, @) = /SaVsu-ngb ds — /Suﬁ'VSQS ds—l—/sbuqb ds, (1.3)
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then we have (for some generic constants ¢; > 0 and ¢z > 0)

A(u,¢) < cllullgys)llolas), (1.4)
Alu,u) > eallullfng)-

Especially, let us define the energy norm || - |z of uw on S to be |lullp = (A(u,u))"/2. Clearly the
energy norm is equivalent to the H' norm under the given assumption.
We say that u € H}(S) is a weak solution of the equation (1.1) if and only if

Alu,¢) = (f,¢)s, Yo € Hy(S) (1.6)

where

(f> gb)s = /Sf(X)¢(X) ds.

The existence of the weak solution of equation (1.1) under Assumption 1 follows from the
standard elliptic equation theory [26, 22].

Theorem 1 Under Assumption 1, there exists a unique weak solution u € HY(S) of (1.1). More-
over, u € H*(S) and satisfies that

ullg2(sy < el fllzzs) - (1.7)
for some generic constant ¢ > 0.

We note that in the case of S = (), one can also show that, if @y > 0 in Assumption 1, there exists
a unique weak solution u € H'(S) of (1.1).

2 Finite volume discretization

2.1 Piecewise linear approximation of the surface

We assume that S is a connected compact smooth hypersurface which is the zero level set of a
signed distance function |d(x)| = dist(x,S) defined on a strip (band)

U={xeQ | dist(x,8) <d}, forsomed >0
around S such that there is a unique decomposition for any x € U,
x = p(x) + d(x)5(x) (2.1)

where p(x) € S, d(x) is the signed distance to S, and 1i(x) denotes the unit outward normal of S
at p(x). The parameter ¢ can be determined by the surface curvatures (see [24]) if S is sufficiently
smooth.

Denote by 7 = {T;}]", the curved triangulation of the surface S. And let S be approximated
by a sequence of continuous piecewise linear complex {Sh C U}, consisting of a sequence of regular
triangulations {7" = {T}™,} with the mesh size approaching to zero. In order to avoid global
double covering, we further assume that for each point y € S there is at most one point x € S” such
that p(x) =y, as suggested in [24]. Each T" contains vertices {x;}? , on S (i.e., {x;}"_; € SNS"),
see Fig. 1(left). Clearly, S" is globally of class C%!. We use m(-) to denote the area for planar
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Figure 1: Approximate mesh surface and the control volume.

regions or the length for arcs and segments. Let h; denote the size of a triangle T € 7" and define
h = max h; to be the mesh size for 7. We say that 7" is shape-regular if for any Tih eTh,

c1h < m(Th) < eoh? (2.2)

where ¢; and ¢y are positive constants independent of A. By the uniqueness of the decomposition
discussed above, we define T; = {p(x) € S | x € T*}, and let 7 = {T;}",, then S = U?_,T;. Note
that this requires in particular that p(9S") = 8.

Let the tangential gradient operator Vs, on S" be given by:

sh
vSh = (Vsh,:l? Vsh,Qa Vsh,?)) =V - ﬁh(ﬁh . V)

where 11y (x) = (np1(X), np2(x), np3(x)) is the unit outward normal to S*. Since iy, is constant on
each triangle Tih, Vs, only needs to be locally defined as a two dimensional gradient operator on
the plane formed by Tih, and the Sobolev space W™P(S") is well-defined for m < 1.
Denote by U the space of continuous piecewise linear polynomials on S” with respect to 7",
that is,
U={U"eC(S") | Ullgsn =0, U"|gy € Po(T])} (23)

where P(D) denote the space of polynomials of degree no larger than k on the planar domain D.

