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Abstract

Let Nn denote the quotient poset of the Boolean lattice, Bn, under
the relation equivalence under rotation. Griggs, Killian, and Savage
proved that Np is a symmetric chain order for prime p. In this paper,
we settle the question of whether this poset is a symmetric chain order
for all n by providing an algorithm that produces a symmetric chain
decompostion (or SCD). We accomplish this by modifying bracketing
from Greene and Kleitman. This allows us to take appropriate “mid-
dles” of certain chains from the Greene-Kleitman SCD for Bn. We
also prove additional properties of the resulting SCD and show that
this settles a related conjecture.

∗Research supported in part by NSF grant DMS–0072187.
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Figure 1: The Hasse Diagram for B4

1 Introduction

In this paper, we prove that the necklace poset (Nn)is in fact a symmetric
chain decomposition (SCD). In Section 2, we introduce some terms related
to posets. We also give a description and proof of the Greene-Kleitman SCD
for the Boolean lattice and define and discuss known properties of Nn. In
Section 3, we introduce three lemmas without proof and use them to prove
that Nn is an SCD. In Section 4, we introduce the idea of circular matchings
and prove various properties of these matchings. In Section 5, we use circular
matchings to prove the lemmas from Section 3. This completes the proof that
Nn is an SCD. In Section 6, we modify the proof in Section 3 and use the
modified proof to answer a related conjecture. Finally, in Section 7, we offer
some open questions.

2 Symmetric Chain Decompositions in the

Boolean Lattice

We begin with some important definitions, following Anderson [1] and Engel
[3].

A chain in a poset, P , is a totally ordered subset of P . The length of a
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Figure 2: The Hasse Diagram for B4, Represented by {0, 1} Sequences

chain is one less than its cardinality. In a poset, P , for some elements x and
y of P , we say that x covers y if x > y and there is no element z such that
x > z > y. A saturated chain is a chain x1 < . . . < xk such that xi covers
xi−1 for each i > 0. If there is a unique element E in P such that E ≤ x
for all x ∈ P , we say that E is the zero element of P . We say a poset is
ranked if it has the property that for any x < y, all saturated chains from x
to y have the same length. In a ranked poset P , we define the rank, r(x), of
an element to be the length of each chain from the zero element of the poset
to x. For xi ∈ P , the saturated chain x1 < x2, <, . . . , < xk is a symmetric

chain in P if
r(x1) + r(xk) = r(P ),

where r(P ) is the maximum rank in P . A symmetric chain decomposi-

tion (or SCD) of P is a partition of P into symmetric chains C1, . . . , Ck. If
a poset has an SCD, we say it is a symmetric chain order, (or SCO).

In this paper, we are primarily interested in subposets and quotients of the
Boolean lattice, Bn, which is the poset of subsets of the set [n] = {1, . . . , n}
ordered by inclusion. A chain in Bn consists of elements Ai ∈ Bn with
A1 ⊂, . . . ,⊂ Ak. It is clear that Bn is a ranked poset, with rank function
r(A) := |A|. The subposet {Ai | i = 1, . . . , k} is a symmetric chain in Bn if
for i = 1, . . . , k − 1, we have |Ai+1| = |Ai| + 1, and |A1| + |Ak| = n. There
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are several proofs of the fact that Bn is an SCO (see [2] and [4]).
Greene and Kleitman provide a particularly nice construction of an SCD

for Bn(see [4]). To a set A ∈ Bn with A = {x1, . . . , xk}, we associate a
sequence Â of zeros and ones of length n, so that Â has a one in position i
if and only if i ∈ A. For example, in B7, the set {2, 3, 6} corresponds to the
sequence 0110010. In this paper, elements of Bn will be primarily represented
by and referred to by these sequences.

Using these {0, 1} sequences, we then perform a procedure equivalent to
matching and closing parentheses with “(” represented by a zero and “)”
represented by a one. This procedure is commonly referred to as bracketing
or parenthesis matching. Formally, starting at the left, when we encounter a
zero, it becomes (possibly temporarily) unmatched. When a one is encoun-
tered, it is matched to the rightmost unmatched zero, and this zero is now
matched as well. If there are currently no unmatched zeros, then this one
is unmatched. We continue in this manner until we reach the end of the
sequence. We should now have three sets associated with the given sequence
x: The set of positions of unmatched zeros, U0(x), the set of positions of
unmatched ones, U1(x), and finally, the set of matchings, M(x) := {(a, b) :
a zero in position a is matched to a one in position b }. For example, if
x = 1011011100010110, then the parenthesis version is )())()))((()())(, and
when we perform the matching, we get:

U0(x) = {9, 16}

U1(x) = {1, 4, 7, 8}

M(x) = {(2, 3), (5, 6), (10, 15), (11, 12), (13, 14)}

We should establish an important fact about these sets. If a ∈ U1(x) and
b ∈ U0(x), then a < b. That is, all unmatched ones precede all unmatched
zeroes. (If b < a, then the zero in position b was encountered before the one
in position a. So, position b consisted of an unmatched zero when the one in
position a was encountered, and the one in position a would not have become
unmatched.)

