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DECOMPOSITION OF WEIGHTED TRIEBEL-LIZORKIN AND
BESOV SPACES ON THE BALL

GEORGE KYRIAZIS, PENCHO PETRUSHEV, AND YUAN XU

Abstract. Weighted Triebel-Lizorkin and Besov spaces on the unit ball Bd

in Rd with weights wµ(x) = (1 − |x|2)µ−1/2, µ ≥ 0, are introduced and ex-
plored. A decomposition scheme is developed in terms of almost exponentially
localized polynomial elements (needlets) {ϕξ}, {ψξ} and it is shown that the
membership of a distribution to the weighted Triebel-Lizorkin or Besov spaces
can be determined by the size of the needlet coefficients {〈f, ϕξ〉} in appropri-
ate sequence spaces.

1. Introduction

Localized bases and frames allow to decompose functions and distributions in
terms of building blocks of simple nature and have numerous advantages over other
means of representation. In particular, they enable one to encode smoothness and
other norms in terms of the coefficients of the decompositions. Meyer’s wavelets [12]
and the ϕ-transform of Frazier and Jawerth [6, 7, 8] provide such building blocks
for decomposition of Triebel-Lizorkin and Besov spaces in the classical case on Rd.

The aim of this article is to develop similar tools for decomposition of weighted
Triebel-Lizorkin and Besov spaces on the unit ball Bd in Rd (d > 1) with weights

wµ(x) := (1− |x|2)µ−1/2, µ ≥ 0,

were |x| is the Euclidean norm of x ∈ Bd. These include Lp(Bd, wµ), the Hardy
spaces Hp(Bd, wµ), and weighted Sobolev spaces. For our purposes we develop
localized frames which can be viewed as an analogue of the ϕ-transform of Frazier
and Jawerth on Bd.

For the construction of our frame elements we shall use orthogonal polynomials in
the weighted space L2(wµ) := L2(Bd, wµ). Denote by Πn the space of all algebraic
polynomials of degree n in d variables and by Vn the subspace of all polynomials of
degree n which are orthogonal to lower degree polynomials in L2(wµ). These are
eigenspaces of the differential operator

(1.1) Dµ := −∆ + 〈x,∇〉2 + (2µ+ d− 1)〈x,∇〉.
More precisely (see e.g. [4]),

(1.2) DµP = n(n+ d+ 2µ− 1)P for P ∈ Vn.
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We have the orthogonal polynomial decomposition

(1.3) L2(wµ) =
∞⊕
n=0

Vn, Vn ⊂ Πn.

Note that dimVn =
(
n+d−1
n

) ∼ nd−1. As is shown in [22] the orthogonal projector
Projn : L2(wµ) 7→ Vn can be written as

(1.4) (Projn f)(x) =
∫

Bd
f(y)Pn(x, y)wµ(y)dy,

where, for µ > 0, the kernel Pn(x, y) has the representation

Pn(x, y) = bµdb
µ− 1

2
1

n+ λ

λ
(1.5)

×
∫ 1

−1

Cλn

(
〈x, y〉+ u

√
1− |x|2

√
1− |y|2

)
(1− u2)µ−1du.

Here 〈x, y〉 is the Euclidean inner product in Rd, Cλn is the n-th degree Gegenbauer
polynomial,

(1.6) λ = µ+
d− 1

2
,

and the constants bµd , bµ−
1
2

1 are defined by (bγd)−1 :=
∫
Bd

(1 − |x|2)γ−1/2dx. For
a representation of Pn(x, y) in the limiting case µ = 0, see (4.2) in [16].

Evidently,

(1.7) Kn(x, y) :=
n∑

j=0

Pj(x, y)

is the kernel of the orthogonal projector of L2(wµ) onto the space
⊕n

ν=0 Vν .
A key role in this study will play the fact (established in [16]) that if the coeffi-

cients on the right in (1.7) are “smoothed out” by sampling a compactly supported
C∞ function, then the resulting kernel has nearly exponential localization around
the main diagonal y = x in Bd ×Bd. More precisely, let

(1.8) Ln(x, y) :=
∞∑

j=0

â
( j
n

)
Pj(x, y),

where the “smoothing” function â is admissible in the sense of the following defi-
nition:

Definition 1.1. A function â ∈ C∞[0,∞) is called admissible of type
(a) if supp â ⊂ [0, 2] and â(t) = 1 on [0, 1], and of type
(b) if supp â ⊂ [1/2, 2].

We introduce the distance

(1.9) d(x, y) := arccos
{
〈x, y〉+

√
1− |x|2

√
1− |y|2

}
on Bd

and set

(1.10) Wµ(n;x) :=
(√

1− |x|2 + n−1
)2µ

, x ∈ Bd.
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One of our main results in [16, Theorem 4.2] asserts that for any k > 0 there exists
a constant ck > 0 depending only on k, d, µ, and â such that

(1.11) |Ln(x, y)| ≤ ck nd√
Wµ(n;x)

√
Wµ(n; y)(1 + nd(x, y))k

, x, y ∈ Bd.

The kernels Ln are our main ingredient in constructing analysis and synthesis
needlet systems {ϕξ}ξ∈X and {ψξ}ξ∈X here, indexed by a multilevel set X = ∪∞j=0Xj
(§3). This is a pair of dual frames whose elements have nearly exponential local-
ization on Bd and provide representation of every distribution f on Bd:

(1.12) f =
∑

ξ∈X
〈f, ϕξ〉ψξ.

The superb localization of the frame elements prompted us to term them needlets.
Our main interest lies with distributions in the weighted Triebel-Lizorkin (F -

spaces) and Besov spaces (B-spaces) on Bd. These spaces are naturally defined via
spectral decompositions (see [17, 20] for the general idea). To be specific, let

Φ0(x, y) := 1 and Φj(x, y) :=
∞∑
ν=0

â
( ν

2j−1

)
Pν(x, y), j ≥ 1,

where P(·, ·) is from (1.5) and â is admissible of type (b) (see Definition 1.1) such
that |â| > 0 on [3/5, 5/3].

The F -space F sρpq with s, ρ ∈ R, 0 < p < ∞, 0 < q ≤ ∞, is defined (§4) as the
space of all distributions f on Bd such that

(1.13) ‖f‖F sρpq :=
∥∥∥
( ∞∑

j=0

(2sjWµ(2j ; ·)−ρ/d|Φj ∗ f(·)|)q
)1/q∥∥∥

Lp(wµ)
<∞,

where Φj ∗ f(x) := 〈f,Φ(x, ·)〉 (see Definition 2.7).
The corresponding scales of weighted Besov spaces Bsρpq with s, ρ ∈ R, 0 < p, q ≤

∞, are defined (§5) via the (quasi-)norms

(1.14) ‖f‖Bsρpq :=
( ∞∑

j=0

(
2sj‖Wµ(2j ; ·)−ρ/dΦj ∗ f(·)‖Lp(wµ)

)q)1/q

.

Unlike in the classical case on Rd, we have introduced an additional parameter ρ,
which allows considering different scales of Triebel-Lizorkin and Besov spaces. To us
most natural are the spaces

(1.15) F spq := F sspq and Bspq := Bsspq,

which scale (are embedded) correctly with respect to the smoothness parameter s.
A “classical” choice would be to consider the spaces F s0pq and Bs0pq , where the weight
Wµ(2j ; ·) is excluded from (1.13)-(1.14). The introduction of the parameter ρ en-
ables us to treat these spaces simultaneously.

One of the main results of this paper is the characterization of the F -spaces in
terms of the size of the needlet coefficients in the decomposition (1.12), namely,

‖f‖F sρpq ∼
∥∥∥
( ∞∑

j=0

2sjq
∑

ξ∈Xj
|〈f, ϕξ〉|Wµ(2j ; ξ)−ρ/d|ψξ(·)|q

)1/q∥∥∥
Lp(wµ)

.
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Similarly for the Besov spaces Bsρpq we have the characterization (§5)

‖f‖Bsρpq ∼
( ∞∑

j=0

2sjq
[∑

ξ∈Xj

(
Wµ(2j ; ξ)−ρ/d‖〈f, ϕξ〉ψξ‖Lp(wµ)

)p]q/p)1/q

.

Further, the weighted Besov spaces are applied to nonlinear n-term approxima-
tion from needlets on Bd (§6).

This is a follow-up paper of [16], where the localization (1.11) is established and
the construction and basic properties of a single system of needlets are given. Our
development here is a part of a broader undertaking for needlet characterization
of Triebel-Lizorkin and Besov spaces on nonclassical domains, including the mul-
tidimensional unit sphere [13, 14], ball, and cube (interval [11, 15]) with weights.
The results in this paper generalize the results in the univariate case from [11]
(with α = β), where needlet characterizations of F - and B-spaces on the interval
are obtained.

The organization of the paper is the following: In §2 the needed results from [16]
and some background material are given, including localized polynomial kernels,
the maximal operator, distributions on Bd, and cubature formula on Bd. The
definition and some basic properties of needlets are given in §3. In §4 the weighted
Triebel-Lizorlin space on Bd are introduced and characterized via needlets, while
the weighted Besov spaces are explored in §5. In §6 Besov spaces are applied to
nonlinear n-term approximation from needlets. Section 7 contains the proofs of
various lemmas from previous sections.

Throughout the paper we use the following notation:

‖f‖p :=
(∫

Bd
|f(x)|pwµ(x)dx

)1/p

, 0 < p <∞, ‖f‖∞ := ess supx∈Bd |f(x)|.

For a measurable set E ⊂ Bd, |E| denotes the Lebesgue measure of E, m(E) :=∫
E
wµ(x)dx, 1E is the characteristic function of E, and 1̃E := |m(E)|−1/21E is the

L2(wµ) normalized characteristic function of E. Positive constants are denoted by
c, c1, c∗, . . . and they may vary at every occurrence; A ∼ B means c1A ≤ B ≤ c2A.

2. Preliminaries

2.1. Localized polynomial kernels on Bd. The polynomial kernels Ln(x, y)
introduced in (1.8) will be our main vehicle in developing needlet systems. Here we
give come additional properties of these kernels.

We have

(2.1) ‖Ln(x, ·)‖p ≤ c
( nd

Wµ(n;x)

)1−1/p

, x ∈ Bd, 0 < p ≤ ∞.

This estimate is an immediate consequence of (1.11) and the following lemma (see
[16, Lemma 4.6]), which will be instrumental in several proofs below.

Lemma 2.1. If σ > d/p+ 2µ|1/p− 1/2|, µ ≥ 0, 0 < p <∞, then

(2.2)
∫

Bd

wµ(y)dy
Wµ(n; y)p/2(1 + nd(x, y))σp

≤ c n−dWµ(n;x)1−p/2.

We now establish a matching lower bound estimate.
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Theorem 2.2. Let â be admissible and |â(t)| ≥ c∗ > 0 for t ∈ [3/5, 5/3]. Then for
0 < p ≤ ∞ and n ≥ 2

(2.3) ‖Ln(x, ·)‖p ≥ c
( nd

Wµ(n;x)

)1−1/p

, x ∈ Bd.

Here the constant c > 0 depends only on d, µ, p, and c∗.

The proof of this theorem is given in §7.1.
The kernels Ln(x, y) are in a sense Lip1 functions in both variables with respect

to the distance d(·, ·) from (1.9): Let ξ, y ∈ Bd and c∗ > 0, n ≥ 1. Then for all
x, z ∈ Bξ(c∗n−1) and an arbitrary k, we have

(2.4) |Ln(x, y)− Ln(ξ, y)| ≤ ck nd+1d(x, ξ)√
Wµ(n; y)

√
Wµ(n; z)(1 + nd(y, z))k

,

where ck depends only on k, µ, d, â, and c∗ (see [16, Proposition 4.7]).

