

Industrial Mathematics

 Institute
2006:13

Using lovasz local lemma in the space of random injections
L. Lu and L. Szekely

Preprint Series
Department of Mathematics University of South Carolina

Using Lovász Local Lemma in the space of random injections

Linyuan Lu * László Székely †

July 5, 2006

Abstract

The Lovász Local Lemma is known to have an extension for cases where independence is missing but negative dependencies are under control [1]. We show that this is often the case for random injections, and we provide easy-to-check conditions for the non-trivial task of verifying a negative dependency graph for random injections. As an application, we prove existence results for hypergraph packing and Turán type extremal problems. A more surprising application is that tight asymptotic lower bounds can be obtained for asymptotic enumeration problems using the Lovász Local Lemma.

1 Introduction

The Lovász Local Lemma is perhaps one of the most powerful probabilistic tools in combinatorics, which has numerous applications in addition to combinatorics, in number theory and computer science.

When dependencies of the events are rare, the Lovász Local Lemma provides a general way of proving that with a positive (though tiny) probability, none of the events occur. In some cases an efficient algorithm has been found for finding elements of this tiny event [4]. The main contribution of this paper is to use the Lovász Local Lemma in a space with rich dependencies, in the set of random injections between two sets.

Let $A_{1}, A_{2}, \ldots, A_{n}$ be events in a probability space Ω. A graph G on vertices $[n]$ is called a dependency graph of the events A_{i} 's if A_{i} is mutually independent of all A_{j} with $i j \notin E(G)$.

Lemma 1 Lovász Local Lemma (first version) [6] For each $1 \leq i \leq n$, suppose the event A_{i} satisfies $\operatorname{Pr}\left(A_{i}\right) \leq p$, and assume a dependency graph G is associated with these events. Assume that d is an upper bound for the degrees in G. If $e(d+1) p<1$, then $\operatorname{Pr}\left(\wedge_{i=1}^{n} \overline{A_{i}}\right)>0$. is positive.

Here is a more general second version, Lemma 2, which implies Lemma 1 by setting $x_{i}=\frac{1}{d+1}$:

[^0]Lemma 2 Lovász Local Lemma (second version) [1] p. 64. Let A_{1}, \ldots, A_{n} be events with dependency graph G. If there exist numbers $x_{1}, \ldots, x_{n} \in[0,1)$ such that

$$
\operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{i j \in E(G)}\left(1-x_{j}\right)
$$

for all i, then

$$
\operatorname{Pr}\left(\wedge_{i=1}^{n} \overline{A_{i}}\right) \geq \prod_{i=1}^{n}\left(1-x_{i}\right)>0
$$

Going to further generality, a negative dependency graph for A_{1}, \ldots, A_{n} is a simple graph on [n] satisfying

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i} \mid \wedge_{j \in S} \overline{A_{j}}\right) \leq \operatorname{Pr}\left(A_{i}\right) \tag{1}
\end{equation*}
$$

for any index i and any subset $S \subseteq\{j \mid i j \notin E(G)\}$. We will make use of the fact that Equation (1) trivially holds when $\operatorname{Pr}\left(A_{i}\right)=0$, otherwise the following equation is equivalent to Equation (1):

$$
\begin{equation*}
\operatorname{Pr}\left(\wedge_{j \in S} \overline{A_{j}} \mid A_{i}\right) \leq \operatorname{Pr}\left(\wedge_{j \in S} \overline{A_{j}}\right) \tag{2}
\end{equation*}
$$

Note that if A_{i} is mutually independent of A_{j} for $j \in S$, then we have

$$
\operatorname{Pr}\left(A_{i} \mid \wedge_{j \in S} \overline{A_{j}}\right)=\operatorname{Pr}\left(A_{i}\right)
$$

Thus, the dependency graphs always can be considered as negative dependency graphs.
Lemma 3 Lovász Local Lemma (third version) [7], or [1] p. 65 Let A_{1}, \ldots, A_{n} be events with a negative dependency graph G. If there exist $x_{1}, \cdots, x_{n} \in[0,1)$ with

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{i j \in E(G)}\left(1-x_{j}\right) \tag{3}
\end{equation*}
$$

for all i, then

$$
\begin{equation*}
\operatorname{Pr}\left(\wedge_{i=1}^{n} \overline{A_{i}}\right) \geq \prod_{i=1}^{n}\left(1-x_{i}\right)>0 \tag{4}
\end{equation*}
$$

Note that one easily obtains a version of Lemma 1 for the case of the negative dependency graph from Lemma 3 by setting $x_{i}=\frac{1}{d+1}$.