We next introduce a function τ which acts on the {0, 1} sequences by
changing the leftmost unmatched zero to a one. The function τ is defined on
all x ∈ Bn such that U0(x) 6= ∅. By the fact above, we observe that:
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U0(τ(x)) = U0(x) \ {i}

U1(τ(x)) = U1(x) ∪ {i}

M(τ(x)) = M(x)

where i = min(U0(x)). We also define τ−1 which changes the rightmost
unmatched one to a zero. It is defined on all x ∈ Bn such that U1(x) 6= ∅.
We observe that:

U0(τ
−1(x)) = U0(x) ∪ {i}

U1(τ
−1(x)) = U1(x) \ {i}

M(τ−1(x)) = M(x)

where i = max(U1(x)). From the observations above, we conclude that for
x ∈ Bn such that U0(x) 6= ∅, we have that τ−1(τ(x)) = x. Similarly, for
x ∈ Bn such that U1(x) 6= ∅, we have τ(τ−1(x)) = x. Thus, τ(x) is one-to-
one.

The following theorem gives a construction of the Greene-Kleitman SCD
for Bn.

Theorem 2.1 (Greene and Kleitman [4]) The following is a symmetric chain
decomposition of Bn:

S = {Cx|x ∈ Bn, U1(x) = ∅}

Proof. Using the facts above about τ , we construct the chains of the
Greene-Kleitman SCD for Bn as follows. For x in Bn with U1(x) = ∅ and
|U0(x)| = k, let Cx = {x, τ(x), τ 2(x), . . . , τk(x)} be a chain in the decompo-
sition. We need to show that Cx is in fact symmetric. Note that

|x| + |τk(x)| = |M(x)| + |U1(x)| + |M(τk(x))| + |U1(τ
k(x))|

= 2|M(x)| + k

= n,

because 2|M(x)| + k is simply the total number of zeros and ones in x.
Any matching accounts for two positions, and any unmatched position in
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Figure 3: The Greene-Kleitman SCD for B4

x is an unmatched zero. So, Cx is symmetric. The fact that τ(x) is one-
to-one proves that the chains in S are disjoint. Further, for y ∈ Bn with
k = max{i | U0(τ

−i(y)) > 0}, let x = τ−k−1(y). By our choice of k, we see
that U1(x) = ∅. So the chain Cx is in S. Note also that τk+1(x) = y, so that
y ∈ Cx. Since x was chosen arbitrarily, S is a partition of Bn. �

We now define several additional properties of posets, in the manner of
[1] and [3]. Let P be a ranked poset with maximum rank M where Pk = {x ∈
P : rank(x) = k}. Then, P is rank-symmetric if , given k = 0, 1, 2, . . . , M ,
we have |Pk| = |PM−k|. Further, P is rank-unimodal if there exists j such
that |P0| ≤ |P1| ≤ . . . ≤ |Pj| and |Pj| ≥ |Pj+1 ≥ . . . ≥ |PM |. The poset P is
strongly Sperner if, for all k = 1, 2, . . . , M + 1, the union of the k middle
levels of P is a union of k antichains of maximum size. A poset is Peck if
it is rank-symmetric, rank-unimodal, and strongly Sperner. Finally, given a
group G of automorphisms of a poset P , the set of orbits of the automorphism
form a quotient of P under G(or P/G) ordered in the following way: For
orbits of G, A and B, we have A ≤P/G B if and only if there are a ∈ A and
b ∈ B such that a ≤P b. It is simple to see that the this structure is a poset.

We are now ready to define necklaces and the necklace poset.
First, we define σ, the function that rotates an element of Bn. For x ∈ Bn,

with x = (x1, x2, . . . , xn), (xi ∈ {0, 1}, i = 1, 2, . . . , n) , define

σ(x) = (xn, x1, . . . , xn−1).

6
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Figure 4: The Greene-Kleitman SCD for B4, Represented by {0, 1} Sequences

For x, y ∈ Bn, y we say is a rotation of x (or y ∼ x) if for some k, y = σk(x).
It is clear that “∼” is an equivalence relation on Bn.

Definition 2.2 The necklace poset , Nn is the quotient poset of Bn under
the relation ∼, where for X, Y ∈ Nn, X ≤ Y if there exist x ∈ X and y ∈ Y
(x, y ∈ Bn) with x ⊆ y. [7]

We now discuss Nn in relation to the previously defined properties. By
definition, the necklace poset is a quotient of the Boolean lattice, because its
elements are orbits of the elements of Bn under the rotation automorphism.
Stanley showed that any quotient of the Boolean lattice is a Peck poset.

Theorem 2.3 (Stanley [12]) If P is a unitary Peck poset, then P/G is Peck.

Stanley also proved that Bn is unitary Peck for all n (see [12]). There-
fore, Nn satisfies the properties of rank symmetry, rank unimodality, and is
strongly Sperner.