We shall also need the following inequality from [16, Lemma 4.1]:

(2.5)
∣∣∣
√

1− |x|2 −
√

1− |y|2
∣∣∣ ≤
√

2 d(x, y), x, y ∈ Bd,
which yields

(2.6) Wµ(n;x) ≤ 2µWµ(n; y)(1 + nd(x, y))2µ, x, y ∈ Bd.
2.2. Reproducing polynomial kernels and applications. To simplify our no-
tation we introduce the following “convolution”: For functions Φ : Bd × Bd → C
and f : Bd → C, we write

(2.7) Φ ∗ f(x) :=
∫

Bd
Φ(x, y)f(y)wµ(y) dy.

We denote by En(f)p the best approximation of f ∈ Lp(wµ) from Πn, i.e.

(2.8) En(f)p := inf
g∈Πn

‖f − g‖p.

Lemma 2.3. Let Ln be the kernel from (1.8), with â admissible of type (a). Then
(i) Ln ∗ g = g for g ∈ Πn, i.e. Ln is a reproducing kernel for Πn, and
(ii) for any f ∈ Lp(wµ), 1 ≤ p ≤ ∞, we have Ln ∗ f ∈ Π2n,

(2.9) ‖Ln ∗ f‖p ≤ c‖f‖p, and ‖f − Ln ∗ f‖p ≤ cEn(f)p.

This lemma follows readily by the definition of Ln (see also Definition 1.1) and
(2.1) (see [16, Proposition 4.8]).

Lemma 2.3 (i) and (2.1) are instrumental in relating weighted norms of polyno-
mials.

Proposition 2.4. For 0 < q ≤ p ≤ ∞ and g ∈ Πn, n ≥ 1,

(2.10) ‖g‖p ≤ cn(d+2µ)(1/q−1/p)‖g‖q,
and for any γ ∈ R
(2.11) ‖Wµ(n; ·)γg(·)‖p ≤ cnd(1/q−1/p)‖Wµ(n; ·)γ+1/p−1/qg(·)‖q.

The proof of this proposition is quite similar to the proof of Proposition 2.6
from [11]; for completeness it is given in §7.1.
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2.3. Maximal operator. We denote by Bξ(r) the ball centered at ξ ∈ Bd of
radius r > 0 with respect to the distance d(·, ·) on Bd, i.e.

(2.12) Bξ(r) = {x ∈ Bd : d(x, ξ) < r}.
It is straightforward to show that (see [16, Lemma 5.3])

(2.13) |Bξ(r)| ∼ rd
√

1− |ξ|2
and

(2.14) m(Bξ(r)) :=
∫

Bξ(r)

wµ(x) dx ∼ rd(r +
√

1− |ξ|2)2µ ∼ rd(r + d(ξ, ∂Bd))2µ,

where ∂Bd is the boundary of Bd, i.e. the unit sphere in Rd.
The maximal operator Mt (t > 0) is defined by

(2.15) Mtf(x) := sup
B3x

(
1

m(B)

∫

B

|f(y)|twµ(y) dy
)1/t

, x ∈ Bd,

where the sup is over all balls B ⊂ Bd (with respect to d(·, ·)) containing x.
It follows by (2.14) that the measure m(E) :=

∫
E
wµ(x) dx is a doubling measure

on Bd, i.e. for ξ ∈ Bd and 0 < r ≤ π
(2.16) m(Bξ(2r)) ≤ cm(Bξ(r)).

Consequently, the general theory of maximal operators applies and the Fefferman-
Stein vector-valued maximal inequality is valid (see [18]): If 0 < p <∞, 0 < q ≤ ∞,
and 0 < t < min{p, q} then for any sequence of functions {fν}ν on Bd

(2.17)
∥∥∥
( ∞∑
ν=1

|Mtfν(·)|q
)1/q∥∥∥

p
≤
∥∥∥
( ∞∑
ν=1

|fν(·)|q
)1/q∥∥∥

p
.

We need to estimate Mt1B for an arbitrary ball B ⊂ Bd.
Lemma 2.5. Let ξ ∈ Bd and 0 < r ≤ π. Then for x ∈ Bd

(2.18) (Mt1Bξ(r))(x) ∼
(

1 +
d(ξ, x)
r

)−d/t(
1 +

d(ξ, x)
r + d(ξ, ∂Bd)

)−2µ/t

and hence

(2.19) c′
(

1 +
d(ξ, x)
r

)−(2µ+d)/t

≤ (Mt1Bξ(r))(x) ≤ c
(

1 +
d(ξ, x)
r

)−d/t
.

Here the constants depend only on d, µ, and t.

Proof. It is easy to see that

(Mt1Bξ(r))(x) = sup
B3x

(
m(B ∩Bξ(r))

m(B)

)1/t

, x ∈ Bd,

where the sup is taken over all the balls B ⊂ Bd (with respect to d(·, ·)) containing x.
This immediately leads to (Mt1Bξ(r))(x) ∼ 1 if d(x, ξ) ≤ 2r and hence (2.18) holds
in this case.

Suppose d(ξ, x) > 2r. Then evidently

(Mt1Bξ(r))(x)1/t ≥
(

m(Bξ(r))
m(Bξ(d(x, ξ)))

)1/t

.
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For the other direction, suppose Bz(r∗) ⊂ Bd is the smallest ball such that x ∈
Bz(r∗) and Bz(r∗) ∩ Bξ(r) 6= ∅. A simple application of the triangle inequality
shows that Bξ(d(ξ, x)) ⊂ Bz(5r∗). Thus using (2.16)

(Mt1Bξ(r))(x) ≤
(
m(Bξ(r))
m(Bz(r∗))

)1/t

≤ c
(

m(Bξ(r))
m(Bξ(d(x, ξ))

)1/t

.

Therefore, using (2.14)

(Mt1Bξ(r))(x) ∼
(

m(Bξ(r))
m(Bξ(d(x, ξ))

)1/t

∼
(

rd(r + d(ξ, ∂Bd))2µ

d(x, ξ)d(d(x, ξ) + d(ξ, ∂Bd))2µ

)1/t

,

which implies (2.18) since d(ξ, x) > 2r. Estimate (2.19) is immediate from (2.18).
�

2.4. Distributions on Bd. To define distributions on Bd we shall use as test
functions the set D := C∞(Bd) of all infinitely continuously differentiable complex
valued functions on Bd such that

(2.20) ‖φ‖Wk∞ :=
∑

|α|≤k
‖∂αφ‖∞ <∞ for k = 0, 1, . . . .

We assume that the topology in D is defined by these norms.
Evidently all polynomials belong to D. More importantly, the space D of test

functions φ can be completely characterized by their orthogonal polynomial expan-
sions. Denote

(2.21) Nk(φ) := sup
n≥0

(n+ 1)k‖Projn φ‖2.

Lemma 2.6. (a) φ ∈ D if and only if ‖Projn φ‖2 = O(n−k) for all k.
(b) For each φ ∈ D, φ =

∑∞
n=0 Projn φ, where the convergence is in the topology

of D.
(c) The topology in D can be equivalently defined by the norms Nk(·), k =

0, 1, . . . .

Proof. Let φ ∈ D. Assume that Qn−1 ∈ Πn−1 (n ≥ 1) is the polynomial of
best L2(wµ)-approximation to φ, i.e. ‖φ − Qn−1‖2 = En−1(φ)2. Since Pn(x, ·) is
orthogonal to Πn−1,

|Projn φ(x)| = |〈φ,Pn(x, ·)〉| = |〈φ−Qn−1,Pn(x, ·)〉| ≤ En−1(φ)2Pn(x, x)1/2.

By the Jackson type estimate from [23], for any k ≥ 1,

En(φ)2 ≤ ckn−2k‖Dk
µφ‖2 ≤ cn−2k‖Dk

µφ‖∞ ≤ cn−2k
∑

|α|≤2k

‖∂αφ‖∞ = cn−2k‖φ‖W 2k∞ .

Here Dµ is the differential operator from (1.1). It is easy to see that

‖Pn(x, x)1/2‖22 =
(
n+ d− 1

n

)
∼ nd−1.

All of the above leads to

‖Projn φ‖2 ≤ ckn−2k+(d−1)/2‖φ‖W 2k∞ , n ≥ 1, for any k ≥ 1.

Therefore, for any m ≥ 0

Nm(φ) ≤ c‖φ‖W 2k∞ if k ≥ m/2 + (d− 1)/4.
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In the other direction, by Markov’s inequality (see [10]) and (2.10), it follows
that

‖∂α Projn φ‖∞ ≤ n2|α|‖Projn φ‖∞ ≤ cn2|α|+d/2+µ‖Projn φ‖2.
Consequently, if ‖Projn φ‖2 = O(n−k) for all k, then ∂αφ =

∑∞
n=0 ∂

α Projn φ for
all multi-indices α with the series converging uniformly and

‖φ‖Wk∞ ≤ c
∑

|α|≤k

∞∑
n=0

n2|α|+d/2+µ‖Projn φ‖2 ≤ cNm(φ), m ≥ 2k + d/2 + µ+ 2.

This completes the proof of the lemma. �

The space D′ := D′(Bd) of distributions on Bd is defined as the set of all con-
tinuous linear functionals on D. The pairing of f ∈ D′ and φ ∈ D will be denoted
by 〈f, φ〉 := f(φ), which will be shown to be consistent with the inner product
〈f, g〉 :=

∫
Bd
f(x)g(x)wµ(x)dx in L2(wµ).

We now extend the definition of the nonstandard “convolution” from (2.7) to
distributions.

Definition 2.7. Let f ∈ D′ and assume that Φ : Bd × Bd 7→ C is such that
Φ(x, ·) ∈ D for all x ∈ Bd. We define

(Φ ∗ f)(x) := 〈f,Φ(x, ·)〉,
where on the right f acts on Φ(x, y) as a function of y.

For later use we next record some simple properties of this “convolution”.

Lemma 2.8. (i) If f ∈ D′ and Φ(·, ·) ∈ C∞(Bd × Bd), then Φ ∗ f ∈ D, and in
particular Pn ∗ f ∈ Vn. We define Projn f := Pn ∗ f .

(ii) If f ∈ D′ and Φ(·, ·) ∈ C∞(Bd ×Bd), then

〈Φ ∗ f, φ〉 = 〈f,Φ ∗ φ〉, φ ∈ D.
(iii) Let Φ(·, ·),Ψ(·, ·) ∈ C∞(Bd × Bd), and Φ(x, y) = Φ(y, x) and Ψ(x, y) =

Ψ(y, x) for x, y ∈ Bd. Then for any f ∈ D′ and x ∈ Bd
Ψ ∗ Φ ∗ f(x) = 〈Ψ(x, ·),Φ(·, ·)〉 ∗ f.

The proof of this lemma is standard and will be omitted.
We next give the representation of distributions from D′ in terms of orthogonal

polynomials on Bd.

Lemma 2.9. (a) A linear functional f ∈ D′ if and only if there exists k ≥ 0 such
that

(2.22) |〈f, φ〉| ≤ ckNk(φ) for all φ ∈ D,
Hence, for f ∈ D′ there exits k ≥ 0 such that

(2.23) ‖Projn f‖2 = ‖Pn ∗ f‖2 ≤ ck(n+ 1)k, n = 0, 1, . . . .