The main obstacle for using Lemma 3 is the difficulty to define a useful negative dependency graph other than a dependency graph. In this paper, we will consider the probability space over random injections. Let U and V be two finite sets with $|U| \leq|V|$. Consider the probability space $\Omega=I(U, V)$ of all injections from U to V equipped with a uniform distribution. We are going to provide a criterion for defining the negative dependency graph. We give applications of this criterion in permutation enumeration, hypergraph packing, and Turán type extremal problems.

We do not prove any new result on permutation enumeration, our point is that we are not aware of any previous application of the Lovász Local Lemma in this direction. Our proofs suggest that this possibility is there.

Both for hypergraph packing problems and Turán type extremal problems, the literature mostly focuses on best estimates for particular hypergraphs. Here we give very general
bounds that are close to optimal in their general setting, and at the same time, are not very far from the best estimates for particular hypergraphs, when we apply the general setting for them.

For example, for any fixed bipartite graph G on s vertices and any graph H on n vertices, Alon and Yuster [2] proved that for sufficiently large n, H can be covered by vertex-disjoint copies of G if the minimum degree of H is at least $\left(\frac{1}{2}+\epsilon\right) n$ and s divides n. We obtain a general (but weaker) result (Theorem 3) on perfect packing problem for any hypergraph G.

For Turán type extremal problems, likewise, the literature focuses on particular excluded sub-hypergraphs, like $K_{r+1}^{(r)}$. The few general results available are about the number of edges [11], [8]. Our general results are about excluded sub-hypergraphs, in which every edge meets few other edges, and as before, our estimate is near tight when applied to the well-studied $K_{r+1}^{(r)}$.

The paper is organized as follows. In section 2, we prove our main theorem. We extend the Lovász Local Lemma to the space of random injections by establishing a simple criterion for defining the negative dependency graph. In section 3 , we apply our main theorem to asymptotic permutation enumeration. We study the packing problem for any two hypergraphs in section 4 and the perfect packing problem in section 5 . The last application on Turán type extremal problems will be given in section 6 .

2 Main result

To state our result, we will use the following notations. Every injection from U to V can be viewed as a saturated matching of complete bipartite graph with partite sets U and V. In this sense, we define a matching to be a triple (S, T, f) satisfying

1. S is the subset of U and T is a subset of V.
2. The map $f: S \rightarrow T$ is a bijection.

We denote the set of all such matchings by $M(U, V)$. Note that the elements of $M(U, V)$ are partial functions from U to V that are injections, and $I(U, V) \subseteq M(U, V)$.

For any permutation ρ of V we define the map $\pi_{\rho}: M(U, V) \rightarrow M(U, V)$ as follows: For any $g \in M(U, V)$ for all $u \in U$

$$
\pi_{\rho}(g)(u)=\rho(g(u))
$$

Clearly for a matching $g_{1}=\left(S_{1}, T_{1}, f_{1}\right)$ if $\pi_{\rho}\left(g_{1}\right)=g_{2}=\left(S_{2}, T_{2}, f_{2}\right)$ then $S_{1}=S_{2}$. Moreover, if T_{1} consists of fixpoints of ρ (i.e. $\rho(v)=v$ for all $v \in T_{1}$) then $g_{2}=g_{1}$.

Two matchings $\left(S_{1}, T_{1}, f_{1}\right)$ and $\left(S_{2}, T_{2}, f_{2}\right)$ are said to conflict each other if either " $\exists k \in$ $S_{1} \cap S_{2}, f_{1}(k) \neq f_{2}(k)$ " or " $\exists k \in T_{1} \cap T_{2}, f_{1}^{-1}(k) \neq f_{2}^{-1}(k)$ ". In other words, two matchings do not conflict each other if and only if their union (as a graph) is still a matching.