Griggs(see [8]) showed that the LYM property (which we will not define
here), together with rank-symmetry and rank-unimodality, implies that a
poset has a symmetric chain decomposition. For prime p, it may be easily
verified that Np satisfies the LYM property, and therefore has an SCD. It is
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not known whether Nn has the LYM property in the general case. However,
the fact that the general Nn is Peck lent some support that it had an SCD.

In a paper on symmetric venn diagrams, Griggs, Killian and Savage (see
[7]) gave an elegant explicit construction of an SCD for Np, with p prime.
This SCD has an additional property, the chain cover property, which we
will discuss in Section 5. They used the idea of bracketing from the Greene-
Kleitman SCD for Bn, which we also use in this paper. They also used the
idea of block codes to choose a representative in Bn for each element of Nn.
Denote by Rn this subposet of representatives. (Note that Rn ⊂ Bn.)

Theorem 2.4 (Griggs, Killian, and Savage [7]) If n is prime, Rn has a
symmetric chain decomposition with the chain cover property.

Jiang and Savage [11] applied some of the methods in [7] to the case of
composite n. They were able to narrow the problem to that of finding an
SCD for the elements of Nn with periodic block code. It is possible to find
SCDs for the elements of Nn with periodic block codes for n up to 16. So,
there exist SCDs for Nn with n ≤ 16.

3 The Necklace Poset is an SCO

In this section, we prove that Nn has an SCD in the general case. The proof
that Nn has an SCD utilizes three lemmas. The lemmas demonstrate that
we can perform certain operations on the Greene-Kleitman SCD for Bn while
preserving the property that each chain is symmetric. These operations allow
us to remove all but one representative from each equivalence class in Nn,
leaving a symmetric chain decomposition for Nn. In this section, we assume
the lemmas and use them to prove the following theorem. We will prove the
lemmas in Section 5.

Theorem 3.1 For all positive integers n, Nn is a symmetric chain order.

Proof. We define a set Mn, consisting of x ∈ Bn such that x achieves the
maximum number of unmatched ones over all rotations, that is,

Mn = {y ∈ Bn : |U1(y)| = max{|U1(τ
k(y)| : k = 1, 2, . . . , n}}.

We use the set Mn in the first two lemmas.
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Figure 6: SCD for B6 With Members of Mn in Bold
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Figure 7: SCD for M6 With Duplicate Representatives of N6 Members Indi-
cated

Lemma 3.2 Let x ∈ Mn. Then, if |x| < n
2
,

τ i(x) ∈ Mn, 1 ≤ i ≤ n − 2|x|

and if |x| > n
2
,

τ−i(x) ∈ Mn, 1 ≤ i ≤ 2|x| − n.

That is, if x ∈ Mn and C is the chain containing x in the Greene-Kleitman
SCD of Bn, all of the elements of the smallest symmetric “sub-chain” of C
that contains x are also in Mn.

This lemma allows us to remove all of the elements of Bn that are not
also in Mn. Note that the resulting chains still contain at least one represen-
tative of every element of Nn. We will refer to the remaining chains as the
SCD for Mn. The next two lemmas allow us to eliminate remaining duplicate
representatives of elements of Nn.

Lemma 3.3 Let x, y ∈ Mn with x ∼ y.
If |x| ≥ n

2
, then τ(x) ∼ τ(y) or {τ(x), τ(y)} ∩ Mn = ∅.

If |x| ≤ n
2
, then τ−1(x) ∼ τ−1(y) or {τ−1(x), τ−1(y)} ∩ Mn = ∅.

10
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Figure 8: Lemma 3.3 Illustrated
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Lemma 3.4 Let x, y ∈ Bn with |x| = |y| = k < n
2
. Then,

x ∼ y ⇐⇒ τn−2k(x) ∼ τn−2k(y)

In the rest of the proof, we describe an algorithm that produces an SCD
for Nn from the SCD for Mn. Each iteration produces an SCD for a subset
Dk of Bn. We always preserve the property that each necklace element has
at least one representative in Dk, and Dk+1 ( Dk.

Let C0
x be the chain in the Greene-Kleitman SCD for Bn, restricted to

Mn, that contains x. Also, let D0 = Mn. At step j in the iteration, Cj
x

is the chain containing x, and Dj is the set of elements of Bn remaining
in the poset. At step j let x, y ∈ Mn with x ∼ y, |x| = k. Without
loss of generality, suppose that |x| ≥ n

2
. Otherwise, by Lemma 3.4, we can

choose τn−2k(x) and τn−2k(y). We also assume that Cj
x is at least as long as

Cj
y. By repeated application of Lemma 3.3, we get that for all i ≥ 0 with

τ−i(y) ∈ Mn, τ−i(x) ∼ τ−i(y). This corresponds to the “bottom tail” of Cj
y .