(b) Every f ∈ D′ has the representation f =
∑∞
n=0 Projn f in distributional

sense, i.e.

(2.24) 〈f, φ〉 =
∞∑
n=0

〈Projn f, φ〉 =
∞∑
n=0

〈Projn f,Projn φ〉 for all φ ∈ D,

where the series converges absolutely.
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Proof. (a) Part (a) follows immediately by the fact that the topology in D can be
defined by the norms Nk(·) defined in (2.21).

(b) Using Lemma 2.6 (b) we get for φ ∈ D,

〈f, φ〉 = lim
N→∞

〈
f,

N∑
n=0

Projn φ
〉

= lim
N→∞

N∑
n=0

〈f,Projn φ〉 =
∞∑
n=0

〈Projn f,Projn φ〉,

where the last equality is justified by using (2.23) and the rapid decay of ‖Projn φ‖2.
�

2.5. Cubature formula and subdivision of Bd. For the construction of our
building blocks (needlets) we shall utilize the positive cubature formula given in
[16]. This formula is based on almost equally distributed knots on Bd with respect
to the distance d(·, ·).
Definition 2.10. We say that a set Xε ⊂ Bd, along with an associated partition
Rε of Bd consisting of measurable subsets of Bd, is a set of almost uniformly ε-
distributed points on Bd if

(i) Bd =
⋃
R∈Rε R and the sets in Rε do not overlap (R◦1∩R◦2 = ∅ if R1 6= R2).

(ii) For each R ∈ Rε there is a unique ξ ∈ Xε such that Bξ(c∗ε) ⊂ R ⊂ Bξ(ε).
Hence #Xε = #Rε ≤ c∗∗ε−d. Here the constant c∗ > 0, depending only on d,
is fixed but sufficiently small, so that the existence of sets of almost uniformly ε-
distributed points on Bd is guaranteed (see the next lemma).

Lemma 2.11. [16] For a sufficiently small constant c∗ > 0, depending only on
d, and an arbitrary 0 < ε ≤ π there exists a set Xε ⊂ Bd of almost uniformly
ε-distributed points on Bd, where the associated partition Rε of Bd consists of
projections of spherical simplices.

An important element in the construction of needlets will be the cubature for-
mula given in [16, Corollary 5.10]:

Proposition 2.12. There exists a constant c� > 0 (depending only on d) and a
sequence {Xj}∞j=0 of almost uniformly εj-distributed points on Bd with εj := c�2−j,
and there exist positive coefficients {λξ}ξ∈Xj such that the cubature formula

(2.25)
∫

Bd
f(x)wµ(x) dx ∼

∑

ξ∈Xj
λξf(ξ)

is exact for all polynomials of degree ≤ 2j+2. In addition,

(2.26) λξ ∼ 2−jdWµ(2j ; ξ) ∼ m(Bξ(2−j))

with constants of equivalence depending only on µ and d.

It follows from above that

(2.27) m(Rξ) ∼ 2−jdWµ(2j ; ξ) ∼ λξ, ξ ∈ Xj ,
while

(2.28) |Rξ| ∼ 2−jd(
√

1− |ξ|2 + 2−j), ξ ∈ Xj .
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3. Localized building blocks (Needlets) on Bd

We utilize the ideas from [14, 11] in constructing a pair of sequences of “analysis”
and “synthesis” needlets on Bd. Let â, b̂ satisfy the conditions

â, b̂ ∈ C∞[0,∞), supp â, b̂ ⊂ [1/2, 2],(3.1)

|â(t)|, |̂b(t)| > c > 0, if t ∈ [3/5, 5/3],(3.2)

â(t) b̂(t) + â(2t) b̂(2t) = 1, if t ∈ [1/2, 1].(3.3)

Hence,

(3.4)
∞∑
ν=0

â(2−νt) b̂(2−νt) = 1, t ∈ [1,∞).

It is easy to see that if â satisfies (3.1)-(3.2), then there exists b̂ satisfying (3.1)-(3.2)
such that (3.3) is valid (see e.g. [7]).

Let â, b̂ satisfy (3.1)-(3.3). We define Φ0(x, y) = Ψ0(x, y) := 1,

(3.5) Φj(x, y) :=
∞∑
ν=0

â
( ν

2j−1

)
Pν(x, y), j ≥ 1,

(3.6) Ψj(x, y) :=
∞∑
ν=0

b̂
( ν

2j−1

)
Pν(x, y), j ≥ 1.

Assume that Xj is the set of knots and λξ’s are the coefficients of the cubature
formula (2.25). We define the jth level needlets by

(3.7) ϕξ(x) := λ
1/2
ξ Φj(x, ξ) and ψξ(x) := λ

1/2
ξ Ψj(x, ξ), ξ ∈ Xj .

Notice that for ξ ∈ X1, we have ϕξ(x) = â(1)P1(x, ξ) and ψξ(x) = b̂(1)P1(x, ξ), but
P1(·, ξ) ≡ 0 if and only if ξ = 0. So, to prevent ψξ ≡ 0 and ψξ ≡ 0 for ξ ∈ X1, we
(may) assume that 0 /∈ X1.

We set X := ∪∞j=0Xj , where equal points from different levels Xj are considered
as distinct elements of X , so that X can be used as an index set. We define the
analysis and synthesis needlet systems Φ and Ψ by

(3.8) Φ := {ϕξ}ξ∈X , Ψ := {ψξ}ξ∈X .
Estimate (1.11) yields the rapid decay of needlets, namely, for x ∈ Bd,

(3.9) |Φj(ξ, x)|, |Ψj(ξ, x)| ≤ ck2jd√
Wµ(2j ; ξ)

√
Wµ(2j ;x)(1 + 2jd(ξ, x))k

∀k,

and hence

(3.10) |ϕξ(x)|, |ψξ(x)| ≤ ck2jd/2√
Wµ(2j ;x)(1 + 2jdd(ξ, x))k

∀k.

Note that on account of (2.6) x in the term
√
Wµ(2j ;x) in (3.10) can be replaced

by ξ.
The needlets are Lip 1 functions in the following sense: Let ξ ∈ Xj , j ≥ 0, c∗ > 0,

and ω ∈ Bd. Then for each x ∈ Bω(c∗2−j)

(3.11) |ϕξ(x)− ϕξ(ω)|, |ψξ(x)− ψξ(ω)| ≤ ck2j(d/2+1)d(ω, x)√
Wµ(2j ; ξ)(1 + 2jdd(ξ, ω))k

∀k.
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This estimate follows readily from (2.4).
We shall need estimates of the norms of the needlets. By (2.1), (2.3), and since

0 /∈ X1, we have for 0 < p ≤ ∞,

(3.12) ‖ϕξ‖p ∼ ‖ψξ‖p ∼ ‖1̃Rξ‖p ∼
( 2jd

Wµ(2j ; ξ)

)1/2−1/p

, ξ ∈ Xj .

Furthermore, there exist constants c∗, c > 0 such that

(3.13) ‖ϕξ‖L∞(Bξ(c∗2−j)), ‖ψξ‖L∞(Bξ(c∗2−j)) ≥ c
( 2jd

Wµ(2j ; ξ)

)1/2

, ξ ∈ Xj .

The proof of (3.13) is given in §7.1. Notice that if â, b̂ are real valued, then
Lemma 7.1 bellow yields

|ϕξ(ξ)|, |ψξ(ξ)| ≥ c
( 2jd

Wµ(2j ; ξ)

)1/2

, ξ ∈ Xj .

Our first step in implementing needlets is to establish needlet decompositions of
D′ and Lp(wµ).

Proposition 3.1. (a) For any f ∈ D′,

(3.14) f =
∞∑

j=0

Ψj ∗ Φj ∗ f in D′

and

(3.15) f =
∑

ξ∈X
〈f, ϕξ〉ψξ in D′.

(b) For f ∈ Lp(wµ), 1 ≤ p ≤ ∞, (3.14) − (3.15) hold in Lp(wµ). Moreover, if
1 < p <∞, then the convergence in (3.14)− (3.15) is unconditional.

Proof. By Definition 2.7 and (3.5) we have, for f ∈ D′,

(3.16) Φ ∗ f =
2j∑
ν=0

â
( ν

2j−1

)
Pν ∗ f

and using Lemma 2.8 and that Pν ∗ Pν(·, y) = Pν(·, y)

(3.17) Ψ ∗ Φ ∗ f =
2j∑
ν=0

â
( ν

2j−1

)
b̂
( ν

2j−1

)
Pν ∗ f.

Then (3.14) follows from the above, (3.4), and Lemma 2.9.
Note that Ψj(x, y)Φ(y, z) belongs to Π2j+1−1 as a function of y and, therefore,

employing the cubature formula from Proposition 2.12 we get

Ψj ∗ Φj(·, z) =
∫

Bd
Ψj(x, y)Φ(y, z)wµ(y)dy

=
∑

ξ∈Xj
λξΨj(x, ξ)Φ(ξ, z) =

∑

ξ∈Xj
ψξ(x)ϕξ(z),

which leads to
Ψj ∗ Φj ∗ f =

∑

ξ∈Xj
〈f, ϕξ〉ψξ.

Combining this with (3.14) yields (3.15).
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The convergence of (3.14) and (3.15) in Lp(wµ) for f ∈ Lp(wµ) follows in a
similar fashion (see also [11, Proposion 3.1]). The unconditional convergence in
Lp(wµ), 1 < p <∞, follows by Theorem 4.4 and Proposition 4.11 below. �

4. Weighted Triebel-Lizorkin spaces on Bd

Following the general idea of using spectral decompositions (see e.g. [17, 20]), we
next employ orthogonal polynomials to introduce weighted Triebel-Lizorkin spaces
on Bd. To this end we define a sequence of kernels {Φj} by

(4.1) Φ0(x, y) := 1 and Φj(x, y) :=
∞∑
ν=0

â
( ν

2j−1

)
Pν(x, y), j ≥ 1,

where {Pν(x, y)} are from (1.4)-(1.5) and â obeys the conditions

â ∈ C∞[0,∞), supp â ⊂ [1/2, 2],(4.2)

|â(t)| > c > 0, if t ∈ [3/5, 5/3].(4.3)

Definition 4.1. Let s, ρ ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then the weighted
Triebel-Lizorkin space F sρpq := F sρpq (wµ) is defined as the set of all f ∈ D′ such that

(4.4) ‖f‖F sρpq :=
∥∥∥
( ∞∑

j=0

[
2sjWµ(2j ; ·)−ρ/d|Φj ∗ f(·)|

]q)1/q∥∥∥
p
<∞

with the usual modification when q =∞.

Observe that the above definition is independent of the choice of â as long as it
satisfies (4.2)-(4.3) (see Theorem 4.4 below).

Proposition 4.2. For all s, ρ ∈ R, 0 < p < ∞, and 0 < q ≤ ∞, F sρpq is a
quasi-Banach space which is continuously embedded in D′.
Proof. The completeness of the space F sρpq follows easily (see e.g. [20], p. 49) by
the continuous embedding of F sρpq in D′, which we establish next.

Let {Φj} be the kernels from the definition of F sρpq with â obeying (4.2)-(4.3)
that are the same as (3.1)-(3.2). As already indicated there exists a function b̂
satisfying (3.1)-(3.3). We use this function to define {Ψj} as in (3.6). Then by
Proposition 3.1 f =

∑∞
j=0 Ψj ∗ Φj ∗ f in D′ and hence

〈f, φ〉 =
∞∑

j=0

〈Ψj ∗ Φj ∗ f, φ〉, φ ∈ D.