It is easy to see that U C H'(S") and for U" € U we have that V, U" is constant on each
triangle T/ € 7". A dual tessellation of 7" on S" can be defined as shown in Fig. 1 (right). For
each interior vertex x;, let x; = {is}.; be the set of indices of its neighbors, Qiyijij, (Where
is+1 = 11 if s = m;) be the centroid of the triangle Axixi;x;;,, and M; ;. be the midpoint of X;X;;
for i; € x;. Let th = Uj;ex;$i;,i;4, where Q;;. ;.. denotes the polygonal region bounded by x;,
M;i;y Qiiji;py and M, . In general, th is only piecewise planar and we define its projection
onto S by K; = {p(x) € S | x € K!'}. Let o denote the set of indices of all interior vertices of
T", then, K = {K;}ico and K" = {Kih}igg may be viewed as dual tessellations of S = U",T; and
Sh = U;ilTih . In the remaining part of this paper, for simplicity, we denote 4(;_1)mod(m;)+1 PY %js
if j > m; and i; € x; (x;; is a neighbor vertex of x;), otherwise denote i(; _1)mod(3)+1 by %j, if j > 3
and x;; is a vertex of Tih = AX;, X, Xig -

Denote by V the space of grid functions on S" with respect to "

V={V" | V¥ € Bo(K])}

A set of basis functions {\IJ?}Z-EU of V is given by

1, XEKZ-h;
\I’?(X):{ 0, xeS"— K
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2.2 Generalized central scheme

We may uniquely extend a function ¢ defined on S to U by

¢'(x) = ¢(p(x)), VxeU. (2.4)

Let P =1 —1n®n where ® is the tensor or outer product defined as @ ® b= c?l_)T, and it follows
that
Vsp = Vo' — (@i - Vg)ii = PV, (2.5)

due to (2.4).
We then do the similar extension from S to U. Given a function ¢, defined on S" . first project
it onto S by ¢, (y) = on(p(y)) for y € S, then we apply (2.4) again to extend ¢, to U, i.e.,

(%) = dn(p(x)), VxeU. (2.6)

Then we successfully extend ¢;, defined on S” to U in two steps. Since all extensions of functions
to U are constant along normals to S, extensions of functions defined on S and of functions defined
on S" have the same properties.

With the above preparations, a generalized central finite volume scheme for the above steady
diffusion-convection-reaction equation (1.1) can be defined as follows: find u € U such that

Als(un, én) = (f',8n)s, Y bn €V, (2.7)
where
Al (uny ¢n) =D oniAG(un, UF)
1E0
and
th,i = ¢h(xi)7
Ag(uh, \If?) = / (—alvshuh + uhﬁ’l) N pen dyp —I—/ bluy, dsp,.
oKt ' K

The corresponding lifting ulh constrained on S can then be regarded as the approximate solution
of the model problem (1.1). For the existence of the approximate solution wy, of (2.7) and related
priori error estimates, see [19] for details. Specially, for the convection-dominated case, in order to
eliminate non-physical oscillations, a up-wind finite volume scheme was given in [19]. In this paper,
we will focus our discussion on the generalized central scheme.

3 A posteriori error estimators

Before deriving local a posteriori error estimates for the finite volume discretization (2.7), let us

present some properties of lifts and extensions of functions defined above.
For x € S", define
Pp(x) = I —1ij(x) ® ip(x), (3.1)

and then for a function ¢ defined on U, we have
Vs, 6(x) = P,Vo(x), VxS (3.2)
According to (2.1) and (2.6), for ¢y, defined on S”, it holds that

V), (x) = (P — dH)Vg},(p(x)), VxeS", (3.3)
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where H : R? — R3 denotes the Weingarten map. Detailed discussions about H can be found in
[15]. Since i -1 = 1, it holds 1H = Hii = 0 and PH = HP = H (see [15]).
Then, for any x € S, we obtain that

Vi (x) = (I - dH)PV},(p(x)) = (I - dH)V,¢}, (p(x)). (3.4)
Combination of (3.2) and (3.4) gives us
Vudn(x) = Vi, ¢3,(x) = Pi(I - dH)PV, 4}, (p(x)). (3.5)
Correspondingly, for 1) € H'(S), we get
V., 0! (x) = Py(I— dH)PV(p(x)), Vxe U.