An event $A \in I(U, V)$ is called to be canonical if $A=A_{S, T, f}$ for a matching (S, T, f). Two canonical events conflict each other if their associated matchings conflict. Note that if two events conflict each other, then they are disjoint.

Note that for any permutation ρ of V, and any matching (S, T, f), if $\pi_{\rho}((S, T, f))=$ $\left(S, T^{\prime}, f^{\prime}\right)$ then $\pi_{\rho}\left(A_{S, T, f}\right)=A_{S, T^{\prime}, f^{\prime}}$.

We establish a sufficient condition for negative dependency graphs for the space of random injections by showing the following theorem.

Theorem 1 Let $A_{1}, A_{2}, \ldots, A_{m}$ be canonical events in $I(U, V)$. Let G be the graph on $[m]$ defined as

$$
E(G)=\left\{i j \mid A_{i} \text { and } A_{j} \text { conflict }\right\}
$$

Then G is a negative dependency graph for the events A_{1}, \ldots, A_{m}.
Proof: By (2), it suffices to show that for any index i and any set $J \subseteq\left\{j: A_{i}\right.$ and A_{j} does not conflict $\}$,

$$
\begin{equation*}
\operatorname{Pr}\left(\wedge_{j \in J} \overline{A_{j}} \mid A_{i}\right) \leq \operatorname{Pr}\left(\wedge_{j \in J} \overline{A_{j}}\right) \tag{5}
\end{equation*}
$$

For $1 \leq k \leq m$, let $\left(S_{k}, T_{k}, f_{k}\right)$ be the corresponding matching of the event A_{k}. We first prove the following claim.
Claim: For any matching $\left(S_{i}, T, f\right)$,

$$
\begin{equation*}
\operatorname{Pr}\left(A_{S_{i}, T, f}\right)=\operatorname{Pr}\left(A_{S_{i}, T_{i}, f_{i}}\right) \tag{6}
\end{equation*}
$$

Moreover, if $J \subseteq\left\{j: A_{i}\right.$ and A_{j} does not conflict $\}$, we have

$$
\begin{equation*}
\operatorname{Pr}\left(\left(\wedge_{j \in J} \overline{A_{j}}\right) A_{S_{i}, T, f}\right) \geq \operatorname{Pr}\left(\left(\wedge_{j \in J} \overline{A_{j}}\right) A_{S_{i}, T_{i}, f_{i}}\right) \tag{7}
\end{equation*}
$$

Proof of Claim: Fix a matching $\left(S_{i}, T, f\right)$. Let J^{\prime} be the set of indices $j \in J$ so that A_{j} does not conflict $A_{S_{i}, T, f}$. Clearly

$$
\left(\wedge_{j \in J} \overline{A_{j}}\right) A_{S_{i}, T, f}=\left(\wedge_{j \in J^{\prime}} \overline{A_{j}}\right)\left(\wedge_{j \in J \backslash J^{\prime}} \overline{A_{j}}\right) A_{S_{i}, T, f}
$$

If $j \in J \backslash J^{\prime}$, then A_{j} conflicts to $A_{S_{i}, T, f}$, and so $A_{S_{i}, T, f} \subseteq \overline{A_{j}}$. Therefore

$$
\overline{A_{j}} A_{S_{i}, T, f}=A_{S_{i}, T, f}
$$

Thus, whether $J \backslash J^{\prime}$ is empty or not, we have

$$
\left(\wedge_{j \in J \backslash J^{\prime}} \overline{A_{j}}\right) A_{S_{i}, T, f}=A_{S_{i}, T, f},
$$

from which it follows that

$$
\begin{equation*}
\left(\wedge_{j \in J} \overline{A_{j}}\right) A_{S_{i}, T, f}=\left(\wedge_{j \in J^{\prime}} \overline{A_{j}}\right) A_{S_{i}, T, f} \tag{8}
\end{equation*}
$$

Let $\rho: V \rightarrow V$ be a bijection satisfying the following: $\rho(v)=v$ for any $v \in \cup_{j \in J^{\prime}} T_{j}$ and for $w \in T, \rho(w)=f_{i}\left(f^{-1}(w)\right)$. By the definition of J^{\prime} we have that for each $j \in J^{\prime}$ if $u \in S_{i} \cap S_{j}$ then $f(u)=f_{i}(u)=f_{j}(u)$, therefore such a ρ clearly exists. Moreover, for each $j \in J^{\prime}, T_{j}$ consists of fixpoints of $\rho, \rho(T)=T_{i}$, and for $u \in S_{i}, \rho(f(u))=f_{i}(u)$.