Define the “bottom tail” by:

T j
b := {τ−i(y) | i ≥ 0, τ−i(y) ∈ Mn}

Using Lemma 3.4, we get that τn−2k(x) ∈ Mn. Then, applying Lemma 3.3
repeatedly, we get that for all i ≥ 0 with τn−2k+i(y) ∈ Mn, τn−2k+i(x) ∼
τn−2k+i(y). This corresponds to the “top tail” of Cj

y . Define the “top tail”
by:

T j
t := {τn−2k+i(y) | i ≥ 0, τn−2k+i(y) ∈ Mn}

We then remove the tails of Cj
y . That is, we set

Cj+1

∗ = Cj
y \ (T j

b ∪ T j
t )

Dj+1 := Dj \ (T j
b ∪ T j

t )

The new chain, Cj+1
∗ is symmetric, and we have only removed members which

were rotations of members of the chain containing x. For z ∈ Dj+1 \ Cj
y, set

Cj+1
z := Cj

z . Also, for z ∈ Cj+1
∗ , let Cj+1

z := Cj+1
∗ . The set Dj+1 has at least

one fewer duplicate representative than Dj, and the following is an SCD for
Dj+1:

⋃

z∈Dj+1

Cj+1

z

If there remain x, y ∈ Dj+1 with x ∼ y, repeat this process. If not, we have
an SCD for Nn. So given the three lemmas, the theorem holds. �
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4 Circular Matchings

To prove the lemmas, we introduce the idea of circular matching, which re-
mains structurally unchanged under rotation. Intuitively, we arrange the
string of zeros and ones in a circle and match them in the same manner
Greene and Kleitman did in a straight line. Formally, we must pick a starting
position, although we will later prove that the end result does not depend on
this starting position. This starting position, together with the necklace ele-
ment, corresponds to an element x of Bn. We first perform the normal Greene
and Kleitman parenthesis matching process, forming sets U0(x), U1(x), and
M(x). Then, we iteratively form the sets CU0(x), CU1(x), and CM(x),
the set of circulary unmatched zeros, circulary unmatched ones, and circular
matchings, repsectively. Start with CU0(x) = U0(x), CU10(x) = U1(x), and
CM0(x) = M(x). At step i, let

a := min(CU i
0(x))

b := max(CU i
1(x)).

Note here that b < a. Then define,

CM i+1(x) := CM i(x) ∪ {(a, b)}

CU i+1

0 (x) := CU i
0(x) \ {a}

CU i+1

1 (x) := CU i
1(x) \ {b}

Continue until CU i
0(x) = ∅ or CU i

1(x) = ∅. At this point, set

CM(x) := CM i(x)

CU0(x) := CU i
0(x)

CU1(x) := CU i
1(x)

We next establish some properties of these sets. As we can observe in
figure (insert), there is an intuitive order of the matchings with the relation
“inside of.” Define:

(a, b)∗ =

{

I(a, b) if a < b
I(0, b) ∪ I(a, n) if a > b

We use the notation I(a, b) to refer to the open interval (a, b) in order to
avoid confusion with our notation for the circular matching (a, b).
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Proposition 4.1 For x ∈ Bn, the set CM(x) with the order (a1, b1) <m

(a2, b2) if (a1, b1)
∗ ⊂ (a2, b2)

∗, is a partial order such that (a1, b1) and (a2, b2)
are incomparable if and only if (a1, b1)

∗ ∩ (a2, b2)
∗ = ∅.

Proof. First, it is clear that the above induces a partial order on CM(x).
Next, if (a1, b1)

∗∩ (a2, b2)
∗ = ∅, then clearly (a1, b1) and (a2, b2) are incompa-

rable. We prove the converse by cases. Assume (a1, b1)
∗ ∩ (a2, b2)

∗ 6= ∅, and
we assume, without loss of generality, that a1 < a2.

Case 1: b1 < b2 < a1 < a2

Both matchings are in CM(x) \ M(x). So at the step that the circular
matching (a1, b1) was added to CM i+1(x), a1 = min(CU i

0(x)) and b1 =
max(CU i

1(x)). This means that the circular matching (a2, b2) had to have
been added first. But using the same reasoning, this also couldn’t have
happened. So, this case simply never happens.

Case 2: b2 < b1 < a1 < a2

Here, (a2, b2)
∗ = I(0, b2) ∪ I(a2, n) ⊂ I(0, b1) ∪ I(a1, n) = (a1, b1)

∗, so that
(a2, b2) <m (a1, b1).

Case 3: a1 < b1 < b2 < a2

Here, (a1, b1)
∗ = I(a1, b1) ⊂ I(0, b2) ∪ I(a2, n) = (a2, b2)

∗, so that (a1, b1) <m

(a2, b2).
Case 4: a1 < b2 < b1 < a2

Here, in the initial Greene-Kleitman matching phase, b2 was encountered
when a1 was an unmatched zero, so a1 would have been matched to b2 instead.
This case never happens.