If x € Sh, (3.4) yields
Vsoh(p(x)) = (T — dH) ™'V}, (x), (3.6)

We note that the invertibility of I — dH was proved in [15]. Next, we aim to deduce VSQS% for given
¢, € SP. Using (3.5) and (3.6), we have

Ve, bn(x) = PVl (x), VxeSh (3.7)
It is easy to see that for x € S"
0=V, (x) i = Vi, dp(x) - i + (), - )V}, (x) - fip,

then it follows that

Vqﬁlh(x) . ﬁh = —T (38)
Thus we have . .
Voht) = (1- 222) V., 6n(x)
n;-n
and _ _
Vdh(p(0) = (1 - dH) 7 (1= ZE2) Y, 6,(x).
n, - -n
Define 45 () d(x))
s(x ~v(x
Nh(x) = dsh(p(x))a fh(x) = d’yh(p(X)) (39)

for any x € S”. Since S and 9S are sufficiently smooth, we have that (see [19, 22])
1= pn(x)| < ch®, 1= &(x)] < ch’.
Finally, we cite the following results from [22] for later use:

Lemma 1 For any ¢ € H'(S), there exist some generic constants cy,ca,c3,cq > 0 such that

CIHQSZHLQ(TZL) < 9llrzr) < 62||¢l||L2(Tih)a
sl g rny < N0l (ry < call 8l erm

forany T; € T.
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With all the above notations, we have

/S Vb Vet sy = /S ALV, VLl ds,

where
Al (p(x)) = Ap(x) = (iP(I ~ dH)P,(I - dH)P)(x), VxeS"

Similarly, it holds that

/S Vot dsp = /S B}, V¢, ), ds,

where
Bl (p(x)) = By (x) = (iPh(I - dH)P) (x), VxeSh

3.1 An a posteriori estimator and its reliability

In the following, we will derive a energy-type (or H!-type) a posteriori estimate for the the discrete
solution uy, i.e., to estimate ||u — ul |5 (or ||u — UthHl(s))-

Let e be an edge shared by elements 77 and T5 on which have normals ni; and 1y, respectively,
then we can define

[[alvshuh — vupl] = (alvshuh — Yup)|p, - 01 + (alvshuh — Jup,)|p, - 0,

in particular, if e C 9S), we set [[a! Vs, up, — Tuy]] = 0. By Green’s formula, it follows that for any
¢ € HY(S):

A=) = [ Fods— A0
= / flund ds;, — / aVsub - Vb ds + /(27 Vsp)ub ds — / bul ¢ ds
Sh S S S
= /Sh flung dsp — /Sa(P — AWVl - Vg ds + /S(I — BL)(7- Vso)ul, ds
- /Sh alvshuh . Vshqﬁl dsp + /Sh(f)’l . Vshgbl)uh dsp, — /Sbuﬁlgb ds
= /Sh flunet dsy, — /S a(P — ALVl - Vo ds + /(1 —BY)(T- Vso)ul ds

S
+/sh VS,L(alVShuh)gbl dSh - Z /a

al(VShuh . ﬁTih)(bl d’yh

Tihef]'h Tih
—/ Vo (Tup) - ¢ dsp + > / up@ - g - ¢ dyh—/buﬁlqﬁ ds.
Sh rheqn OT] ‘ S
heT
= Flund dsp, — / a(P — AVl Vb ds + / (I-BL)(7- Vyo)ubds
S S S
—I-/ Vsh(alvshuh)qbl dsy, — / Vsh(z_ﬂuh) ¢! dsy,
Sh Sh
1 .
—3 Z /é)Th[[alVShuh—fuuh]]qﬁld ’yh—/sbulhqﬁ ds. (3.10)