This implies that $\pi_{\rho}\left(\left(S_{i}, T, f\right)\right)=\left(S_{i}, T_{i}, f_{i}\right)$, from which equation (6) follows. Also for each $j \in J^{\prime}$ we have $\pi_{\rho}\left(\left(S_{j}, T_{j}, f_{j}\right)\right)=\left(S_{j}, T_{j}, f_{j}\right)$. Thus, for each $j \in J^{\prime}$

$$
\begin{equation*}
\pi_{\rho}\left(\overline{A_{j}} A_{S_{i}, T, f}\right)=\overline{A_{j}} A_{S_{i}, T_{i}, f_{i}} \tag{9}
\end{equation*}
$$

from which

$$
\begin{equation*}
\pi_{\rho}\left(\left(\wedge_{j \in J^{\prime}} \overline{A_{j}}\right) A_{S_{i}, T, f}\right)=\left(\wedge_{j \in J^{\prime}} \overline{A_{j}}\right) A_{S_{i}, T_{i}, f_{i}} \tag{10}
\end{equation*}
$$

Using equations (8) and (10) we obtain

$$
\begin{aligned}
\operatorname{Pr}\left(\left(\wedge_{j \in J} \overline{A_{j}}\right) A_{S_{i}, T, f}\right) & \left.=\operatorname{Pr}\left(\left(\wedge_{j \in J^{\prime}} \overline{A_{j}}\right) A_{S_{i}, T, f}\right)\right) \\
& =\operatorname{Pr}\left(\left(\wedge_{j \in J^{\prime}} \overline{A_{j}}\right) A_{S_{i}, T_{i}, f_{i}}\right) \\
& \geq \operatorname{Pr}\left(\left(\wedge_{j \in J} \overline{A_{j}}\right) A_{S_{i}, T_{i}, f_{i}}\right) .
\end{aligned}
$$

The proof of the claim is finished.
For the fixed set S_{i}, the collection of events $\left\{A_{S_{i}, T, f} \mid\left(S_{i}, T, f\right)\right.$ is a matching $\}$ forms a partition of the space $\Omega=I(U, V)$.

From this partition and equations (6) and (7) we get

$$
\begin{aligned}
\operatorname{Pr}\left(\wedge_{j \in J} \overline{A_{j}}\right) & =\sum_{\left(S_{i}, T, f\right)} \operatorname{Pr}\left(\left(\wedge_{j \in J} \overline{A_{j}}\right) A_{S_{i}, T, f}\right) \\
& \geq \sum_{\left(S_{i}, T, f\right)} \operatorname{Pr}\left(\left(\wedge_{j \in J} \overline{A_{j}}\right) A_{S_{i}, T_{i}, f_{i}}\right) \\
& =\sum_{\left(S_{i}, T, f\right)} \operatorname{Pr}\left(\wedge_{j \in J} \overline{A_{j}} \mid A_{S_{i}, T_{i}, f_{i}}\right) \operatorname{Pr}\left(A_{S_{i}, T_{i}, f_{i}}\right) \\
& =\sum_{\left(S_{i}, T, f\right)} \operatorname{Pr}\left(\wedge_{j \in J} \overline{A_{j}} \mid A_{S_{i}, T_{i}, f_{i}}\right) \operatorname{Pr}\left(A_{S_{i}, T, f}\right) \\
& =\operatorname{Pr}\left(\wedge_{j \in J} \overline{A_{j}} \mid A_{S_{i}, T_{i}, f_{i}}\right) .
\end{aligned}
$$

3 Asymptotic Permutation Enumeration

There is a well-known asymptotic formula for the number of fixed-point-free permutations of n elements (or derangements of n elements), $n!/ e$. Surprisingly, the Lovász Local Lemma gives this asymptotic formula as lower bound. Let us be given a set U of n elements.