We now employ (3.16)-(3.17) and the Cauchy-Schwarz inequality to obtain, for
j ≥ 2,

|〈Ψj ∗ Φj ∗ f, φ〉|2 =
∣∣∣

2j∑

ν=2j−2+1

â
( ν

2j−1

)
b̂
( ν

2j−1

)
〈Projν f,Projν φ〉

∣∣∣
2

≤
2j∑

ν=2j−2+1

∣∣∣â
( ν

2j−1

)∣∣∣
2

‖Projν f‖22
2j∑

ν=2j−2+1

∣∣∣̂b
( ν

2j−1

)∣∣∣
2

‖Projν φ‖22

≤ 2j‖Φj ∗ f‖22 max
2j−2<ν≤2j

‖Projν φ‖22.
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Using inequality (2.10) we get

‖Φj ∗ f‖2 ≤ c2j(d+2µ)/p‖Φj ∗ f‖p ≤ c2j((d+2µ)/p+2µ|ρ|/d−s)‖2sjWµ(2j ; ·)−ρ/dΦj ∗ f(·)‖p.
From the above estimates we infer

|〈Ψj ∗ Φj ∗ f, φ〉| ≤ c2−j‖f‖F sρpq 2jk max
2j−2<ν≤2j

‖Projν f‖2 ≤ c2−j‖f‖F sρpqNk(φ)

for k ≥ (d+2µ)/p+2µ|ρ|/d+3/2−s. A similar estimate trivially holds for j = 0, 1.
Summing up we get

|〈f, φ〉| ≤ c‖f‖F sρpqNk(φ),
which completes the proof. �

As a companion to F sρpq we now introduce the sequence spaces fsρpq . Here we
assume that {Xj}∞j=0 is a sequence of almost uniformly εj-distributed points on Bd

(εj := c�2−j) with associated neighborhoods {Rξ}ξ∈Xj , given by Proposition 2.12.
Just as in the definition of needlets in §3, we set X := ∪j≥0Xj .
Definition 4.3. Suppose s, ρ ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then fsρpq is
defined as the space of all complex-valued sequences h := {hξ}ξ∈X such that

(4.5) ‖h‖fsρpq :=
∥∥∥
( ∞∑

j=0

2sjq
∑

ξ∈Xj
(|hξ|Wµ(2j ; ξ)−ρ/d1̃Rξ(·))q

)1/q∥∥∥
p
<∞

with the usual modification for q =∞. Recall that 1̃Rξ := m(Rξ)−1/21Rξ .

In analogy to the classical case on Rd we introduce “analysis” and “synthesis”
operators by

(4.6) Sϕ : f → {〈f, ϕξ〉}ξ∈X and Tψ : {hξ}ξ∈X →
∑

ξ∈X
hξψξ.

We now give our main result on weighted Triebel-Lizorkin spaces.

Theorem 4.4. Let s, ρ ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. Then the operators
Sϕ : F sρpq → fsρpq and Tψ : fsρpq → F sρpq are bounded and Tψ ◦ Sϕ = Id on F sρpq .
Consequently, f ∈ F sρpq if and only if {〈f, ϕξ〉}ξ∈X ∈ fsρpq . Furthermore,

‖f‖F sρpq ∼ ‖{〈f, ϕξ〉}‖fsρpq ∼
∥∥∥
( ∞∑

j=0

2sjq
∑

ξ∈Xj
(|〈f, ϕξ〉|Wµ(2j ; ξ)−ρ/d|ψξ(·)|)q

)1/q∥∥∥
p
.

(4.7)

In addition, the definition of F sρpq is independent of the particular selection of â
satisfying (4.2)–(4.3).

The proof of this theorem relies on several lemmas whose proofs are given in
Section 7.2. In the following we assume that {Φj} are from the definition of weighted
Triebel-Lizorkin spaces, while {ϕξ}ξ∈X and {ψξ}ξ∈X are needlet systems defined
as in (3.7) with no connection between the functions â’s from (4.1) and (3.5).

Lemma 4.5. For any k > 0 there exists a constant ck > 0 such that

(4.8) |Φj ∗ψξ(x)| ≤ ck 2jd/2√
Wµ(2j ;x)(1 + 2jd(x, ξ))k

, ξ ∈ Xν , j − 1 ≤ ν ≤ j + 1,

and Φj ∗ ψξ ≡ 0 for ξ ∈ Xν if ν ≥ j + 2 or ν ≤ j − 2. Here Xν := ∅ if ν < 0.
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Lemma 4.6. For any t > 0 and ξ ∈ Xj , j ≥ 0,

(4.9) |ϕξ(x)|, |ψξ(x)| ≤ c(Mt1̃Rξ)(x), x ∈ Bd, and

(4.10) 1̃Rξ(x) ≤ c(Mtϕξ)(x), c(Mtψξ)(x), x ∈ Bd.
Definition 4.7. For any set of complex numbers {hξ}ξ∈Xj (j ≥ 0) we define

(4.11) h∗ξ :=
∑

η∈Xj

|hη|
(1 + 2jd(η, ξ))σ

, ξ ∈ Xj ,

where σ > 1 is a sufficiently large constant that will be selected later on.

Lemma 4.8. Let P ∈ Π2j , j ≥ 0, and denote aξ := maxx∈Rξ |P (x)| for ξ ∈ Xj.
There exists r ≥ 1, depending only on σ, µ, and d such that if

bξ := max{min
x∈Rη

|P (x)| : η ∈ Xj+r, Rξ ∩Rη 6= ∅}, ξ ∈ Xj ,

then

(4.12) a∗ξ ∼ b∗ξ
with constants of equivalence independent of P , j, and ξ.

Lemma 4.9. Assume t > 0, γ ∈ R, and let {bξ}ξ∈Xj (j ≥ 0) be a set of complex
numbers. Also, let σ in the definition (4.11) of b∗ξ obey σ > d+ (d+ 2µ)/t+ 2µ|γ|.
Then for any ξ ∈ Xj
(4.13) b∗ξWµ(2j ; ξ)γ1Rξ(x) ≤ cMt

( ∑

η∈Xj
|bη|Wµ(2j ; η)γ1Rη (·)

)
(x), x ∈ Rξ.

Proof of Theorem 4.4. Choose 0 < t < min{p, q} and let σ in Definition 4.7 obey
σ > d+ (d+ 2µ)/t+ 2µ|ρ|/d. Now, choose k ≥ σ + 2µ|ρ|/d. Observe first that the
right-hand side equivalence in (4.7) follows immediately from Lemma 4.6 and the
maximal inequality (2.17).

Let {Φj} be a sequences of kernels as in the definition of weighted Triebel-
Lizorkin spaces, i.e. Φj is defined by (4.1) with â satisfying (4.2)-(4.3), the same
as (3.1)-(3.2). As already mentioned, there exists a function b̂ satisfying (3.1)-(3.2)
such that (3.3) holds. Let Ψj be defined by (3.6) with this b̂. In addition, let
{ϕξ}ξ∈X and {ψξ}ξ∈X be the associated needlet systems defined as in (3.7) using
these â and b̂.

Exactly in the same way, let {Φ̃j} and {Ψ̃j} be two sequences of kernels defined
as above using completely different functions â and b̂. Also, assume that {ϕ̃ξ}, {ψ̃ξ}
are the associated needlet systems, defined as in (3.5)-(3.7). As a result, we have
two completely different systems of kernels and associated needlet systems.

Let us first prove the boundedness of the operator T eψ : fsρpq → F sρpq , defined

similarly as in (4.6) with {ψξ} replaced by {ψ̃ξ}. Here we assume that space F sρpq
is defined by {Φj}. Let h := {hξ}ξ∈X be an arbitrary finitely supported sequence
and f :=

∑
ξ hξψ̃ξ. Using Lemma 4.5 we have, for x ∈ Bd,

|Φj ∗ f(x)| =
∣∣∣
∑

ξ∈X
hξΦj ∗ ψ̃ξ(x)

∣∣∣ ≤
∑

j−1≤ν≤j+1

∑

ξ∈Xν
|hξ||Φj ∗ ψ̃ξ(x)|

≤ c2jd/2
∑

j−1≤ν≤j+1

∑

ξ∈Xν

|hξ|√
Wµ(2ν ;x)(1 + 2νd(ξ, x))k

.
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For η ∈ Xj , denote Γη := {w ∈ Xj−1 ∪ Xj ∪ Xj+1 : Rw ∩ Rη 6= ∅}. Here X−1 := ∅.
Note first that #Γη ≤ c. Secondly, for x ∈ Rη and w ∈ Γη, we have d(x,w) ≤ c2−j
and using inequality (2.6)

Wµ(2j ;x)−ρ/d ≤ cWµ(2j ;w)−ρ/d ≤ cWµ(2j ; ξ)−ρ/d(1 + 2jd(ξ, ω))2µ|ρ|/d.

We use the above estimates to obtain, for x ∈ Rη,

Wµ(2j ;x)−ρ/d|Φj ∗ f(x)|

≤ c2jd/2
∑

j−1≤ν≤j+1

∑

ω∈Γη∩Xν

∑

ξ∈Xν

|hξ|Wµ(2j ; ξ)−ρ/d1Rω (x)√
Wµ(2ν ;ω)(1 + 2νd(ξ, ω))k−2µ|ρ|/d

≤ c2jd/2
∑

ω∈Γη

H∗ω1Rω (x)√
Wµ(2j ;ω)

≤ c
∑

ω∈Γη

H∗ω1̃Rω (x),

where Hω := hωWµ(2j ;ω)−ρ/d. Here we used that k − 2µ|ρ|/d ≥ σ and (2.27).
We insert the above in (4.4) and use Lemma 4.9 (with γ = 0) and the maximal
inequality (2.17) to obtain

(4.14)

‖f‖F sρpq ≤ c
∥∥∥
( ∞∑

j=0

[
2sj

∑

η∈Xj

∑

ω∈Γη

H∗ω1̃Rω (·)
]q)1/q∥∥∥

p

≤ c
∥∥∥
( ∞∑

j=0

[
2sj

∑

ξ∈Xj
H∗ξ 1̃Rξ(·)

]q)1/q∥∥∥
p

≤ c
∥∥∥
( ∞∑

j=0

[
Mt

( ∑

ξ∈Xj
2sj |Hξ|1̃Rξ

)
(·)
]q)1/q∥∥∥

p

≤ c
∥∥∥
( ∞∑

j=0

[ ∑

ξ∈Xj
2sj |Hξ|1̃Rξ(·)

]q)1/q∥∥∥
p
≤ c‖{hξ}‖fsρpq ,

where in the second inequality above we used that #Γη ≤ c. This establishes the
desired result for finitely supported sequences. Using the continuous embedding of
F sρpq in D′ (Proposition 4.2) and the density of finitely supported sequences in fsρpq
it follows from (4.14) that for every h ∈ fsρpq , T eψh :=

∑
ξ∈X hξψ̃ξ is a well defined

distribution in D′. Then a standard density argument shows that T eψ : fsρpq → F sρpq
is bounded.

Assume now that the space F sρpq is defined in terms of {Φj} in place of {Φj}.
Using this definition we shall prove the boundedness of the operator Sϕ : F sρpq → fsρpq .

