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Abstract

The Lovász Local Lemma is known to have an extension for cases where indepen-
dence is missing but negative dependencies are under control [1]. We show that this is
often the case for random injections, and we provide easy-to-check conditions for the
non-trivial task of verifying a negative dependency graph for random injections. As an
application, we prove existence results for hypergraph packing and Turán type extremal
problems. A more surprising application is that tight asymptotic lower bounds can be
obtained for asymptotic enumeration problems using the Lovász Local Lemma.

1 Introduction

The Lovász Local Lemma is perhaps one of the most powerful probabilistic tools in combi-
natorics, which has numerous applications in addition to combinatorics, in number theory
and computer science.

When dependencies of the events are rare, the Lovász Local Lemma provides a general
way of proving that with a positive (though tiny) probability, none of the events occur. In
some cases an efficient algorithm has been found for finding elements of this tiny event [4].
The main contribution of this paper is to use the Lovász Local Lemma in a space with rich
dependencies, in the set of random injections between two sets.

Let A1, A2, . . . , An be events in a probability space Ω. A graph G on vertices [n] is called
a dependency graph of the events Ai’s if Ai is mutually independent of all Aj with ij 6∈ E(G).

Lemma 1 Lovász Local Lemma (first version) [6] For each 1 ≤ i ≤ n, suppose the

event Ai satisfies Pr(Ai) ≤ p, and assume a dependency graph G is associated with these

events. Assume that d is an upper bound for the degrees in G. If e(d + 1)p < 1, then

Pr(∧n
i=1Ai) > 0. is positive.

Here is a more general second version, Lemma 2, which implies Lemma 1 by setting
xi = 1

d+1 :
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Lemma 2 Lovász Local Lemma (second version) [1] p. 64. Let A1, . . . , An be events

with dependency graph G. If there exist numbers x1, . . . , xn ∈ [0, 1) such that

Pr(Ai) ≤ xi

∏

ij∈E(G)

(1 − xj).

for all i, then

Pr(∧n
i=1Ai) ≥

n
∏

i=1

(1 − xi) > 0.

Going to further generality, a negative dependency graph for A1, . . . , An is a simple graph
on [n] satisfying

Pr(Ai| ∧j∈S Aj) ≤ Pr(Ai), (1)

for any index i and any subset S ⊆ {j | ij 6∈ E(G)}. We will make use of the fact that
Equation (1) trivially holds when Pr(Ai) = 0, otherwise the following equation is equivalent
to Equation (1):

Pr(∧j∈SAj | Ai) ≤ Pr(∧j∈SAj). (2)

Note that if Ai is mutually independent of Aj for j ∈ S, then we have

Pr(Ai| ∧j∈S Aj) = Pr(Ai).

Thus, the dependency graphs always can be considered as negative dependency graphs.

Lemma 3 Lovász Local Lemma (third version) [7], or [1] p. 65 Let A1, . . . , An be

events with a negative dependency graph G. If there exist x1, · · · , xn ∈ [0, 1) with

Pr(Ai) ≤ xi

∏

ij∈E(G)

(1 − xj) (3)

for all i, then

Pr(∧n
i=1Ai) ≥

n
∏

i=1

(1 − xi) > 0. (4)

Note that one easily obtains a version of Lemma 1 for the case of the negative dependency
graph from Lemma 3 by setting xi = 1

d+1 .
The main obstacle for using Lemma 3 is the difficulty to define a useful negative depen-

dency graph other than a dependency graph. In this paper, we will consider the probability
space over random injections. Let U and V be two finite sets with |U | ≤ |V |. Consider
the probability space Ω = I(U, V ) of all injections from U to V equipped with a uniform
distribution. We are going to provide a criterion for defining the negative dependency graph.
We give applications of this criterion in permutation enumeration, hypergraph packing, and
Turán type extremal problems.

We do not prove any new result on permutation enumeration, our point is that we are
not aware of any previous application of the Lovász Local Lemma in this direction. Our
proofs suggest that this possibility is there.