TheT
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On the other hand, for any u € C°(S"), denote by II(u) the interpolation of u onto V, i.e.
II(u) € V and II(u)(x;) = u(x;) for all i € . Then it holds that

- Z(bz / alvshuh : ﬁKh d’Yh

i€o
3

- > (-2

(a'V s By TI(6") di)

TheTh j=1 KZ‘HTZL
= > ([ Vo @Vau)n(@) dsy + / (a'V sy - 5 JTI(6') dp ) (3.11)
TheTh T o z

Z(b’/ uhﬁl . ﬁKh d’yh

1€0 6K1
/ Vo (B dsn+ [ s () ). (312)
Th 'Th 8Tih
Thus,
Al(un, (@) = =D ¢ / a'V g, up - Tign dyn + Y b / @ g dy+ [ Vupll(@) dsy
i€o ’ 1€E0 8Ki ' Sh
= — / vsh-(alvshuh)n(¢l)dsh+ Vs, - (@up) (¢ Ydsp + [ blupT(¢') dsy,
Sh Sh
+5 Z/ 0!V s, up, — Tup]]¢t dy. (3.13)
TheTh

Applying the equalities (3.10)—(3.13), we obtain
Alu — uéw ¢) = Alu— uh? ¢) + At (uh7 ((bl)) - Ag(uhv H((bl))
= flundt dsj, — / a(P — ALVl - Vo ds + /(1 —BY)(7- Vso)ul, ds
Sh S S

+/ Ve, - (@' Vg, up)(¢h — TI(¢1)) dsh—/ Vs, - (Tup) (¢! — TI(¢")) dsy,
Sh Sh
5> Ve — )6 =11

TheTh
- / v unund! dsp, + / blupIl(¢h)dsy, — / fi1(¢Y) dsp,
Sh Sh Sh
= /S (it Vi (0 Vg un = Tup) = Vup) (61 = T1(e1)) ds
—/S (a(P — A},)Vul — (I —Bh)iu),) - Vg ds
—— Z /aTh a'Vgup, — upd ]]((bl — H(qﬁl))d Yh

Thef]'h
+ [ 0= )0~ () dsy
n
= Lh+L+I3+14 (3.14)
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where

L = /S; (f'un + Vo, - (@' Ve up — T up) — b ppug) (¢' — T1(¢Y)) dsp,

L = —— Z alVgup, — upv ]](qﬁl — H((bl))d Y,
TheT’L /8Th
L o= / (a(P — ALYV, — (1 Bh)oul) - V.6 ds,
S

[4 = /S (1 — ,uh)(bluh — fl)H(¢l) dsh.

Next, we will analyze the above four terms, respectively, to get an appropriate estimator. First,

let us define
R= flup + Vs, - (a'Vg,up — tup) — b ppup,

and
= [[a'Vsup, — upi']).

Then it follows that

nlo= | X [ R 1)) dsy
TheTh
< Z HR”L2(TZ.’1)”¢l—H(¢Z)HL2(TZ.’1)
TheTh
< c Z hal| Rl 2 (om0l 2 (73
TheTh

and

Bl = [=5 3 [ -me) b

Th Th
1
< 3 > 71l 2oy 16" = T 2oy
TheTh
< c Z h 171l 2oz |19l e (s -

Thefz'h

Using Cauchy-Schwartz inequality and the trace theorem, we immediately get

1 1
1L+ L] < ¢ Z (hi”RHLZ(Tih)+5hi2”THLZ(é)Tih))H(b”Hl(Ti)
TihETh

IN

TiheTh Tihefz'h

1 1
(3 BRIy + 7 Y Bl ) 16l

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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As for I3, we have