Let f ∈ F sρpq . Then Φj ∗ f ∈ Π2j . For ξ ∈ Xj , we define

aξ := max
x∈Rξ

|Φj ∗ f(x)|, bξ := max{min
x∈Rη

|Φj ∗ f(x)| : η ∈ Xj+r, Rξ ∩Rη 6= ∅},

where r ≥ 1 is from Lemma 4.8. Then by the same lemma a∗ξ ∼ b∗ξ . Hence, using
(2.27),

|〈f, ϕξ〉| = λ
1/2
ξ |Φj ∗ f(ξ)| ≤ cm(Rξ)1/2aξ ≤ cm(Rξ)1/2a∗ξ ≤ cm(Rξ)1/2b∗ξ .
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From this, recalling that 1̃Rξ := m(Rξ)−1/21Rξ , we get

(4.15)

‖{〈f, ϕξ〉}‖fsρpq =
∥∥∥
( ∞∑

j=0

2jsq
∑

ξ∈Xj
[|〈f, ϕξ〉|Wµ(2j ; ξ)−ρ/d1̃Rξ(·)]q

)1/q∥∥∥
p

≤ c
∥∥∥
( ∞∑

j=0

2jsq
∑

ξ∈Xj
[b∗ξWµ(2j ; ξ)−ρ/d1Rξ(·)]q

)1/q∥∥∥
p

≤ c
∥∥∥
( ∞∑

j=0

2jsq
[
Mt

( ∑

ξ∈Xj
bξWµ(2j ; ξ)−ρ/d1Rξ(·)

)
(·)
]q)1/q∥∥∥

p

≤ c
∥∥∥
( ∞∑

j=0

2jsq
[ ∑

ξ∈Xj
bξWµ(2j ; ξ)−ρ/d1Rξ(·)

]q)1/q∥∥∥
p
.

Here for the second inequality above we used Lemma 4.9 and for the third one the
maximal inequality (2.17).

Denote mη := minx∈Rη |Φj ∗ f(x)| for η ∈ Xj+r and

Xj+r(ξ) := {w ∈ Xj+r : Rw ∩Rξ 6= ∅} for ξ ∈ Xj .
Evidently #Xj+r(ξ) ≤ c(r, d). Further, for w, η ∈ Xj+r(ξ) we have d(w, η) ≤ c2−j

and hence
mw ≤ c mw

(1 + 2j+rd(w, η))σ
≤ cm∗η, c = c(r, σ, d).

Therefore, for any η ∈ Xj+r(ξ), bξ = maxw∈Xj+r(ξ)mw ≤ cm∗η. and hence

(4.16) bξ1Rξ ≤
∑

η∈Xj+r(ξ)

m∗η1Rη .

Clearly, Wµ(2j ; ξ) ∼Wµ(2j+r; η) for η ∈ Xj+r(ξ). This along with (4.16) leads to

(4.17) bξWµ(2j ; ξ)−ρ/d1Rξ ≤ c
∑

η∈Xj+r(ξ)

m∗ηWµ(2j+r; η)−ρ/d1Rη .

Using this estimate in (4.15) we get

‖{〈f, ϕξ〉}‖fsρpq ≤ c
∥∥∥
( ∞∑

j=0

2jsq
( ∑

η∈Xj+r
m∗ηWµ(2j+r; η)−ρ/d1Rη (·)

)q)1/q∥∥∥
p

≤ c
∥∥∥
( ∞∑

j=0

2jsq
[
Mt

( ∑

η∈Xj+r
mηWµ(2j+r; η)−ρ/d1Rη

)
(·)
]q)1/q∥∥∥

p

≤ c
∥∥∥
( ∞∑

j=0

(
2js

∑

η∈Xj+r
mηWµ(2j+r; η)−ρ/d1Rη (·)

)q)1/q∥∥∥
p

≤ c
∥∥∥
( ∞∑

j=0

(2jsWµ(2j ; ·)−ρ/d|Φj ∗ f(·)|)q
)1/q∥∥∥

p
= c‖f‖F sρpq .

Here for first inequality we used that #Xj+r(ξ) ≤ c, for the second inequality we
used Lemma 4.9, and for third one the maximal inequality (2.17). We also use
that Wµ(2j+r; η) ∼ Wµ(2j ;x) if x ∈ Rη, η ∈ Xj+r. Thus the boundedness of
Sϕ : F sρpq → fsρpq is established.

The identity Tψ ◦ Sϕ = Id follows by Proposition 3.1.
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It remains to show that F sρpq is independent of the particular selection of â in the
definition of {Φj}. Denote by ‖ · ‖F sρpq (Φ) the F-norm defined by {Φj}. Then by the
above proof it follows that

‖f‖F sρpq (Φ) ≤ c‖{〈f, ϕ̃ξ〉}‖fsρpq and ‖{〈f, ϕξ〉}‖fsρpq ≤ c‖f‖F sρpq (Φ)

and hence

‖f‖F sρpq (Φ) ≤ c‖{〈f, ϕ̃ξ〉}‖fsρpq ≤ c‖f‖F sρpq (eΦ)
.

Now the desired independence follows by interchanging the roles of {Φj},{Φ̃j}, and
their complex conjugates. �

In a sense the spaces F sspq are more natural than the spaces F sρpq with ρ 6= s since
they scale (are embedded) “correctly” with respect to the smoothness index s.

Proposition 4.10. Let 0 < p < p1 < ∞, 0 < q, q1 ≤ ∞, and −∞ < s1 < s < ∞.
Then we have the continuous embedding

(4.18) F sspq ⊂ F s1s1p1q1 if s/d− 1/p = s1/d− 1/p1.

The proof of this embedding result can be carried out similarly as in the classical
case on Rn using inequality (2.11) and Theorem 4.4 (see e.g. [20], page 129). It will
be omitted.

Finally, we would like to link the weighted Triebel-Lizorkin spaces F sρpq to Lp(wµ)
and weighted potential space (generalized weighted Sobolev space) on Bd.

We define the weighted potential space Hs
p := Hs

p(wµ), s > 0, 1 ≤ p ≤ ∞, on
Bd as the set of all f ∈ D′ such that

(4.19) ‖f‖Hsp :=
∥∥∥
∞∑
n=0

(n+ 1)s Projn f
∥∥∥
p
<∞,

where Projn f := Pn ∗ f .
We have the following identification of certain weighted Triebel-Lizorkin spaces.

Proposition 4.11. We have

F s0p2 ∼ Hs
p , s > 0, 1 < p <∞,

and

F 00
p2 ∼ Lp(wµ), 1 < p <∞,

with equivalent norms. Consequently, for any f ∈ Lp(wµ), 1 < p <∞,

‖f‖p ∼
∥∥∥
( ∞∑

j=0

∑

ξ∈Xj
(|〈f, ϕξ〉||ψξ(·)|)2

)1/2∥∥∥
p
.

The proof of this proposition uses the multipliers from [3, Theorem 5.2] and
can be carried out exactly as in the case of spherical harmonic expansions in [14,
Proposition 4.3]. We omit it.
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5. Weighted Besov spaces on Bd

For the definition of weighted Besov spaces on Bd we use the sequence of kernels
{Φj} defined in (4.1) with â obeying (4.2)-(4.3) (see [17, 20] for the general idea of
using spectral decompositions).

Definition 5.1. Let s, ρ ∈ R and 0 < p, q ≤ ∞. The weighted Besov space Bsρpq :=
Bsρpq(wµ) is defined as the set of all f ∈ D′ such that

(5.1) ‖f‖Bsρpq :=
( ∞∑

j=0

(
2sj‖Wµ(2j ; ·)−ρ/dΦj ∗ f(·)‖p

)q)1/q

<∞,

where the `q-norm is replaced by the sup-norm if q =∞.

Observe that as in the case of weighted Triebel-Lizorkin spaces the above def-
inition is independent of the particular choice of â obeying (4.2)-(4.3) (see Theo-
rem 5.3). Also, as for F sρpq the Besov space Bsρpq is a quasi-Banach space which is
continuously embedded in D′. We skip the details.

We next introduce the sequence spaces bsρpq associated to the weighted Besov
spaces Bsρpq . To this end, we assume that {Xj}∞j=0 is a sequence of almost uniformly
εj-distributed points on Bd (εj := c�2−j) with associated neighborhoods {Rξ}ξ∈Xj ,
given by Proposition 2.12. As before we set X := ∪j≥0Xj .
Definition 5.2. Let s, ρ ∈ R and 0 < p, q ≤ ∞. Then bsρpq is defined to be the space
of all complex-valued sequences h := {hξ}ξ∈X such that

(5.2) ‖h‖bsρpq :=
( ∞∑

j=0

2j(s−d/p+d/2)q
[∑

ξ∈Xj

(
Wµ(2j ; ξ)−ρ/d+1/p−1/2|hξ|

)p]q/p)1/q

is finite, with the usual modification for p =∞ or q =∞.

Our main result in this section is the following characterization of weighted Besov
spaces, which employs the operators Sϕ and Tψ defined in (4.6).

Theorem 5.3. Let s, ρ ∈ R and 0 < p, q ≤ ∞. The operators Sϕ : Bsρpq → bsρpq and
Tψ : bsρpq → Bsρpq are bounded and Tψ ◦ Sϕ = Id on Bsρpq . Consequently, for f ∈ D′
we have that f ∈ Bsρpq if and only if {〈f, ϕξ〉}ξ∈X ∈ bsρpq. Moreover,

‖f‖Bsρpq ∼ ‖{〈f, ϕξ〉}‖bsρpq ∼
( ∞∑

j=0

2sjq
[∑

ξ∈Xj

(
Wµ(2j ; ξ)−ρ/d‖〈f, ϕξ〉ψξ‖p

)p]q/p)1/q

.

(5.3)

In addition, the definition of Bsρpq is independent of the particular selection of â
satisfying (4.2)–(4.3).

For the proof of this theorem we shall utilize some of the lemmas from §4 as well
as the following additional lemma whose proof is given in Section 7.2.

Lemma 5.4. Let 0 < p ≤ ∞ and γ ∈ R. Then for any P ∈ Π2j , j ≥ 0,

(5.4)
( ∑

ξ∈Xj
Wµ(2j ; ξ)γ max

x∈Rξ
|P (x)|pm(Rξ)

)1/p

≤ c‖Wµ(2j ; ·)γP (·)‖p.
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Proof of Theorem 5.3. We first note that the right-hand side of (5.3) follows imme-
diately from (3.12).

Just as in the proof of Theorem 4.4, we assume that {Φj} are kernels defined by
(4.1), with â satisfying (4.2)-(4.3). Next, suppose {Ψj} are defined by (3.6) with
b̂ obeying (3.1)-(3.3). Also, let {ϕξ}ξ∈X and {ψξ}ξ∈X be the associated needlet
systems defined as in (3.7). Further, assume that {Φ̃j}, {Ψ̃j}, {ϕ̃ξ}, {ψ̃ξ} is a
second (completely different) set of kernels and needlets.