Both for hypergraph packing problems and Turán type extremal problems, the literature
mostly focuses on best estimates for particular hypergraphs. Here we give very general
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bounds that are close to optimal in their general setting, and at the same time, are not very
far from the best estimates for particular hypergraphs, when we apply the general setting
for them.

For example, for any fixed bipartite graph G on s vertices and any graph H on n vertices,
Alon and Yuster [2] proved that for sufficiently large n, H can be covered by vertex-disjoint
copies of G if the minimum degree of H is at least ( 1

2 + ε)n and s divides n. We obtain a
general (but weaker) result (Theorem 3) on perfect packing problem for any hypergraph G.

For Turán type extremal problems, likewise, the literature focuses on particular excluded

sub-hypergraphs, like K
(r)
r+1. The few general results available are about the number of edges

[11], [8]. Our general results are about excluded sub-hypergraphs, in which every edge meets
few other edges, and as before, our estimate is near tight when applied to the well-studied

K
(r)
r+1.
The paper is organized as follows. In section 2, we prove our main theorem. We extend

the Lovász Local Lemma to the space of random injections by establishing a simple criterion
for defining the negative dependency graph. In section 3, we apply our main theorem to
asymptotic permutation enumeration. We study the packing problem for any two hyper-
graphs in section 4 and the perfect packing problem in section 5. The last application on
Turán type extremal problems will be given in section 6.

2 Main result

To state our result, we will use the following notations. Every injection from U to V can be
viewed as a saturated matching of complete bipartite graph with partite sets U and V . In
this sense, we define a matching to be a triple (S, T, f) satisfying

1. S is the subset of U and T is a subset of V .

2. The map f : S → T is a bijection.

We denote the set of all such matchings by M(U, V ). Note that the elements of M(U, V )
are partial functions from U to V that are injections, and I(U, V ) ⊆ M(U, V ).

For any permutation ρ of V we define the map πρ : M(U, V ) → M(U, V ) as follows: For
any g ∈ M(U, V ) for all u ∈ U

πρ(g)(u) = ρ(g(u))

Clearly for a matching g1 = (S1, T1, f1) if πρ(g1) = g2 = (S2, T2, f2) then S1 = S2. Moreover,
if T1 consists of fixpoints of ρ (i.e. ρ(v) = v for all v ∈ T1) then g2 = g1.

Two matchings (S1, T1, f1) and (S2, T2, f2) are said to conflict each other if either “∃k ∈
S1 ∩ S2, f1(k) 6= f2(k)” or “∃k ∈ T1 ∩ T2, f

−1
1 (k) 6= f−1

2 (k)”. In other words, two matchings
do not conflict each other if and only if their union (as a graph) is still a matching.

An event A ∈ I(U, V ) is called to be canonical if A = AS,T,f for a matching (S, T, f).
Two canonical events conflict each other if their associated matchings conflict. Note that if
two events conflict each other, then they are disjoint.

Note that for any permutation ρ of V , and any matching (S, T, f), if πρ((S, T, f)) =
(S, T ′, f ′) then πρ(AS,T,f ) = AS,T ′,f ′ .

We establish a sufficient condition for negative dependency graphs for the space of random
injections by showing the following theorem.
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Theorem 1 Let A1, A2, . . . , Am be canonical events in I(U, V ). Let G be the graph on [m]
defined as

E(G) = {ij | Ai and Aj conflict}.
Then G is a negative dependency graph for the events A1, . . . , Am.