3] < Z HG(P - Alh)vsulh (I- Bl hHL2 Vsl L2 (Ty)
TiheTh
n, ®n
< ¢ Y |lavan(P - Ay - dH)" ( o )Vshuh
TheTh
~Vi = By]0 un| o 1V 0l 2, (3.20)
Now set o
nh n
= P—A,)(I-dH I- 21
o V(P — AT - dH) (1 2, (3:21)
then we finally arrive at
I < ¢ > ||ChVayun — in(I - Bh)gluhuljz(Tih)“¢l“H1(Tih)
Tihefz'h
< B |ChVs,un — ViR (I— Bh){;luhHLQ(sh)||¢HH1(S) (3.22)

where 37 > 0 is a generic constant that also depends on the curvature information of the surface
S. For more discussions about this issue, see [15]. Also

s = ‘/S (1—uh)(bluh—fl)n(¢l)dsh‘

Z ‘/ (1 — pp) (B, — fHTT (¢l)d3h‘

TheT

Z (1 = pop) (b, — fl)||L2(Tih)‘|H(¢l)HL2(TZ’)

TheT

CB; ( Z ”(1 - ,U*h)(bth - fl)|’iQ(TZh)> §H¢”H1(S) (323)

TheT

IN

IA

IN

where 35 > 0 is again a generic constant that also depends on the curvature information.
Thus, by letting ¢ = u — uﬁl, we get an estimator as follows:

1
u—hls < o 3 Riy, + Ry, + R’ o2
Tihe']'h
where
20 o2 1 2 :
RTi}L,l = (hiHRHLZ(Tih)+Zhi”rHL2(aTih)> ’

RTih,2 = VBAIChV s, un — /(T - Bh)ﬁl ’ uhHLZ(Tihy
Rpng = VI = pn)Bun — ) gz m)-

Now let us formally define the local a posteriori error estimator n,» on each triangle Tih eTh
to be '

+ RT}L 3 (3'25)

773’% - R2 + RT}L 2

and the following result is naturally obtained:
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Theorem 2 (Reliability of nyn) Assume that u € HE(S) is the weak solution of the problem (1.6),

and u € U is the solution of the discrete problem (2.7). Then under Assumption 1, there ezists a
generic constant ¢ > 0 such that

lu—uhllz < cngn (3.26)

1/2
where npn = (ZT;LGT;L nTh) 2

Remark 1 For any curved triangle T; € T, one observes that
=) <chi,  ldx) <chi, | = Ap) )|l < ch (3.27)
for any x € T;, then the following inequalities can be easily obtained
IChlliz—iz < 1P — Apllp_ie < c2hf,

IT—Bpll22 < cshi.

Thus we know that the last two terms in (3.26) is of higher order compared with the first one.

3.2 Efficiency of the a posteriori estimator

In this section, we aim to prove the efficiency of the estimator derived in the previous section, i.e.,
Nrr does not overestimate the actual error.

Theorem 3 Assume that u € H}(S) is the solution of the problem (1.6), and u € U is the solution
of the discrete problem (2.7). We also assume that T is shape-reqular. Then under Assumption 1,
it holds that for any Tih eTh,

1/2
nen < c[IARIE2 oy (1 = bl + 1CRY syunll oy + VAR = B)Tunll )
+hillR = Rllarpy + i’ Ir = 7ll 2o | (3.28)

where ¢ is a generic constant, and R and T are piecewise linear approzimation of R and r, with
respect to the triangulation T".

Proof: The proof will follow the well-known frame work by Verfiirth [36]. First, we aim to bound
||| 2(7ny- Define the bubble function [36] ¢rh on T = Az, wi,wi, by b = H?’:l Cai) where

each Cxij € U and (;,(x;) = 6; , such that QST_h]aT_h = 0 and ¢;» = 0 outside T". Set R € U be a
piecewise linear approximation to R on Tih. Let us take ¢ = R(bT_h in (3.10), and apply Poincare
inequality and Theorem 2.2 in [2], then we obtain