Case 5: a1 < a2 < b1 < b2

Similar to Case 4, in the initial Greene-Kleitman matching phase, a1 and
a2 were both unmatched zeros when b1 was encountered. Since a2 > a1, b1

would have been matched to a2 instead. This case never happens.
Case 6: a1 < a2 < b2 < b1

Here, (a2, b2)
∗ = I(a2, b2) ⊂ I(a1, b1) = (a1, b1)

∗, so that (a2, b2) <m (a1, b1).
Case 7: b1 < a1 < a2 < b2

Here, (a2, b2)
∗ = I(a2, b2) ⊂ I(0, b1) ∪ I(a1, n) = (a1, b1)

∗, so that (a2, b2) <m

(a1, b1).
Case 8: b2 < a1 < a2 < b1

During the initial Greene-Kleitman matching phase, a1 and a2 were both
unmatched zeros when b1 was encountered. Since a2 > a1, b1 would have
been matched to a2 instead. This case never happens.
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Case 9: b1 < a1 < b2 < a2

During the initial Greene-Kleitman matching phase, a1 was an unmatched
zero when b2 was encountered, so a1 would have been matched to b2. This
case never occurs.

Case 10: b2 < a1 < b1 < a2

Here, (a1, b1)
∗ = I(a1, b1) is disjoint from I(0, b2)∪ I(a2, n) = (a2, b2)

∗, which
contradicts our assumption.

Case 11: a1 < b1 < a2 < b2

Here, (a1, b1)
∗ = I(a1, b1) is disjoint from I(a2, b2) = (a2, b2)

∗, which contra-
dicts our assumption.

Case 12: a1 < b2 < a2 < b1

During the initial Greene-Kleitman matching phase, a1 was an unmatched
zero when b2 was encountered, so a1 would have been matched to b2. This
case never occurs. �

This proposition verifies that the circular matching procedure is equiv-
alent to the parenthesis matching and closing process. Thinking of circular
matching in this manner, we first match all of the minimal elements of the
poset in Proposition 4.1. Then, we remove them from the poset and repeat
the process. These matchings are illustrated in figure ?????????????.

We have previously alluded to the fact that the sets CM(x), CU0(x), and
CU1(x) are “structurally unchanged” under rotation. In fact, the sets above
simply rotate as we rotate x, as it appears in the figure above. To make
notation simpler, in the rest of the paper all addition will be performed
modulo n. We now prove the following proposition:

Proposition 4.2 Let x ∈ Bn. Then, for i ∈ {0, . . . , n − 1},

CM(σi(x)) = {(a + i, b + i) : (a, b) ∈ CM(x)}

CU0(σ
i(x)) = {a + i : a ∈ CU0(x)}

CU1(σ
i(x)) = {a + i : a ∈ CU1(x)}

Proof. First note that it is enough to show that if (a, b) ∈ CM(x), then
(a + 1, b + 1) ∈ CM(σ(x)). We can prove this by using the fact that the
circular matchings are equivalent to the procedure of closing parentheses. In
other words, we first close and remove the sequences that read 01 (moving
clockwise.), iterating this process until there are no more such sequences.
In the case of linear Greene-Kleitman matching, this is when the sequence
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consists of all of the ones followed by all of the zeros. In the circular case,
this is when the necklace consists of either all ones or all zeros or is the empty
necklace. It is easy to see that, in the circular case, if there is a sequence
01 starting at position a (moving clockwise) in x, then (a, a + 1(modn)) ∈
CM(x). It is clear that if such a sequence is in x, there will be a sequence
01 starting in position a+1 in σ(x). So then (a+1, a+2) ∈ CM(σ(x)). We
can then remove the sequences corresponding to these matchings. The rest
follows by induction on the size of the necklace. �

Proposition 4.3 The structure of the poset of circular matchings is pre-
served under rotation. That is, if (a1, b1) <m (a2, b2), then (a1 +1, b1 +1) <m

(a2 + 1, b2 + 1).

Proof. This follows immediately from Propositions 4.1 and 4.2. �

Proposition 4.4 Let X ∈ Nn. For any representative x ∈ Bn of X,
k ∈ {1, . . . , n}, the following holds: The matchings in CM(σk(x)) but not
M(σk(x)) correspond to matchings in CM(x) that cross the space between
positions k − 1 and k.

Proof. M(x) consists of matchings in CM(x) that do not cross the space
between positions n − 1 and 0. By rotating x, we see that the matchings
in M(σk(x)) correspond to matchings in CM(x) that do not cross the space
between positions k − 1 and k. �

We say that the matchings that are in CM(σk(x)) but not M(σk(x))
are “cut” by the rotation of x that starts with this position k. The next
proposition states that the elements of Mn are in fact the rotations that
“cut” the most circular matchings.

Proposition 4.5 Let X ∈ Nn. For any representative x ∈ Bn of X, the
following holds. Let k ∈ {1, . . . , n} be such that the number of matchings
in CM(x) that cross the space between positions k − 1 and k is maximized.
Then, σk(x) ∈ Mn.

Proof. It is simple to see that

|U1(σ
k(x))| = |CU1(σ

k(x))| + |CM(σk(x))| − |M(σk(x))|.

Since the first term of the sum is fixed under rotation, |U1(σ
k(x))| is max-

imized when |CM(σk(x))| − |M(σk(x))| is maximized. This quantity, by
Proposition 4.4, is just the number of matchings in CM(x) that cross the
space between positions k − 1 and k. This is maximal by assumption. �
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Proposition 4.6 Let x ∈ Bn. Then,

CM(x) = CM(τn−2k(x)).