Proof: By (2), it suffices to show that for any index i and any set J ⊆ {j : Ai and Aj

does not conflict},
Pr(∧j∈JAj | Ai) ≤ Pr(∧j∈JAj). (5)

For 1 ≤ k ≤ m, let (Sk, Tk, fk) be the corresponding matching of the event Ak. We first
prove the following claim.
Claim: For any matching (Si, T, f),

Pr(ASi,T,f ) = Pr(ASi,Ti,fi
). (6)

Moreover, if J ⊆ {j : Ai and Aj does not conflict}, we have

Pr((∧j∈JAj)ASi,T,f ) ≥ Pr((∧j∈JAj)ASi,Ti,fi
). (7)

Proof of Claim: Fix a matching (Si, T, f). Let J ′ be the set of indices j ∈ J so that Aj

does not conflict ASi,T,f . Clearly

(∧j∈JAj)ASi,T,f = (∧j∈J′Aj)(∧j∈J\J′Aj)ASi,T,f .

If j ∈ J \ J ′, then Aj conflicts to ASi,T,f , and so ASi,T,f ⊆ Aj . Therefore

AjASi,T,f = ASi,T,f .

Thus, whether J \ J ′ is empty or not, we have

(∧j∈J\J′Aj)ASi,T,f = ASi,T,f ,

from which it follows that

(∧j∈JAj)ASi,T,f = (∧j∈J′Aj)ASi,T,f . (8)

Let ρ : V → V be a bijection satisfying the following: ρ(v) = v for any v ∈ ∪j∈J′Tj

and for w ∈ T , ρ(w) = fi(f
−1(w)). By the definition of J ′ we have that for each j ∈ J ′ if

u ∈ Si ∩ Sj then f(u) = fi(u) = fj(u), therefore such a ρ clearly exists. Moreover, for each
j ∈ J ′, Tj consists of fixpoints of ρ, ρ(T ) = Ti, and for u ∈ Si, ρ(f(u)) = fi(u).

This implies that πρ((Si, T, f)) = (Si, Ti, fi), from which equation (6) follows. Also for
each j ∈ J ′ we have πρ((Sj , Tj , fj)) = (Sj , Tj , fj). Thus, for each j ∈ J ′

πρ(AjASi,T,f ) = AjASi,Ti,fi
, (9)

from which
πρ((∧j∈J′Aj)ASi,T,f ) = (∧j∈J′Aj)ASi,Ti,fi

(10)

Using equations (8) and (10) we obtain

Pr((∧j∈JAj)ASi,T,f ) = Pr((∧j∈J′Aj)ASi,T,f ))

= Pr((∧j∈J′Aj)ASi,Ti,fi
)

≥ Pr((∧j∈JAj)ASi,Ti,fi
).
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The proof of the claim is finished.
For the fixed set Si, the collection of events {ASi,T,f | (Si, T, f) is a matching} forms a

partition of the space Ω = I(U, V ).
From this partition and equations (6) and (7) we get

Pr(∧j∈JAj) =
∑

(Si,T,f)

Pr((∧j∈JAj)ASi,T,f )

≥
∑

(Si,T,f)

Pr((∧j∈JAj)ASi,Ti,fi
)

=
∑

(Si,T,f)

Pr(∧j∈JAj | ASi,Ti,fi
)Pr(ASi,Ti,fi

)

=
∑

(Si,T,f)

Pr(∧j∈JAj | ASi,Ti,fi
)Pr(ASi,T,f )

= Pr(∧j∈JAj | ASi,Ti,fi
).

�

3 Asymptotic Permutation Enumeration

There is a well-known asymptotic formula for the number of fixed-point-free permutations
of n elements (or derangements of n elements), n!/e. Surprisingly, the Lovász Local Lemma
gives this asymptotic formula as lower bound. Let us be given a set U of n elements.

To apply Theorem 1, set V = U , for i ∈ U set Si = Ti = {i}, define fi : Si → Ti by
i 7→ i. Set Ai = ASi,Ti,fi

and observe that Ai consists of permutations that fix i. We will
use empty negative dependency graph, i.e. E(G) = ∅.

For the purposes of Lemma 3 select xi = 1/n. This choice is allowed, as Pr(Ai) = 1/n
and the product in (3) is empty. The conclusion is that Pr(∧iAi) ≥ (1 − 1

n )n, and this
number converges to 1/e.