/ RRopn dsp, = / aVg(u— uh) (qubTh) ds — / (u— uﬁl)ff VS(qubgp_h) ds
Tl-h ¢ i ¢

i

+ / b(u— ) R6, ds + / a(P — ALYV - Vo (RgL,) ds
T : T ‘

/T_ (I = Bj,)duj, - Vs(R' ¢l ds
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and then
‘ /Th RRopn dSh‘ < (lu = ui gy + lla(P = AL Vsupll 2 + 1T = Bj)Tug |21
'”vs(Rl(b/lI‘ih)”L2(Ti)
< (Hu — iz + IChV sy unll g2y + v/l = Bh]ﬁluh||L2(Tih)>
AR o 1V 5, (B )| 2
< C(HU —up |l + 1Ch Vs, unll 2 (rmy + ViRl = Bh]ﬁluhHLz(Tih))
1/2 — =
(AR i IR 2y (320

where the constant ¢ only depends on the shape regularity of 7.
Use Theorem 2.2 in [2] again, we then get

”RH%z(TZh) < CHR\/ (bTihuiz(Tih)

< c(/ RR¢pn dsy, —/ R(R — R)¢ppn dsh>
T,L.h v Tzh %
< C(/Th RR(ZsTih dSh + ”R - R”L2(Tih)HRQﬁTf“IE(T;‘))
< c(/T_h RRégy dsy + 1R — Rll e | Rll ) ). (3.30)

K3

Combination of (3.29) and (3.30) results in

5 5 — 1/2
IRIZ2 ey < (IR = Rllpacrmy + AR o (e = Ly

HICLV sy unll p2pny + [1v/pn (L= Bh)ﬁuhHLZ(Tm)) HRHLZ(T;E)' (3.31)

Divided by || R|| 2(rry and applying the triangle inequality, we immediately get

5 1/2
hTihHRHL?(Tih) = C<hTihHR - RHL2(TZ.’1) + HAhHL/oo(Tih)(Hu - UZHHl(Ti)

+HChV8huhHL2(TZ_h) + H\/Nh[l - Bh]ﬁﬂh“LZ(Tih))). (3.32)

Next, we try to bound the edge residual [[r|[z2() where e is an edge shared by the triangle

Tih and one of its neighbors, says Tjh, and the closure of e contains the nodes z; and x;. Let

K" = fih U f;‘, and correspondingly K = T; U T}, denote ¢, the edge bubble function [36] over K h
defined as following: Take \; 1, A; 2 be the barycentric coordinate on Tih corresponding to x;, define
¢6|Tih = \i,1\i2; then we define ¢6|Tjh similarly. Thus ¢¢|ggn = 0, ¢ = 0 outside K h and ¢, > 0
on e. Also let 7 be a piecewise linear approximation to r (i.e., ¥ € U), taking ¢ = 7¢, in (3.10),
and applying Poincare inequality and Theorem 2.4 in [2], we obtain
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| [rroean| = |~ [ aViu—ih)- Vo) ds+ [ (w—uf)r- vl ds
— / bu —ul) ¢l ds + | Rrg. dsy,
K Kh

— / a(P — ALVl V(7¢l) ds
K

+ [ a- Bb(ws(fl@é))uz as|

IA

IR 2 (semy b 17 2y + C<Hu — |1 (1) + 1CRV s unll 25
1/2 _

VBT = Bt gz e ) AR oo IV, 0 2acry (3:33)
where the constant ¢ only depends on the shape regularity of the mesh. Again, using Theorem 2.4
in [2], we have

_ -1/2 =
HVSh(T(bE)”LQ(Kh) < ch, / H7’”L2(e)a (3.34)

and

1712 < e / P < cf / rdedn + lIr = 7llzao b 172 ). (3.35)

e

Combining (3.33)-(3.35), we then get
/2 1/2 4
hap |77y < € (HAhH o (iemy (e =l ey + 1V s unll 2 acny + IR = Br) 8 up 22 cm)
+honl| Rl g2y + hTh |r — f”m(e)) (71 22 e)- (3.36)

and consequently

1 2 1/2
Btz < e (I1ARIYE eny (e = whllen a0y + €AV sy unll 2oy + V/7m(E = B unll 2 i)