In fact, if x1 < x2 < . . . < xj is a chain in the Greene-Kleitman SCD, then

CM(x1) = CM(xj) ⊂ CM(x2) = CM(xj−1) ⊂ . . . ⊂ CM(x j

2

) = CM(x⌊ j+1

2

⌋)

Proof. We claim that, in the poset of circular matchings, there are no
(a, b) ∈ CM(x) \M(x), (c, d) ∈ M(x), with (a, b) <m (c, d). To demonstrate
the claim, suppose that such a matching exists, and note that n ∈ (a, b)∗,
because b < a. Also, note that n 6∈ (c, d)∗, because c < d. So, (a, b)∗ 6⊆ (c, d)∗,
which implies that (a, b) 6≤m (c, d). By Proposition 4.1, since n is in each
(a, b)∗ in CM(x) \ M(x), CM(x) \ M(x) is totally ordered.

By properties of the Greene-Kleitman SCD of Bn, we know that M(x) =
M(τn−2k(x)). So, it is enough to show that CM(x)\M(x) = CM(τn−2k(x))\
M(τn−2k(x)). Note that while |y| < n/2, CM(y) ⊆ CM(τ(y)). If |y| ≥ n/2,
then CM(y) ⊃ CM(τ(y)). During each step in the circular matching process,
the leftmost circularly unmatched one is paired to the rightmost circularly
unmatched zero. If (a, b) is a circular matching made earlier in the circular
matching process than (c, d)), then b is to the left of d, and a is to the right
of c. In other words, b < d and c < a. So, (a, b) <m (c, d). If |y| < n/2, then
there are more zeros than ones, so all of the ones are circularly matched.
The one added by τ(y) is to the right of all of the circularly matched ones in
U1(y), so if it is circularly matched, it will be circularly matched last. (Since
|y| < n/2, the zero we changed was not circularly matched, and this new one
will not affect any of the circular matchings already present in CM(y).) In
other words, the new circular matching (if any) made with this new one will
be the greatest element in the chain of matchings in CM(τ(y)) \ M(τ(y)).

Now, we assume |y| ≥ n/2. In this case, all of the zeros are circularly
matched. So, when we apply τ , we change the leftmost (smallest) element
of U0(y) to a one. This zero was circularly matched, so we are removing
a circular matching. But, because the zero was the leftmost, the circular
matching we remove is the maximal matching in the chain of matchings in
CM(y) \ M(y). �

5 Three Lemmas

In this section, we will use the properties of circular matching to prove the
lemmas.
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Proof of Lemma 3.2. Note that for the first part of the lemma, it is
enough to show that if x ∈ Mn with |x| = k < n/2, then τ(x) ∈ Mn. Let x
be as above. Then we know that M(x) = M(τ(x)). By changing a zero to
a one, at most one circular matching can be added. By Proposition 4.6, if
k is not a middle level, then CM(x) ⊂ CM(τ(x)). So CM(τ(x)) \ M(τ(x))
has one more circular matching than CM(x) \ M(x). Thus, τ(x) also has
the maximum cardinality of CM(τ(x)) \ M(τ(x)) over all rotations of τ(x).
Thus, by Propositions 4.4 and 4.5, τ(x) ∈ Mn. If k < n/2 is a middle level,
then by Proposition 4.6, CM(x) = CM(τ(x)), so by the same reasoning as
above, τ(x) ∈ Mn. This completes the proof of the first part of the lemma.
Now, suppose |x| = k > n/2. By Proposition 4.6, CM(x) = CM(τn−2k(x)).
So, τn−2k(x) ∈ Mn and |τn−2k(x)| < n/2. So, by the first part of the lemma
we have already proven, τ(τn−2k(x)) − τn−2k+1(x) ∈ Mn. But by applying
Proposition 4.6 again, CM(τn−2k+1(x)) = CM(τ−1(x)). Thus, τ−1(x) ∈ Mn.

�

Proof of Lemma 3.3. Let x, y be as in the statement of the lemma with
|x| ≥ n/2 and y = σk(x). By Propositon 4.6, τ(x) and τ(y) are obtained
from x and y, respectively by changing the zero in the maximal matching
in CM(x) \ M(x) and CM(y) \ M(y) to a one. Let (a, b) be the maximal
matching in CM(x)\M(x). First assume that (a+k, b+k) ∈ CM(y)\M(y).
If (a+k, b+k) is not maximal in CM(y)\M(y), then there was some matching
in M(x) that covered (a, b). We saw in the proof of Proposition 4.6 that this
isn’t possible. So, (a+k, b+k) is maximal in CM(y)\M(y). Then, (a+k, b+k)
is the matching removed by τ(y). Thus, CM(τ(y)) is a rotation of CM(τ(x)),
which implies that τ(x) ∼ τ(y). Next, assume that (a + k, b + k) ∈ M(y).
Then, if (c, d) is another matching in CM(x) \ M(x), (c, d) ⊂ (a, b) means
that (c+k, d+k) ⊂ (a+k, b+k). Therefore, (c+k, d+k) ∈ M(y). Essentially,
this means that the set of circular matchings cut by x is disjoint from the
set of circular matchings cut by y. Note that since x and y are both in Mn,
and they have the same number of ones, |CM(x)\M(x)| = |CM(y)\M(y)|.
Then,

|CM(τ(x)) \ M(τ(x))| = |(CM(x) \ M(x)) \ {(a, b)}|

= |CM(x) \ M(x)| − 1

= |CM(y) \ M(y)| − 1

(1)