To apply Theorem 1 , set $V=U$, for $i \in U$ set $S_{i}=T_{i}=\{i\}$, define $f_{i}: S_{i} \rightarrow T_{i}$ by $i \mapsto i$. Set $A_{i}=A_{S_{i}, T_{i}, f_{i}}$ and observe that A_{i} consists of permutations that fix i. We will use empty negative dependency graph, i.e. $E(G)=\emptyset$.

For the purposes of Lemma 3 select $x_{i}=1 / n$. This choice is allowed, as $\operatorname{Pr}\left(A_{i}\right)=1 / n$ and the product in (3) is empty. The conclusion is that $\operatorname{Pr}\left(\wedge_{i} \overline{A_{i}}\right) \geq\left(1-\frac{1}{n}\right)^{n}$, and this number converges to $1 / e$.

A slightly more interesting application is about the asymptotic enumeration of involutionfree permutations. Their number is known to be asymptotically $n!/ \sqrt{e}$. The Lovász Local Lemma, again, gives this asymptotic formula as lower bound. Let us be given a set U of n elements.

To apply Theorem 1 , set $V=U$, for $i, j \in U, i \neq j$ set $S_{i, j}=T_{i, j}=\{i, j\}$; define $f_{i, j}: S_{i, j} \rightarrow T_{i, j}$ by $i \mapsto j$ and $j \mapsto i$. Define the event $A_{i, j}=A_{S_{i, j}, T_{i, j}, f_{i, j}}$, and observe $A_{i, j}=A_{j, i}$. The vertices of the negative dependency graph will be the $\binom{n}{2}$ events, $A_{i, j}$, and $A_{i, j}$ is joined to $A_{i, k}$ with an edge if i, j, k are 3 distinct indices; and it is joined similarly to $A_{k, j}$. Every degree in the negative dependency graph is $2 n-4$.

For the purposes of Lemma 3 select $x_{i, j}=x=\frac{\left(1+\frac{3}{n}\right)}{n(n-1)}$. Note that $\operatorname{Pr}\left(A_{i, j}\right)=\frac{1}{n(n-1)}$, and a little calculation shows that $\frac{1}{n(n-1)} \leq x(1-x)^{2 n-4}$ by the definition of x. Hence, (3), the condition of Lemma 3, holds. The conclusion of Lemma 3 is that $\operatorname{Pr}\left(\wedge_{i, j} \overline{A_{i, j}}\right) \geq$ $\left(1-\frac{\left(1+\frac{3}{n}\right)}{n(n-1)}\right)^{\binom{n}{2}}$, and this number converges to $1 / \sqrt{e}$.

Spencer made a joke in [12], that Lovász Local Lemma 1 can prove the existence of an injection from an a-element set into a $6 a$-element set, while the naive approach requires a
$\Theta\left(a^{2}\right)$ size codomain, as it is well-known from the 'Birthday Paradox'. Now using Lemma 3 in combination with Lemma 4 below, we can show that a random function from an a element set into an a-element set is injection with probability at least $\left(\frac{1}{e}-o(1)\right)^{a}$, giving a combinatorial proof to a weakened Stirling formula! (This is the only result in the paper not using Theorem 1.)

We say that the events $A_{1}, A_{2}, \ldots, A_{n}$ are symmetric, if the probability of any boolean expression of these sets do not change, if we substitute $A_{\pi(i)}$ to the place of A_{i} simultaneously, for any permutation π of $[n]$.

Lemma 4 Assume that the events $A_{1}, A_{2}, \ldots, A_{n}$ are symmetric, and let p_{i} denote $\operatorname{Pr}\left(\overline{A_{1}} \wedge\right.$ $\left.\overline{A_{2}} \wedge \cdots \wedge \overline{A_{i}}\right)$ for $i=1,2, \ldots, n$ and let $p_{0}=1$. If the sequence is logconvex, i.e. $p_{k}^{2} \leq p_{k-1} p_{k+1}$ for $k=1,2, \ldots, n-1$, then Lemma 3 applies with an empty negative dependency graph, i.e. with $x_{i}=p_{1}$.