Our first step is to prove the boundedness of the operator T eψ : bsρpq → Bsρpq defined

as in (4.6) with {ψξ} replaced by {ψ̃ξ}; we assume that Bsρpq is defined by {Φj}.
Pick 0 < t < min{p, 1} and k ≥ 2µ|ρ|/d + µ + (2µ + d)/t. Let h = {hξ}ξ∈Xj

be a finitely supported sequence and f :=
∑
ξ∈X hξψ̃ξ. Similarly as in the proof of

Theorem 4.4, we use Lemmas 2.5 and 4.5, and (2.6) to obtain

Wµ(2j ;x)−ρ/d|Φj ∗ f(x)| ≤ c
∑

j−1≤ν≤j+1

∑

ξ∈Xν
|hξ|Wµ(2j ;x)−ρ/d|Φj ∗ ψ̃ξ(x)|

≤ c
∑

j−1≤ν≤j+1

∑

ξ∈Xν
|hξ| 2jd/2Wµ(2j ;x)−ρ/d√

Wµ(2j ;x)(1 + 2jd(ξ, x))k

≤ c2jd/2
∑

j−1≤ν≤j+1

∑

ξ∈Xν
|hξ| Wµ(2j ; ξ)−ρ/d−1/2

(1 + 2jd(ξ, x))k−2µ|ρ|/d−µ

≤ c2jd/2
∑

j−1≤ν≤j+1

∑

ξ∈Xν
|hξ|Wµ(2j ; ξ)−ρ/d−1/2Mt(1Rξ)(x),

where X−1 := ∅ and in the fourth inequality we used that k ≥ 2µ|ρ|/d+µ+(2µ+d)/t.
Now employing the maximal inequality (2.17) we get

‖Wµ(2j ; ·)−ρ/dΦj ∗ f(·)‖p
≤ c2jd/2

∥∥∥
∑

j−1≤ν≤j+1

∑

ξ∈Xν
|hξ|Wµ(2j ; ξ)−ρ/d−1/2Mt(1Rξ)(·)

∥∥∥
p

≤ c2jd/2
∥∥∥

∑

j−1≤ν≤j+1

∑

ξ∈Xν
|hξ|Wµ(2j ; ξ)−ρ/d−1/21Rξ(·)

∥∥∥
p

≤ c2jd(1/2−1/p)
( ∑

j−1≤ν≤j+1

∑

ξ∈Xν
|hξ|pWµ(2j ; ξ)−(ρ/d−1/p+1/2)p

)1/p

.

Using this in Definition 5.1 we obtain ‖f‖Bsρpq ≤ c‖{hξ}‖bsρpq .
Further, we extend this result to an arbitrary sequence h = {hξ} ∈ bsρpq similarly

as in the Triebel-Lizorkin case by using the embedding of Bsρpq in D′ and the density
of finitely supported sequences in bsρpq.

We next prove the boundedness of the operator Sϕ : Bsρpq → bsρpq, assuming that
the space Bsρpq is defined in terms of {Φj} in place of {Φj}. Observe first that

|〈f, ϕξ〉| ∼ m(Rξ)1/2|Φj ∗ f(ξ)| ∼ 2−jd/2Wµ(2j ; ξ)1/2|Φj ∗ f(ξ)|, ξ ∈ Xj .



20 GEORGE KYRIAZIS, PENCHO PETRUSHEV, AND YUAN XU

Since Φj ∗ f ∈ Π2j , Lemma 5.4 yields
∑

ξ∈Xj

(
Wµ(2j ; ξ)−ρ/d+1/p−1/2|〈f, ϕξ〉|

)p

≤ c2−jd(p/2−1)
∑

ξ∈Xj
Wµ(2j ; ξ)−ρp/d|Φj ∗ f(ξ)|pm(Rξ)

≤ c2−jd(p/2−1)‖Wµ(2j ; ξ)−ρ/dΦj ∗ f‖pp.
This at once yields ‖{〈f, ϕ〉}‖bsρpq ≤ c‖f‖Bsρpq .

The identity Tψ ◦ Sϕ = Id follows by Proposition 3.1.
The independence of Bsρpq of the particular selection of â in the definition of

{Φj} follows from above exactly as in the Triebel-Lizorkin case (see the proof of
Theorem 4.4). �

The parameter ρ in the definition of the Besov spaces Bsρpq allow to consider
different scales of spaces. A “classical” choice of ρ would be ρ = 0. However, we
maintain that most natural are the spaces Bsspq (ρ = s). The main advantages of the
spaces Bsspq over Bsρpq with ρ 6= s are that, first, they scale (are embedded) “correctly”
with respect to the smoothness index s, and secondly, the right smoothness spaces
in nonlinear n-term weighted approximation from needles are defined in terms of
spaces Bsspq (see §6 below).

Proposition 5.5. Let 0 < p ≤ p1 <∞, 0 < q ≤ q1 ≤ ∞, and −∞ < s1 ≤ s <∞.
Then we have the continuous embedding

(5.5) Bsspq ⊂ Bs1s1p1q1 if s/d− 1/p = s1/d− 1/p1.

This embedding result follows immediately by applying inequality (2.11).

We finally want to link the weighted Besov spaces to best polynomial approxima-
tion in Lp(wµ). As in (2.8), let En(f)p denote the best approximation of f ∈ Lp(wµ)
from Πn.

Proposition 5.6. Let s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. Then f ∈ Bs0pq if and
only if

(5.6) ‖f‖ABs0pq := ‖f‖p +
( ∞∑

j=0

(2sjE2j (f)p)q
)1/q

<∞.

Moreover,

(5.7) ‖f‖ABs0pq ∼ ‖f‖Bs0pq .
The proof of this proposition is similar to the proof of Proposition 5.3 in [14]

and Proposition 6.2 in [11]. We omit it.

6. Application of weighted Besov spaces to nonlinear approximation

Let us consider nonlinear n-term approximation for a needlet system {ψη}η∈X
defined as in (3.5)-(3.8) with b̂ = â, â ≥ 0. Thus ϕη = ψη are real-valued. Then by
Proposition 3.1, for any f ∈ Lp(wµ), 1 ≤ p ≤ ∞,

f =
∑

ξ∈X
〈f, ψξ〉ψξ in Lp(wµ).
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Suppose Σn is the nonlinear set of all functions g of the form

g =
∑

ξ∈Λ

aξψξ,

where Λ ⊂ X , #Λ ≤ n, and Λ may vary with g. Let σn(f)p denote the error of
best Lp(wµ)-approximation to f ∈ Lp(wµ) from Σn, i.e.

σn(f)p := inf
g∈Σn

‖f − g‖p.

We consider approximation in Lp(wµ), 0 < p < ∞. Suppose s > 0 and let 1/τ :=
s/d+ 1/p. Denote briefly

Bsτ := Bssττ .

From Theorem 5.3 and (3.12) one derives the following representation of the norm
in Bsτ :

(6.1) ‖f‖Bsτ ∼
(∑

ξ∈X
‖〈f, ψξ〉ψξ‖τp

)1/τ

.

The following embedding result shows the importance of the spaces Bsτ fot non-
linear approximation from needlets.

Proposition 6.1. If f ∈ Bsτ , then f can be identified as a function f ∈ Lp(wµ)
and

(6.2) ‖f‖p ≤
∥∥∥
∑

ξ∈X
|〈f, ψξ〉ψξ(·)|

∥∥∥
p
≤ c‖f‖Bsτ .

For the proof one proceeds exactly as in the proof of the embedding result from
[9, Theorem 3.3] (see also [11, Proposition 8.1]). The proof will be omitted.

We now give the main result of this section.

Theorem 6.2. [Jackson estimate] If f ∈ Bsτ , then

(6.3) σn(f)p ≤ cn−s‖f‖Bsτ .
The proofs of this theorem can be carried out exactly as the proof of Theorem 3.4

in [9] or [11, Theorem 8.2] and will be omitted.
Here the main open problem is to prove the companion to (6.3) Bernstein esti-

mate:

(6.4) ‖g‖Bsτ ≤ cns‖g‖p for g ∈ Σn, 1 < p <∞.
This estimate would allow to characterize the rates of nonlinear n-term approxima-
tion in Lp(wµ) (1 < p <∞) from needlet systems.

7. Proofs

7.1. Proofs for Sections 2-3.

Proof of Theorem 2.2. We shall first establish (2.3) for p = 2. From the definition
of the kernels Pn(x, y) (see (1.4)-(1.5)) it follows that∫

Bd
Pn(x, y)Pm(x, y)wµ(y) dy = δn,mPn(x, x)

and hence

(7.1)
∫

Bd
|Ln(x, y)|2wµ(y)dy =

2n∑

k=0

∣∣∣â
(k
n

)∣∣∣
2

Pk(x, x).
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Therefore, for p = 2 estimate (2.3) will follow by the following lemma.

Lemma 7.1. For any ε > 0

(7.2)
n+[εdn]∑

j=n

Pj(x, x) ≥ cnd

Wµ(n;x)
, x ∈ Bd, n ≥ 1/ε,

where c > 0 depends only on ε, µ, and d.

Proof. Assume µ > 0. We shall utilize representation (1.5) of Pn(x, y). The case
µ = 0 is easier and will be omitted (in this case one uses representation (4.2) of
Pn(x, y) from [16]).

From (1.5) it is obvious that Pn(x, x) depends only on |x|. For the rest of the
proof, we denote Pn,d(r) := Pn(x, x), where r := |x|, and Λn,d(r) :=

∑n+[εdn]
j=n Pj,d(r).

Summing up the well known recurrence relation [19, (4.7.29)]

Cλn(x)− Cλn−2(x) =
n+ λ− 1
λ− 1

Cλ−1
n (x), where Cλ−1(x) = Cλ−2(x) := 0,

we get

Cλn(x) =
∑

0≤2j≤n

n− 2j + λ− 1
λ− 1

Cλ−1
n−2j(x).

Combining this with (1.5) we arrive at

Pn,d(r) =
bµd
bµd−2

n+ λ

λ

∑

0≤2j≤n
Pn−2j,d−2(r).

Hence

Λn,d(r) =
n+[εdn]∑

k=n

Pk,d(r) =
bµd
bµd−2

n+[εdn]∑

k=n

k + λ

λ

∑

0≤2j≤k
Pk−2j,d−2(r)

≥ c n2

n+[ε(d−2)n]∑

k=n

Pk,d−2(r) = c n2Λn,d−2(r).

Here c > 0 depends only on ε, µ, and d; we used that n ≥ 1/ε.
Evidently, the above estimate leads to (7.2) using induction on d, provided we

prove (7.2) for d = 1 and d = 2. However, the case d = 1 is already established in
[11, Proposition 2.4], namely,

(7.3) Λn,1(r) ≥ cn

Wµ(n; r)
.

It remains to prove (7.2) in the case d = 2. The proof relies on the well known
identity [1, p. 59]

(7.4) Cλn(x) =
∑

0≤2k≤n

Γ(µ)(n− 2k + µ)Γ(k + λ− µ)Γ(n− k + λ)
Γ(λ)Γ(λ− µ)k!Γ(n− k + µ+ 1)

Cµn−2k(x)

and the product formula of Gegenbauer polynomials [5, Vol I, Sec. 3.15.1, (20)]:

(7.5)
Cµn(s)Cµn(t)
Cµn(1)

= b
µ−1/2
1

∫ 1

−1

Cµn

(
st+ u

√
1− s2

√
1− t2

)
(1− u2)µ−1du.
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Using (7.4) (with λ = µ+ 1/2) along with (1.5) and then (7.5), we obtain

Pn,2(r) = bµ2
n+ µ+ 1/2
µ+ 1/2

∑

0≤2k≤n
ck,n

n− 2k + µ

µ

[Cµn−2k(r)]2

Cµn−2k(1)

=
bµ2
bµ1

n+ µ+ 1/2
µ+ 1/2

∑

0≤2k≤n
ck,nPn−2k,1(r),(7.6)

where

ck,n =
Γ(µ+ 1)Γ(k + 1/2)Γ(n− k + µ+ 1/2)
Γ(µ+ 1/2)Γ(1/2)Γ(n− k + µ+ 1)k!