On the other hand,

|CM(σk(τ(x))) \ M(σk(τ(x)))| = |CM(y) \ M(y)| (2)
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So, τ(x) 6∈ Mn.
In a symmetrical argument, we also get that τ(y) 6∈ Mn. �

Proof of Lemma 3.4. Since x ∼ y, by Proposition 4.2, CM(x) is
a rotation of CM(y). By Proposition 4.6, CM(x) = CM(τn−2k(x)) and
CM(y) = CM(τn−2k(y)). So, CM(τn−2k(x)) is a rotation of CM(τn−2k(y)).
Since |τn−2k(x)| = |τn−2k(y)| > n/2, all of the circularly unmatched positions
are ones. Thus, τn−2k(x) ∼ τn−2k(y). �

The proofs of the lemmas complete the proof of Theorem 3.1.

6 Additional Properties and Related Conjec-

tures

A motivating application for finding symmetric chain decompositions for Nn

is related to finding symmetric Venn diagrams.

Definition 6.1 An independent family is a collection of n curves in the
plane such that every subset of [n] is represented at least once in the regions
formed by the intersections of the interiors of the curves. A Venn diagram

is an independent family where each subset is represented exactly once. [11]

Definition 6.2 A rotationally symmetric independent family is an
independent family of n congruent curves such that each curve is a rotation
of the other curves by some multiple of 2π/n radians about a fixed point.
A rotationally symmetric Venn diagram is a rotationally symmetric
independent family that is also a Venn diagram. [6]

Grünbaum [5] proves that any independent family of n curves must have
at least 2 + n(|Nn| − 2) regions. He also shows that rotationally symmetric
independent families of n curves exist for all n. He asks if a rotationally
symmetric independent family of n curves with 2 + n(|Nn| − 2) regions can
be found for each n.

Griggs, Killian, and Savage show in [7] that rotationally symmetric Venn
diagrams of p curves exist when p is prime. It is simple to see that for prime p,
any Venn diagram has the minimum number of regions. That is, the number
of regions is |Bp|, which is equal to 2 + p(|Np| − 2). In order to prove that
these Venn diagrams exist, this method required the existence of an SCD for
Np with an additional property, defined below.
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Definition 6.3 Let starter(C) be the element of minimum rank in the chain
C, and let terminator(C) be the element of maximum rank in the chain C.
We say that chain C∗ covers chain C if there is an element x ∈ C∗ such that
starter(C) covers x and an element y ∈ C∗ such that y coversterminator(C).
Let A be an SCD in a finite ranked poset. A has the chain cover property

if each chain in A that is not of maximal length is covered by some other
chain in A. [7]

Jiang proved that, given an SCD with the chain cover property for Nn,
there exists a rotationally symmetric independent family of n curves, using
the same methods as [7].

Theorem 6.4 (Jiang [10]) Let Rn, a subposet of Bn, be a complete set of
representatives of the elements of Nn such that each necklace element is rep-
resented exactly once. If there exists an SCD of Rn with the chain cover
property, then there exists a rotationally symmetric independent family of n
curves, with number of regions that reaches the lower bound, 2+n(|Nn| − 2).

By being slightly more specific about which representatives we delete, we
can construct an SCD for Nn that has the chain cover property. By the
theorem above, this will give us a rotationally symmetric independent family
of n curves with 2+n(|Nn| − 2 regions. This settles Grünbaum’s question in
[5].

Theorem 6.5 For all n, Nn has an SCD with the chain cover property.

Proof. First, we show that the Greene-Kleitman SCD for Bn, restricted
to Mn, has the chain cover property. Let C be a nonempty chain in the
Greene-Kleitman SCD for Bn, restricted to Mn. Note that if a chain is
not shortened when we restrict it to Mn, then the element of smallest rank
has no unmatched ones. Unless the element consists of all zeros, there is
some rotation of it with at least one unmatched one. Therefore, the only
unmodified chain is the chain beginning with (0, 0, . . . , 0). This is the longest
chain in the SCD, and it doesn’t need to covered by any other chain. Now,
we can assume that C was shortened when we restricted it to Mn. Let x =
starter(C), and y = terminator(C). Then, τ−1(x) 6∈ Mn and τ(y) 6∈ Mn.
So then, some rotation σk(τ(y)) is in a longer chain in the SCD restricted to
Mn. By Lemma 3.4, σk(τ−1(x)) is in the same chain. So, C is covered by
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this longer chain. Therefore, the Greene-Kleitman SCD for Bn, restricted to
Mn, has an SCD with the chain cover property.