Fhnl| Rl agaeny + b Ir = lzage)) - (3.37)

Notice that RT;L o and RTh 3 are higher-order terms compared with RTh from the discussion
in Remark 1, and we obtain the efficiency relation (3.28) directly from (3. 32) and (3.37). O

4 Numerical Experiments

In this section, several numerical experiments are presented to verify the reliability and efficiency of
the a posteriori estimator proposed in the previous section. All experiments are performed for the
model equation(1.1) with a given exact solution u(x). Boundary conditions are set correspondingly
if S # (). In each experiment, the initial mesh is generated by the so-called constrained centroidal
Voronoi Delaunay triangulation (CCVDT) algorithm [16] with a uniform density function. The
mesh refinement at each level is done by applying the marking strategy used in [15, 35] with the
parameter § = 0.3 (6 is used to control the refinement process [21]). The refinement process stops
after the number of nodes reaches 30,000 for each of the example. We set 87 = 35 = 1 in (3.25)
for our numerical experiments. Recently, the study of robustness of a posteriori error estimates
also attracted much attention, i.e., whether the constants in the a posteriori estimate are almost
uniform for a class of similar problems. We will also numerically address this problem.
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4.1 Example 1: Half-sphere

In this experiment, the surface S is taken to be the northern half of the unit sphere, i.e.,
S={xcR® |z} 423 +a23=1, 23 >0},
and its boundary is given by
08 = {(z1,22,0) | 21 + 23 = 0}.

The outer normal at x € S is simply (z1,x2,23). We set a(x) = 1, ¥(x) = (1,2,3), b(x) = 1, and
the exact solution u is chosen to be
1
u(x) =

22 + 23+ (1 —23)2 +0.02°

Clearly u has a peak at (0,0, 1), the top of the half sphere.

Figure 2: (From left to right) The initial mesh with 64 nodes and adaptively refined meshes with
817 nodes (Level 12) and 4098 nodes (Level 16) for Example 1.

T T T
—e— L2error —6— A posteriori estimator/Energy-norm error]
—#— Energy-norm error
—8— A posteriori error
— — - Slope=-1

— — Slope=-5

Log

Figure 3: Comparison of L?, energy-norm errors and the a posteriori error estimator 1 at all levels
for Example 1.

The first experiment takes all the coefficients to be constant. The initial mesh and the refined
meshes at steps 12 and 16 are shown in Fig. 2. It can be easily seen that the meshes around the
peak of the exact solution are well refined. In Fig. 3(left), we draw the L? and energy-norm errors
of the approximate solution uy, at all steps and also the a posteriori error estimate 14+, along with



4 NUMERICAL EXPERIMENTS 15

some reference slopes. From Fig. 3 it can be concluded that the approximate solutions converge in
the second-order measured under L? norm and the first-order under energy norm. It is also obvious
that our error estimator has the same convergence rate as the energy-norm error, see Fig. 3(right)
for details where the ratio between the error estimator 7 and the energy-norm error at each step of
refinements are presented. From this figure, we can easily observe that the ratio is quickly stable
down after the oscillations at the first few refinements and converges to a constant around 6.1.

4.2 Example 2: Cornered surface

The surface S is now selected to be
S={xeR?®| (23— 23)?> + 23 + 23 =1, 23 > 23, 21 > 0or x5 > 0}

with the boundary

0S = {(x1, 29,25 + /1 —2? +23) |23 + 23 =1, 21 > 0 or 3 > 0}
U{(0, 29,23 +\/1+a3) | =1 <2y <O}U{(21,0,4/1 —af) | =1 <z <0},

Clearly, the boundary of S is not smooth at (0,0,1). The outer normal at x € S is now given by

i(x) = t/||t]| with £ = (z1,22(1 — 2(z3 — 23)), 73 — 22). We use variant coefficients a(x) = 2+ r172,
U(x) = (1 + 21,2+ 22,3 + x3) and b(x) = 1. The exact solution u is set again to be

1

ulx) = 2?2 + 22+ (1 —23)2 +0.02°

Then the peak of error occurs at the corner (0,0, 1).