.

Here we used that the L2(wµ)-normalized Gegenbauer polynomial C̃µn can be writ-
ten in the form C̃µn(x) = h

−1/2
n Cµn(x) with hn := (bµ1 )−1 µ

n+µC
µ
n(1), which is a

matter of simple verification, and hence

Pn,1(r) = [C̃µn(r)]2 = bµ1
n+ µ

µ

[Cµn(r)]2

Cµn(1)
.

It is straightforward to verify that if 0 ≤ k ≤ n/2, then ck,n ∼ (kn)−1/2 and hence
ck,n ≥ cn−1. Therefore, from (7.6)

Λn,2(r) =
n+[2εn]∑

k=n

Pk,2(r) =
bµ2
bµ1

n+[2εn]∑

k=n

k + µ+ 1/2
µ+ 1/2

∑

0≤2j≤k
cj,kPk−2j,1(r)

≥ c
n+[2εn]∑

k=n

∑

0≤2j≤k
Pk−2j,1(r) ≥ c nΛn,1(r).

This combined with (7.3) yields (7.2) for d = 2. �

We now continue with the proof of Theorem 2.2. Applying (7.2) with ε = 2/3d
yields ‖Ln(x, ·)‖2 ≥ cndWµ(n;x)−1 for n ≥ 2d. If 2 ≤ n < 2d, then as in the proof
of Lemma 7.1 it follows that

‖Ln(x, ·)‖1/22 ≥ c(Pn(x, x) + Pn+1(x, x)) ≥ c(Cµn(|x|) + Cµn+1(|x|)) > c > 0

for all x ∈ Bd, where we used the fact that the polynomials Cµn and Cµn+1 have no
common zeros. Taking into account that Wµ(n;x) ∼ 1 when n ≤ 2d, the above
leads again to ‖Ln(x, ·)‖2 ≥ cndWµ(n;x)−1. This completes the proof of estimate
(2.3) for p = 2.

Now one easily derives (2.3) for p 6= 2 from the same estimate for p = 2 and the
upper bound estimate (2.1). Indeed, for 2 < p < ∞ applying Hölder’s inequality
we get

cnd

Wµ(n, x)
≤
∫

Bd
|Ln(x, y)|2wµ(y)dy ≤ ‖Ln(x, ·)‖p‖Ln(x, ·)‖p′

≤ c1‖Ln(x, ·)‖p
( nd

Wµ(n, x)

)1−1/p′

(1/p+ 1/p′ = 1),

which implies (2.3). One proceeds similarly whenever p =∞.
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If 0 < p < 2, using (2.3) for p = 2 and (2.1) for p =∞, we get

cnd

Wµ(n, x)
≤
∫

Bd
|Ln(x, y)|2wµ(y)dy ≤

∫

Bd
|Ln(x, y)|pwµ(y)dy‖Ln(x, ·)‖2−p∞

≤ c1
∫

Bd
|Ln(x, y)|pwµ(y)dy

( nd

Wµ(n, x)

)2−p
,

This again leads to (2.3). The proof of Theorem 2.2 is complete. �
Proof of Proposition 2.4. Let g ∈ Πn. Assume 1 < q <∞ and let Ln be the kernel
from (1.8), with â admissible of type (a). By Lemma 2.3, g = Ln ∗ g. We use this,
Hölder’s inequality, (2.1), and that Wµ(n;x) ≥ n−2µ to obtain

|g(x)| ≤ ‖g‖q
(

nd

Wµ(n;x)

)1/q

≤ cn(d+2µ)/q‖g‖q, x ∈ Bd,

and hence

(7.7) ‖g‖∞ ≤ cn(d+2µ)/q‖g‖q, 1 < q ≤ ∞.
Let 0 < q ≤ 1. The above inequality with q = 2 yields

‖g‖2∞ ≤ cnd+2µ

∫ 1

−1

|g(y)|2−q|g(y)|qwµ(y)dy ≤ cnd+2µ‖g‖2−q∞ ‖g‖qq.

Therefore, (7.7) holds for 0 < q ≤ 1 as well.
Let 0 < q < p <∞. Using (7.7) we have

‖g‖p =
(∫

Bd
|g(x)|p−q|g(x)|qwµ(x)dx

)1/p

≤ cn(d+2µ)( 1
q− 1

p )‖g‖
p−q
p

q ‖g‖
q
p
q = cn(d+2µ)( 1

q− 1
p )‖g‖q.

Thus we have proved (2.10). �
We next prove (2.11). Assume first that 1 < q <∞. Using again that g = Ln∗g,

Hölder’s inequality (1/q + 1/q′ = 1), and (1.11) we obtain for x ∈ Bd,

|g(x)| ≤ ‖Wµ(n; ·)γ+ 1
p− 1

q g(·)‖q
(∫

Bd

∣∣∣Ln(x, y)Wµ(n; y)−γ−
1
p+ 1

q

∣∣∣
q′

wµ(y)dy
)1/q′

≤ c nd

Wµ(n;x)1/2

(∫

Bd

wµ(y)dy

Wµ(n; y)
q′
2 +β(1 + nd(x, y))σ

)1/q′

‖Wµ(n; ·)γ+ 1
p− 1

q g(·)‖q,

where β = q′(γ+ 1
p − 1

q ). The last integral can be estimated by using (2.1), yielding

|g(x)| ≤ c nd/q

Wµ(n;x)γ+1/p
‖Wµ(n; ·)γ+ 1

p− 1
q g(·)‖q.

Hence

(7.8) ‖Wµ(n; ·)γ+1/pg(·)‖∞ ≤ cnd/q‖Wµ(n; ·)γ+ 1
p− 1

q g(·)‖q, 1 < q ≤ ∞.
Let 0 < q ≤ 1. Then by (7.8) with q = 2 we have

‖Wµ(n; ·)γ+1/pg(·)‖∞ ≤ cnd/2‖Wµ(n; ·)γ+ 1
p− 1

2 g(·)‖2
≤ cnd/2‖Wµ(n; ·)γ+1/pg(·)‖1−q/2∞ ‖Wµ(n; ·)γ+ 1

p− 1
q g(·)‖q/2q .

Therefore, (7.8) holds for 0 < q ≤ 1 as well.
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Let p <∞. Using (7.8), we have

‖Wµ(n; ·)γg(·)‖p =
(∫

Bd
[Wµ(n;x)γg(x)]p−q [Wµ(n;x)γg(x)]q wµ(x)dx

)1/p

≤cnd( 1
q− 1

p )‖Wµ(n; ·)γ+ 1
p− 1

q g(·)‖p−qq

(∫

Bd

[Wµ(n;x)γg(x)]q

Wµ(n;x)
p−q
p

wµ(x)dx

)1/p

=cnd( 1
q− 1

p )‖Wµ(n; ·)γ+ 1
p− 1

q g(·)‖q.
Hence (2.11) holds for p <∞. If p =∞ (2.11) follows from (7.8). �

Proof of (3.13). From (3.10) with k sufficiently large (k > d + 2µ will do), and
(3.12), we infer for 0 < r ≤ π

0 < c1 ≤ ‖ϕξ‖2
≤ ‖ϕξ‖L∞(Bξ(r))m(Bξ(r)) + c2jd

∫

Bd\Bξ(r)

wµ(y)
Wµ(2j ; y)(1 + 2jd(ξ, y))2k

dy

≤ ‖ϕξ‖L∞(Bξ(r))m(Bξ(r)) + c
2jd

(1 + 2jr)k

∫

Bd

wµ(y)
Wµ(2j ; y)(1 + 2jd(ξ, y))k

dy

≤ ‖ϕξ‖L∞(Bξ(r))m(Bξ(r)) +
c2

1 + 2jr
,

where c2 depends only on k, d, and µ. For the last inequality we used Lemma 2.1
with p = 2. Let r := c∗2−j , where c∗ > 0 is selected so that c2/(1 + 2jr) =
c2/(1 + c∗) < c1/2. Then from above

‖ϕξ‖L∞(Bξ(c∗2−j)) ≥
c

m(Bξ(c∗2−j))
≥ c
( 2jd

Wµ(2j ; ξ)

)1/2

.

A similar estimate holds for ψξ as well. �

7.2. Proofs for Sections 4-5.

Proof of Lemma 4.5. Using the orthogonality of the subspaces Vdn, we have Φj ∗
ψξ(x) = 0 if ξ ∈ Xν for ν ≥ j + 2 or ν ≤ j − 2.

Let ξ ∈ Xν , j − 1 ≤ ν ≤ j + 1. From the localization of the kernels Φj , given in
(3.9), and the needlet localization from (3.10) it follows that for any k > 0 there is
a constant ck > 0 such that

|Φj ∗ ψξ(x)| ≤ ck 2j3d/2√
Wµ(2j ;x)

∫

Bd

wµ(y)√
Wµ(2j ; y)(1 + 2jd(x, y))k(1 + 2jd(y, ξ))k

dy.

Denote

Ωξ := {y ∈ Bd : d(y, ξ) ≥ d(x, ξ)/2} and Ωx := {y ∈ Bd : d(x, y) ≥ d(x, ξ)/2}.
Evidently, Bd = Ωξ ∪ Ωx and hence

|Φj ∗ ψξ(x)| ≤ ck 2j3d/2√
Wµ(2j ;x)(1 + 2jd(x, ξ))k

∫

Ωξ

wµ(y)
Wµ(2j ; y)(1 + 2jd(x, y))k

dy

+ ck
2j3d/2√

Wµ(2j ;x)(1 + 2jd(x, ξ))k

∫

Ωx

wµ(y)
Wµ(2j ; y)(1 + 2jd(y, ξ))k

dy

=: J1 + J2.
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We may assume that k > d. Then employing Lemma 2.1 with p = 2, we get
∫

Ωξ

wµ(y)
Wµ(2j ; y)(1 + 2jd(x, y))k

dy ≤
∫

Bd

wµ(y)
Wµ(2j ; y)(1 + 2jd(x, y))k

dy ≤ c2−jd,

which yields

J1 ≤ c 2jd/2√
Wµ(2j ;x)(1 + 2jd(x, ξ))k

.

One similarly estimates J2. This completes the proof of the lemma. �
Proof of Lemma 4.6. Estimate (4.9) follows readily from the localization of the
needlets (see (3.10)) and the lower bound estimate from (2.19) taking into account
that Rξ ⊂ Bξ(c�2−j) for ξ ∈ Xj .

We now prove (4.10). By the lower bound estimate (3.13) it follows that there
exists ω ∈ Bξ(c∗2−j) such that

(7.9) |ϕξ(ω)| ≥ c 2jd/2√
Wµ(2j ; ξ)

.

Also, by (3.11) it follows that for every x ∈ Bω(2−j)

(7.10) |ϕξ(ω)− ϕξ(x)| ≤ c2j(d/2+1)d(ω, x)√
Wµ(2j ; ξ)

.

By (7.9)-(7.10) it follows that for a sufficiently small constant ĉ > 0

|ϕξ(x)| ≥ |ϕξ(ω)|−|ϕξ(ω)−ϕξ(x)| ≥ c 2jd/2√
Wµ(2j ; ξ)

≥ c1̃Bω(ĉ2−j)(x), x ∈ Bω(ĉ2−j),

which yields

(Mtϕξ)(x) ≥ c(Mt1̃Bω(ĉ2−j))(x) ≥ c1̃Bξ(2−j)(x) ≥ c1̃Rξ(x), x ∈ Bd,
where in the second inequality we used (2.19).