Next, we iteratively remove duplicate representatives in a way that pre-
serves the following properties: The resulting chains form symmetric chains
satisfying the chain cover property, and, for all x ∈ Nn, all chains containing
a representative of x are of the same length. Lemmas 3.2, 3.3, and 3.4 show
that the SCD for Mn satisfies both properties. For each iteration, we choose
a chain C that contains an element of Nn that is duplicated in at least one
other chain. Then, we choose x ∈ C with |x| ≥ n/2 such that |x| is closest
to n/2. Suppose that the chains C1, C2, . . . , Ck are the other chains in the
SCD of Mn that contain rotations of x. If |x| = n/2, then we simply delete
the chains C1, C2, . . . , Ck. We are only deleting elements that are rotations of
elements in C. So, the resulting SCD still contains at least one representative
of each element of Nn, and it satisfies the properties above.

Now, assume that |x| < n/2. In this case, we delete the rotations of
{x, τ−1(x), τ−2(x), . . .}∪ {τn−2k(x), τn−2k+1(x), τn−2k+2(x), . . .} in the chains
C1, C2, . . . , Ck. Call the shortened chains C ′

1, C
′
2, . . . , C

′
k . Now, all of the

elements of C are unique to the remaining SCD, so C will not be modified
again. Each of C ′

1, C
′
2, . . . , C

′
k are covered by C, preserving the chain cover

property.
If some element in a chain C ′

1, C
′
2, . . . , C

′
k is duplicated, it must have been

in a chain originally the same length as C1, C2, . . . , Ck. Using Lemma 3.4 this
means that some rotation of x was also in this chain. So, if any elements of
C ′

1, C
′
2, . . . , C

′
k are not unique in the resulting SCD, they must be duplicated

only in one or more chains in C ′
1, C

′
2, . . . , C

′
k. So, any remaining duplicated

elements remain in chains of equal length. Therefore, both of the above
properties are preserved.

In each iteration, we reduce the number of duplicated elements of Nn. By
iterating until there are no more duplicated elements, we get an SCD for Nn

that has the chain cover property. �

The following corollary follows from Theorems 6.4 and 6.5.

Corollary 6.6 For all n, there exists a rotationally symmetric independent
family of n curves with 2 + n(|Nn| − 2) regions.
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7 Open Questions

A quotient closely related to Nn is the “true necklace,” meaning Bn/G, where
G is the group of automorphisms that includes both rotations and inversions.
Does the “true necklace” have an SCD? By Stanley [12], we know that Bn/G
is also Peck. One approach to this problem would be to try to show that
Bn/G has the LYM property or the normalized matching property. Another
approach would be to define a new type of matching or structuring that
allows one to prove Lemmas 3.2, 3.3, and 3.4 (or other similar lemmas) for
this quotient of Bn. The “true necklace” is actually a quotient of Nn, which
leads to a third approach. This strategy would involve starting with an SCD
given in this paper for Nn and show that there is some method to remove
the “extra” representatives of the elements of Bn/G.

Let G and H be two groups of automorphisms on Bn, and Kthe group of
automorphisms generated by G and H . Then, if Bn/G and Bn/H are SCOs,
is Bn/K also an SCO?

Are there other quotients of the Boolean lattice that have SCDs? Can
we show that in general, any quotient of Bn is an SCO?

Instead of using the Boolean lattice, use the poset of subsets of a multiset
under the rotation automorphism. This would correspond to strings with not
only zeros and ones, but each position is filled by a number in {0, 1, . . . , k}.
Visually, these necklaces could have k + 1 different “colors” of beads.

Acknowledgements. I would like to thank Jerrold Griggs for suggesting
this problem and allowing me to stubbornly stick with it, providing numerous
related papers, and proofreading and commenting on countless drafts.
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[6] Branko Grünbaum, Venn diagrams and independent families of sets,
Mathematics Magazine 48 (1975), 12-23.

[7] Jerrold R. Griggs, Charles E. Killian, and Carla D. Savage, Venn dia-
grams and symmetric chain decompositions in the Boolean lattice. The
Electronic Journal of Combinatorics 11 (2004).

[8] Jerrold R. Griggs, Sufficient conditions for a symmetric chain order.
SIAM J. Appl. Math. 32 (1977), 807-809.

[9] Jerrold R. Griggs, Symmetric chain orders, Sperner theorems, and loop
matchings. 1977. Ph.D. dissertation, M. I. T.

[10] Zongliang Jiang, Symmetric chain decompositions and indepen-
dent families of curves. 2003. M.S. Thesis, North Carolina State
University, http://www.lib.ncsu.edu/theses/available/etd-07072003-
035905/unrestricted/etd.pdf.

[11] Zongliang Jiang and Carla D. Savage, On the existence of symmetric
chain decompositions in a quotient of the Boolean lattice. preprint.

[12] Richard P. Stanley, Quotients of Peck posets. Order 1 (1984), 29-34.

25


	IMI_Cover_07_09.doc
	2007:09
	K. K. Jordan 

	Kelly1.pdf