Proof. Mathematical induction on the number of terms in the condition yields that $\operatorname{Pr}\left(A_{1} \mid \overline{A_{2}} \wedge\right.$ $\left.\overline{A_{3}} \wedge \ldots \wedge \overline{A_{k}}\right)=1-p_{k} / p_{k-1} \geq 1-p_{k+1} / p_{k}=\operatorname{Pr}\left(A_{1} \mid \overline{A_{2}} \wedge \overline{A_{3}} \wedge \ldots \wedge \overline{A_{k}} \wedge \overline{A_{k+1}}\right)$.

Consider a set A with $|A|=a$ and a set B with $|B|=b$, and assume $a \leq b$. Consider a random function f from A to B. For $u \in A$, define the event $A_{u}=$ the value $f(u)$ occurs with multiplicity 2 or higher. The events A_{u} are symmetric. Clearly $\operatorname{Pr}\left(A_{u}\right)=1-b(b-1)^{a-1} / b^{a}$. Direct calculation shows that $p_{i}=\operatorname{Pr}\left(\overline{A_{u_{1}}} \wedge \overline{A_{u_{2}}} \ldots \overline{A_{u_{i}}}\right)=i!\binom{b}{i}(b-i)^{a-i} / b^{a}$. The logconvexity of the p_{i} sequence is algebraically equivalent to $(b-k)^{2 a-2 k-1} \leq(b-k+1)^{a-k}(b-k-1)^{a-k-1}$ for $k=1, \ldots, a-1$. In the case $a=b$, set $n=a-k$, and the last inequality is algebraically equivalent to $\left(1+\frac{1}{n-1}\right)^{n-1} \leq\left(1+\frac{1}{n}\right)^{n}$, which is a well-known fact. Hence, using Lemma 3 , we obtain that the probability that a random $A \rightarrow A$ function is an injection, is at least $\left(1-p_{1}\right)^{a}=(1-1 / a)^{a(a-1)}=\left(\frac{1}{e}-o(1)\right)^{a}$, pretty close to the correct asymptotics $a!/ a^{a}=$ $\sqrt{2 \pi a} e^{-a}(1+o(1))$.

4 Packing problem

A hypergraph H consists of a vertex set $V(H)$ together with a family $E(H)$ of subsets of $V(H)$, which are called edges of H. A r-uniform hypergraph, or r-graph, is a hypergraph whose edges have the same cardinality r. The complete r-graph on n vertices is denoted by $K_{n}^{(r)}$.
Packing problem of hypergraphs: For two r-uniform hypergraphs H_{1}, H_{2}, and an integer $n \geq \max \left\{\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right\}$, are there injections $\phi_{i}: V\left(H_{i}\right) \rightarrow[n]$, for $i=1,2$ such that $\phi_{1}\left(H_{1}\right)$ and $\phi_{2}\left(H_{2}\right)$ are edge-disjoint?

Theorem 2 For $i=1,2$, assume that H_{i} is an r-uniform hypergraph with m_{i} edges, such that every edge in H_{i} intersects at most d_{i} other edges of H_{i}. If $\left(d_{1}+1\right) m_{2}+\left(d_{2}+1\right) m_{1}<$ $\frac{1}{e}\binom{n}{r}$, then there exist injections of $V\left(H_{1}\right)$ and $V\left(H_{2}\right)$ into $K_{n}^{(r)}$ such that the natural images of H_{1} and H_{2} are edge-disjoint.