A slightly more interesting application is about the asymptotic enumeration of involution-
free permutations. Their number is known to be asymptotically n!/

√
e. The Lovász Local

Lemma, again, gives this asymptotic formula as lower bound. Let us be given a set U of n
elements.

To apply Theorem 1, set V = U , for i, j ∈ U , i 6= j set Si,j = Ti,j = {i, j}; define
fi,j : Si,j → Ti,j by i 7→ j and j 7→ i. Define the event Ai,j = ASi,j ,Ti,j ,fi,j

, and observe
Ai,j = Aj,i. The vertices of the negative dependency graph will be the

(

n
2

)

events, Ai,j , and
Ai,j is joined to Ai,k with an edge if i, j, k are 3 distinct indices; and it is joined similarly to
Ak,j . Every degree in the negative dependency graph is 2n − 4.

For the purposes of Lemma 3 select xi,j = x =
(1+ 3

n
)

n(n−1) . Note that Pr(Ai,j) = 1
n(n−1) ,

and a little calculation shows that 1
n(n−1) ≤ x(1 − x)2n−4 by the definition of x. Hence,

(3), the condition of Lemma 3, holds. The conclusion of Lemma 3 is that Pr(∧i,jAi,j) ≥
(

1 − (1+ 3

n
)

n(n−1)

)(n

2)
, and this number converges to 1/

√
e.

Spencer made a joke in [12], that Lovász Local Lemma 1 can prove the existence of an
injection from an a-element set into a 6a-element set, while the naive approach requires a
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Θ(a2) size codomain, as it is well-known from the ’Birthday Paradox’. Now using Lemma 3
in combination with Lemma 4 below, we can show that a random function from an a-
element set into an a-element set is injection with probability at least ( 1

e − o(1))a, giving a
combinatorial proof to a weakened Stirling formula! (This is the only result in the paper not
using Theorem 1.)

We say that the events A1, A2, ..., An are symmetric, if the probability of any boolean
expression of these sets do not change, if we substitute Aπ(i) to the place of Ai simultaneously,
for any permutation π of [n].

Lemma 4 Assume that the events A1, A2, ..., An are symmetric, and let pi denote Pr(A1 ∧
A2∧· · ·∧Ai) for i = 1, 2, ..., n and let p0 = 1. If the sequence is logconvex, i.e. p2

k ≤ pk−1pk+1

for k = 1, 2, ..., n − 1, then Lemma 3 applies with an empty negative dependency graph, i.e.

with xi = p1.

Proof. Mathematical induction on the number of terms in the condition yields that Pr(A1|A2∧
A3 ∧ ... ∧ Ak) = 1 − pk/pk−1 ≥ 1 − pk+1/pk = Pr(A1|A2 ∧ A3 ∧ ... ∧ Ak ∧ Ak+1). �

Consider a set A with |A| = a and a set B with |B| = b, and assume a ≤ b. Consider a
random function f from A to B. For u ∈ A, define the event Au = the value f(u) occurs with
multiplicity 2 or higher. The events Au are symmetric. Clearly Pr(Au) = 1− b(b−1)a−1/ba.
Direct calculation shows that pi = Pr(Au1

∧Au2
· · ·Aui

) = i!
(

b
i

)

(b−i)a−i/ba. The logconvexity
of the pi sequence is algebraically equivalent to (b−k)2a−2k−1 ≤ (b−k+1)a−k(b−k−1)a−k−1

for k = 1, ..., a − 1. In the case a = b, set n = a − k, and the last inequality is algebraically
equivalent to (1 + 1

n−1 )n−1 ≤ (1 + 1
n )n, which is a well-known fact. Hence, using Lemma 3,

we obtain that the probability that a random A → A function is an injection, is at least
(1 − p1)

a = (1 − 1/a)a(a−1) = ( 1
e − o(1))a, pretty close to the correct asymptotics a!/aa =√

2πae−a(1 + o(1)).