One similarly shows that Mtψξ ≥ c1̃Rξ . �
Proof of Lemma 4.8. For the proof of this lemma we need a couple of additional
lemmas.

Lemma 7.2. Let k > d and j ≥ 0. Then

(7.11)
∑

ξ∈Xj

1
(1 + 2jd(x, ξ))k

≤ c, x ∈ Bd,

and for any ξ, η ∈ Bd

(7.12)
∑

w∈Xj

1
(1 + 2jd(ξ, w))k(1 + 2jd(η, w))k

≤ c 1
(1 + 2jd(ξ, η))k

.

Proof. Fix ξ ∈ Xj . Evidently, 1 + 2jd(x, ξ) ∼ 1 + 2jd(x, y) for y ∈ Rξ, and by (2.5)

|
√

1− |ξ|2 −
√

1− |y|2| ≤
√

2 d(ξ, y) ≤ c2−j , y ∈ Rξ,
which implies

|Rξ| ∼ 2−jd(
√

1− |ξ|2 + 2−j) ∼ 2−jd(
√

1− |y|2 + 2−j), y ∈ Rξ.
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We use the above to obtain
∑

ξ∈Xj

1
(1 + 2jd(x, ξ))k

≤ c
∑

ξ∈Xj

1
|Rξ|

∫

Rξ

1
(1 + 2jd(x, y))k

dy

≤ c2jd
∫

Bd

1
(
√

1− |y|2 + 2−j)(1 + 2jd(x, y))k
dy ≤ c.

Here for the last inequality we used Lemma 2.1 with p = 2 and µ = 1/2.
For the proof of (7.12), assume that ξ 6= η and denote

Xj(ξ) := {w ∈ Xj : d(ξ, w) ≥ d(ξ, η)/2}, Xj(η) := {w ∈ Xj : d(η, w) ≥ d(ξ, η)/2}.
Then
∑

w∈Xj

1
(1 + 2jd(ξ, w))k(1 + 2jd(η, w))k

≤ c 1
(1 + 2jd(ξ, η))k

∑

w∈Xj(ξ)

1
(1 + 2jd(η, w))k

+ c
1

(1 + 2jd(ξ, η))k
∑

w∈Xj(η)

1
(1 + 2jd(ξ, w))k

≤ c 1
(1 + 2jd(ξ, η))k

( ∑

w∈Xj

1
(1 + 2jd(η, w))k

+
∑

w∈Xj

1
(1 + 2jd(ξ, w))k

)

≤ c 1
(1 + 2jd(ξ, η))k

,

where for the last inequality we used (7.11). �

Lemma 7.3. Assume P ∈ Π2j (j ≥ 0), ξ ∈ Xj, and let x1, x2 ∈ Bd and d(xν , η) ≤
c̃2−j, ν = 1, 2. For any k > 0

|P (x1)− P (x2)| ≤ c2jd(x1, x2)
∑

ξ∈Xj

|P (ξ)|
(1 + 2jd(η, ξ))k

,

where c > 0 depends only on d, k, µ, and c̃.

Proof. Fix P ∈ Π2j and assume that L2j is the reproducing kernel from Lemma 2.3
with n = 2j . Then, L2j ∗ P = P . Since L2j (x, ·)P (·) ∈ Π2j+2 , and the cubature
formula (2.25) is exact for all polynomials from Π2j+2 we have

P (x) =
∫

Bd
L2j (x, y)P (y)wµ(y)dy =

∑

ξ∈Xj
λξL2j (x, ξ)P (ξ), x ∈ Bd.

We use (2.4) to obtain for x1, x2 ∈ Bd with d(xν , η) ≤ c̃2−j , ν = 1, 2,

|P (x1)− P (x2)| =
∣∣∣
∫

Bd
[L2j (x1, y)− L2j (x2, y)]P (y)wµ(y) dy

∣∣∣

≤
∑

ξ∈Xj
|λξ||L2j (x1, ξ)− L2j (x2, ξ)||P (ξ)|

≤ c2jd(x1, x2)
∑

ξ∈Xj

(Wµ(2j ; ξ)
Wµ(2j ; η)

)1/2 |P (η)|
(1 + 2jd(ξ, η))k

≤ c2jd(x1, x2)
∑

η∈Xj

|P (η)|
(1 + 2jd(ξ, η))k−2µ

.
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Here we used that λξ ∼ 2−jdWµ(2j ; ξ) and for the last inequality we used (2.6).
Taking into account that k > 0 can be arbitrarily large the result follows. �

Completion of the proof of Lemma 4.8. Since bξ ≤ aξ, it trivially follows that
b∗ξ ≤ a∗ξ .

For the other direction let

dξ := max{|P (x1)− P (x2)| : x1 ∈ Rξ, d(x1, x2) ≤ 2−j−r}.
Obviously aξ ≤ bξ + dξ. Now Lemma 7.3 yields

dξ ≤ c2−r
∑

η∈Xj

|P (η)|
(1 + 2jd(ξ, η))k

, ξ ∈ Xj .

From the definition of d∗ξ in (4.11) we infer

d∗ξ ≤ c2−r
∑

w∈Xj

∑

η∈Xj

|P (η)|
(1 + 2jd(w, η))k(1 + 2jd(ξ, w))k

≤ c2−r
∑

η∈Xj

|P (η)|
(1 + 2jd(η, ξ))k

≤ c2−ra∗ξ ,

where for the second inequality we interchanged the order of summation and used
Lemma 7.2. Hence, a∗ξ ≤ b∗ξ + d∗ξ ≤ b∗ξ + c2−ra∗ξ with c > 0 independent of r. By
selecting r sufficiently large we get a∗ξ ≤ cb∗ξ . �

Proof of Lemma 4.9. We first prove Lemma 4.9 in the case ρ = 0. We fix ξ ∈ Xj
and define S0 := {η ∈ Xj : d(η, ξ) ≤ c�2−j} and

Sm := {η ∈ Xj : c�2−j+m−1 < d(η, ξ) ≤ c�2−j+m}, m ≥ 1,

where c� is the constant from Proposition 2.12. By Definition 2.10 it follows that
#Sm ≤ c2md. Let us also set

Bm := Bξ(c�(2m + 1)2−j), m ≥ 0.

Evidently, Rη ⊂ Bm for η ∈ Sν , 0 ≤ ν ≤ m. Moreover, if η ∈ Sm, then

d(ξ, ∂Bd) ≤ d(ξ, η) + d(η, ∂Bd) ≤ c�2−j+m + d(η, ∂Bd).

Hence, using (2.14), we get

(7.13)

m(Bm)
m(Rη)

≤ 2md
(
d(ξ, ∂Bd) + 2−j+m

d(η, ∂Bd) + 2−j

)2µ

≤ c2md
(
d(η, ∂Bd) + 2−j+m

d(η, ∂Bd) + 2−j

)2µ

≤ c2m(d+2µ).

Set γ := max{0, 1− 1
t } < 1. Using Hölder’s inequality if t > 1 and the t-triangle

inequality if 0 < t ≤ 1, we get

b∗ξ =
∑

η∈Xj

|bη|
(1 + 2jd(η, ξ))σ

≤ c
∑

m≥0

2−mσ
∑

η∈Sm
|bη| ≤ c

∑

m≥0

2−m(σ−dγ)(
∑

η∈Sm
|bη|t)1/t.
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We now use (7.13) to obtain, for x ∈ Rξ,

b∗ξ = c

∞∑
m=0

2−m(σ−d)
(∫

Bd

[ ∑

η∈Sm
|bη|m(Rη)−1/t1Rη (y)

]t
wµ(y) dx

)1/t

≤ c
∞∑
m=0

2−m(σ−d)
( 1
m(Bm)

∫

Bm

[ ∑

η∈Sm

(m(Bm)
m(Rη)

)1/t

|bη|1Rη (y)
]t
wµ(y) dy

)1/t

≤ c
∑

m≥0

2−m(σ−d−(d+2µ)/t)
( 1
m(Bm)

∫

Bm

[ ∑

η∈Sm
|bη|1Rη (y)

]t
wµ(y) dy

)1/t

≤ cMt

( ∑

w∈Xj
|bw|1Rω

)
(x),

where for the last inequality we used that σ > d+ (d+ 2µ)/t.
Consider now the general case. Using (2.6) we have for ξ ∈ Xj

Wµ(2j ; ξ)γb∗ξ ≤
∑

η∈Xj

Wµ(2j ; ξ)γ |bη|
(1 + 2jd(ξ, η))σ

≤ c
∑

η∈Xj

Wµ(2j ; η)γ |bη|
(1 + 2jd(ξ, η))σ−2µ|γ|

≤ c
(
Wµ(2j ; ξ)γ |bξ|

)∗
,

where we used that σ > d + (d + 2µ)/t + 2µ|γ|. Now (4.13) in the general case
follows by the same inequality in the case ρ = 0 established above. �
Proof of Lemma 5.4. For any ξ ∈ Xj , we denote aξ := maxx∈Rξ |P (x)|,
mξ := min

x∈Rξ
|P (x)|, and bξ := max{min

x∈Rw
|P (x)| : w ∈ Xj+r, Rw ∩Rξ 6= ∅},

where r ≥ 1 is the constant from Lemma 4.8.
Choose 0 < t < p. By Lemma 4.8 we have a∗ξ ≤ cb∗ξ . We use this, Lemmas 4.9,

and the maximal inequality (2.17) to obtain

(7.14)

( ∑

ξ∈Xj
Wµ(2j ; ξ)γapξm(Rξ)

)1/p

=
∥∥∥
∑

ξ∈Xj
Wµ(2j ; ξ)γaξ1Rξ(·)

∥∥∥
p

≤ c
∥∥∥
∑

ξ∈Xj
Wµ(2j ; ξ)γb∗ξ1Rξ(·)

∥∥∥
p
≤ c
∥∥∥Mt

( ∑

ξ∈Xj
Wµ(2j ; ξ)γbξ1Rξ

)
(·)
∥∥∥
p

≤ c
∥∥∥
∑

ξ∈Xj
Wµ(2j ; ξ)γbξ1Rξ(·)

∥∥∥
p
.

Now, exactly as in the proof of Theorem 4.4 (see (4.17)) we have

(7.15) bξWµ(2j ; ξ)γ1Rξ ≤
∑

η∈Xj+r(ξ)

m∗ηWµ(2j+r; η)γ1Rη .

where Xj+r(ξ) := {w ∈ Xj+r : Rw∩Rξ 6= ∅}. Combining this with (7.14) and using
that #Xj+r(ξ) ≤ c, Lemmas 4.9, and the maximal inequality (2.17), we get

( ∑

ξ∈Xj
Wµ(2j ; ξ)γapξm(Rξ)

)1/p

≤ c
∥∥∥
∑

η∈Xj+r
m∗ηWµ(2j+r; η)γ1Rη (·)

∥∥∥
p

≤ c
∥∥∥Mt

( ∑

η∈Xj+r
mηWµ(2j+r; η)γ1Rη

)
(·)
∥∥∥
p
≤ c
∥∥∥
∑

η∈Xj+r
mηWµ(2j+r; η)γ1Rη (·)

∥∥∥
p

≤ c‖P‖p.
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Here for the forth inequality we used that Wµ(2j+r; η) ∼ Wµ(2j ;x) if x ∈ Rη,
η ∈ Xj+r. �
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