Figure 4: (From left to right) The initial mesh with 108 nodes and adaptively refined meshes with
929 nodes (Level 11) and 3067 nodes (Level 14) for Example 2.

In this experiment, we choose coefficients a and ¥ to be dependent on x (non-constants), and
the boundary is not globally smooth as in experiment 1, but with a corner. We can see that the a
posteriori estimate is still very effective, as shown in Fig. 4, where the meshes around the peak of
exact solution are refined much more heavily, as expected. In Fig. 5(left), we see that our estimator
remains the same convergence rate as the energy-norm error, and the L? error maintains a second-
order convergence. And as in experiment 1, the Fig. 5(right) gives us a steady almost-constant
ratio between the estimator n;» and the energy-norm error, after oscillations of the first few steps
of mesh refinement. Notice that the ratio is around 8.3 for this example which is quite close to that
of Example 1.
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Figure 5: Comparison of L?, Energy-norm errors and the a posteriori estimator 7 at all levels for
Example 2.

4.3 Example 3: Torus

In the third experiment, the surface S is taken to be a torus such as

(7‘1 + 7‘2)3;1

2p )2+ (22 — (1 £ r2)z2 T2)x2)2

2p S }

S:{XGR3|(x1—

where p = /2% + 22, 11 = 0.5, and ro = 1. Clearly, this surface has no boundary, and we will show
that our estimator still works well.
The outer normal at x € S is given by fi(x) = /|t| with

(w1 — &) (1.0 — 2z 4 braad) 4 ) g ((atra)ean

P 2p 2p3 2p3
o -~ _ Tri+re (7‘1+7‘2)9E% -~ (r1+r2)zawy ’
(1172 :EQ) 1.0 2p + 253 + (xl $1) 2p3

where 1 = (11 + 12)x1/2p, To = (r1 + r2)w2/2p. We let a(x) = 1 + 2%, ¥ = (0,0,0) and b(x) =
1+ 22 + 23 + 22, and the exact solution u is set to be

1
u(x) = ol +1)2 + a3 + 23 4+0.25

Obviously u has a peak at (—1,0,0).

Fig. 6 shows that the meshes around the peak are well-refined. Fig. 7 verifies the expected
convergence rates of L2, energy-norm errors and the a posteriori error estimate, as well as the
almost-constant ratio between the error estimator n;» and the energy-norm error. More specifically,
the ratio stays around 7.5 with small perturbations that is again quite close to that of Example 1
and Example 2. This numerical observation tells us that the proposed a posteriori error estimate
is also quite robust in applications. In this experiment, we show that the proposed error estimator
behaves very well even if we have a closed surface. Actually, we would like to note that the same
theoretical results can be obtained for closed surfaces with similar analysis as we did in the previous
sections.
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Figure 6: (From left to right) The initial mesh with 146 nodes and adaptively refined meshes with
869 nodes (Level 9) and 4190 nodes (Level 13) for Example 3.
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Figure 7: Comparison of L?, energy-norm error and the a posteriori error estimator 1 at all levels
for Example 3.

5 Conclusions

In this paper, we derive a residual-based explicit a posteriori error estimate for the finite volume
discretization of elliptic partial differential equations defined on a smooth surface in R3. We rig-
orously prove both the reliability and the efficiency of the proposed error estimator and verified
the theoretical results through numerical examples. The numerical results also demonstrate the
robustness of the error estimator. The on-going and future works involve studying similar a posteri-
ori error estimators on finite volume approximation for higher-order and time-dependent problems
defined on surfaces.
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