4 Packing problem

A hypergraph H consists of a vertex set V (H) together with a family E(H) of subsets of
V (H), which are called edges of H . A r-uniform hypergraph, or r-graph, is a hypergraph
whose edges have the same cardinality r. The complete r-graph on n vertices is denoted by

K
(r)
n .

Packing problem of hypergraphs: For two r-uniform hypergraphs H1, H2, and an
integer n ≥ max{|V (H1)|, |V (H2)|}, are there injections φi : V (Hi) → [n], for i = 1, 2 such
that φ1(H1) and φ2(H2) are edge-disjoint?

Theorem 2 For i = 1, 2, assume that Hi is an r-uniform hypergraph with mi edges, such

that every edge in Hi intersects at most di other edges of Hi. If (d1 + 1)m2 + (d2 + 1)m1 <
1
e

(

n
r

)

, then there exist injections of V (H1) and V (H2) into K
(r)
n such that the natural images

of H1 and H2 are edge-disjoint.

Proof: Without loss of generality, we assume that H2 is given as a sub-hypergraph of K
(r)
n .

Consider a random injection of V (H1) into V (K
(r)
n ); this injection extends to E(H1) in the

natural way. Our probability space will be I(U, V ) with U = V (H1) and V = [n]. Consider
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two edges F1 (of H1) and F2 (of H2); and a bijection φ : F1 → F2. The events AF1,F2,φ will
be our bad events. We have

Pr(AF1,F2,φ) =
1

r!
(

n
r

) .

Let G be the negative dependency graph of those AF1,F2,φ events. An event AF1,F2,φ conflicts
another event AF ′

1
,F ′

2
,φ′ if and only if

1. Edges F1 and F ′
1 have empty intersection while their images F2 and F ′

2 have non-empty
intersection.

2. Edges F1 and F ′
1 have non-empty intersection but φ and φ′ are defined differently in

some intersection point.

An event AF1,F2,φ can have at most r!(d2 + 1)m1 − 1 conflicts of the first type, and at
most r!(d1 + 1)m2 conflicts of the second type, thus the maximal degree d in the negative
dependency graph is at most

r![(d1 + 1)m2 + (d2 + 1)m1] − 1.

Apply Lemma 1 in the negative dependency graph setting. With positive probability, all
bad events Af1,f2,φ can be avoided simultaneously if

e(d + 1)Pr(Af1,f2,φ) < 1.

�

Remark: The constant coefficient 1
e in Theorem 2 can not be replaced by 4 as shown by

the following example.
Let r = 2 and H be a graph on n = s(s − 1) vertices consisting of s − 1 vertex-disjoint

copies of the complete graph Ks. The complement graph H is Ks-free. (In fact, H is the
maximum Ks-free graph on n vertices by Turán theorem [14].) Therefore, two copies of H
can not be packed into Kn with disjoint edge sets. In this example, we have d1 = d2 = 2(s−2)
and m1 = m2 = (s − 1)

(

s
2

)

. Therefore, we have

(d1 + 1)m2 + (d2 + 1)m1 = 2(2s− 3)(s − 1)

(

s

2

)

= (2s − 3)s(s − 1)2

< 4

(

n

2

)

.

Here the last inequality holds for all s ≥ 2 by an easy calculation.

5 Perfect Packing

For two r-uniform hypergraphs, H and G, we say that H has a perfect G-packing if there
exist sub-hypergraphs G1, . . . , Gk of H , each isomorphic to G, such that the vertex sets
V (G1), . . . , V (Gk) partition V (H).

A necessary condition for the existence of perfect G-packing is that |V (H)| is divisible
by |V (G)|. We will prove the following theorem.
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Theorem 3 Suppose that two r-uniform hypergraphs G and H satisfy the following.

1. G has s vertices, H has n vertices, and n is divisible by s.

2. G has m edges, and each edge in G intersects at most d other edges of G.

3. For any vertex v of H, the degree of v in H is at least (1 − x)
(

n−1
r−1

)

.

If x < 1
e(d+1+r2 m

s
) , then then H has a perfect G-packing.

A special case is that G is the r-graph with a single edge. We have m = 1, d = 0, and
s = r.

Corollary 1 Suppose the degree of each vertex in an r-graph H on n vertices is at least

(1 − 1
e(r+1) )

(

n−1
r−1

)

. If n is divisible by r, then H has a perfect matching.

Proof of Theorem 3: Let H1 be the union of n
s vertex-disjoint copies of G and H

be the complement graph of H . Observe that H has a perfect G-packing if and only if H1

and H2 = H can be packed into K
(r)
n . Now we apply Theorem 2. Notice that d1 = d and

m1 = |E(H1)| = n
s |E(G)| = nm

s . The degree of any vertex in H is at most x
(

n−1
r−1

)

by the
third condition. We have

d2 ≤ rx

(

n − 1

r − 1

)

− r + 1 ≤ rx

(

n − 1

r − 1

)

− 1.

It suffices to have

(d1 + 1)m2 + (d2 + 1)m1 ≤ (d + 1)x

(

n

r

)

+

(

rx

(

n − 1

r − 1

)

)

nm

s
≤ 1

e

(

n

r

)

.

The second inequality is equivalent to

x <
1

e(d + 1 + r2m
s )

.

as desired. �

6 Turán type extremal problems

For a fixed r-graph G, let t(n, G) denote the smallest integer m such that every r-uniform

hypergraph on n vertices with m+1 edges must contain a copy of G. The limit limn→∞
t(n,G)

(n

r)
always exists [9]. We denote it by π(G). We have

Theorem 4 Suppose each edge in an r-graph G intersects at most d other edges. Then we

have

π(G) ≤ 1 − 1

(d + 1)e
. (11)
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Proof: Consider any r-graph H on n vertices and m edges, which do not contain a copy
of G. Apply Theorem 2 to G and H . Note that each edge of H can intersect at most
r
(

n−1
r−1

)

− r + 1 other edges. It suffices to have

(d + 1)

(

(

n

r

)

− m

)

+

(

r

(

n − 1

r − 1

)

− r + 2

)

|E(G)| ≤ 1

e

(

n

r

)

.

We have

m
(

n
r

) ≥ 1 − 1

e(d + 1)
+

r2

n

|E(G)|
d + 1

= 1 − 1

e(d + 1)
+ O(

1

n
)

as desired as n → ∞ while d and r are fixed. �

The general upper bound for Turán density in term of the number of edges is first obtained
by Sidorenko [11]

π(G) ≤ 1 − 1

f − 1

for any r-graph G with f edges. It has slightly been improved by Keevash [8] to

π(G) < 1 − 1

f − 1
− (1 + O(1))(2r!2/rf3−2/r)−1 (12)

for fixed r ≥ 3 and f → ∞.
If a hypergraph G is a clique, in which any pair of edges have non-empty intersection,

then we have d = f − 1. Inequality (12) is closer to the best known upper bound. For

example, consider a special complete r-graph K
(r)
r+1 on r + 1 vertices, de Caen [3], Sidorenko

([10]), Tazawa and Shirakura [13] proved

1 − (1 + o(1)) ln r

2r
≤ π(K

(r)
r+1) ≤ 1 − 1

r
.

The upper bound was improved [5] to

π(K
(r)
r+1) ≤ 1− 5r + 12 −

√
9r2 + 24r

2r(r + 3)
= 1 − 1

r
− 1

r2
+ O(

1

r3
)

for odd r.
Theorem 4 only gives

π(K
(r)
r+1) ≤ 1 − 1

e(r + 1)
.

It is still quite comparable to those best known upper bounds for π(K
(r)
r+1) except for the

constant coefficient e.
However, for hypergraph G with less intersection, (say, d < f

e ) inequality (11) often offers
a much better upper bound on π(G) than inequality (12) does.

Acknowledgment: We thank Eva Czabarka for her suggestions at writing this paper.
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