Proof: Without loss of generality, we assume that H_{2} is given as a sub-hypergraph of $K_{n}^{(r)}$. Consider a random injection of $V\left(H_{1}\right)$ into $V\left(K_{n}^{(r)}\right)$; this injection extends to $E\left(H_{1}\right)$ in the natural way. Our probability space will be $I(U, V)$ with $U=V\left(H_{1}\right)$ and $V=[n]$. Consider
two edges $F_{1}\left(\right.$ of $\left.H_{1}\right)$ and $F_{2}\left(\right.$ of $\left.H_{2}\right)$; and a bijection $\phi: F_{1} \rightarrow F_{2}$. The events $A_{F_{1}, F_{2}, \phi}$ will be our bad events. We have

$$
\operatorname{Pr}\left(A_{F_{1}, F_{2}, \phi}\right)=\frac{1}{r!\binom{n}{r}} .
$$

Let G be the negative dependency graph of those $A_{F_{1}, F_{2}, \phi}$ events. An event $A_{F_{1}, F_{2}, \phi}$ conflicts another event $A_{F_{1}^{\prime}, F_{2}^{\prime}, \phi^{\prime}}$ if and only if

1. Edges F_{1} and F_{1}^{\prime} have empty intersection while their images F_{2} and F_{2}^{\prime} have non-empty intersection.
2. Edges F_{1} and F_{1}^{\prime} have non-empty intersection but ϕ and ϕ^{\prime} are defined differently in some intersection point.

An event $A_{F_{1}, F_{2}, \phi}$ can have at most $r!\left(d_{2}+1\right) m_{1}-1$ conflicts of the first type, and at most $r!\left(d_{1}+1\right) m_{2}$ conflicts of the second type, thus the maximal degree d in the negative dependency graph is at most

$$
r!\left[\left(d_{1}+1\right) m_{2}+\left(d_{2}+1\right) m_{1}\right]-1
$$

Apply Lemma 1 in the negative dependency graph setting. With positive probability, all bad events $A_{f_{1}, f_{2}, \phi}$ can be avoided simultaneously if

$$
e(d+1) \operatorname{Pr}\left(A_{f_{1}, f_{2}, \phi}\right)<1 .
$$

Remark: The constant coefficient $\frac{1}{e}$ in Theorem 2 can not be replaced by 4 as shown by the following example.

Let $r=2$ and H be a graph on $n=s(s-1)$ vertices consisting of $s-1$ vertex-disjoint copies of the complete graph K_{s}. The complement graph \bar{H} is K_{s}-free. (In fact, \bar{H} is the maximum K_{s}-free graph on n vertices by Turán theorem [14].) Therefore, two copies of H can not be packed into K_{n} with disjoint edge sets. In this example, we have $d_{1}=d_{2}=2(s-2)$ and $m_{1}=m_{2}=(s-1)\binom{s}{2}$. Therefore, we have

$$
\begin{aligned}
\left(d_{1}+1\right) m_{2}+\left(d_{2}+1\right) m_{1} & =2(2 s-3)(s-1)\binom{s}{2} \\
& =(2 s-3) s(s-1)^{2} \\
& <4\binom{n}{2} .
\end{aligned}
$$

Here the last inequality holds for all $s \geq 2$ by an easy calculation.

5 Perfect Packing

For two r-uniform hypergraphs, H and G, we say that H has a perfect G-packing if there exist sub-hypergraphs G_{1}, \ldots, G_{k} of H, each isomorphic to G, such that the vertex sets $V\left(G_{1}\right), \ldots, V\left(G_{k}\right)$ partition $V(H)$.

A necessary condition for the existence of perfect G-packing is that $|V(H)|$ is divisible by $|V(G)|$. We will prove the following theorem.

Theorem 3 Suppose that two r-uniform hypergraphs G and H satisfy the following.

1. G has s vertices, H has n vertices, and n is divisible by s.
2. G has m edges, and each edge in G intersects at most d other edges of G.
3. For any vertex v of H, the degree of v in H is at least $(1-x)\binom{n-1}{r-1}$.

If $x<\frac{1}{e\left(d+1+r^{2} \frac{m}{s}\right)}$, then then H has a perfect G-packing.
A special case is that G is the r-graph with a single edge. We have $m=1, d=0$, and $s=r$.

Corollary 1 Suppose the degree of each vertex in an r-graph H on n vertices is at least $\left(1-\frac{1}{e(r+1)}\right)\binom{n-1}{r-1}$. If n is divisible by r, then H has a perfect matching.

Proof of Theorem 3: Let H_{1} be the union of $\frac{n}{s}$ vertex-disjoint copies of G and \bar{H} be the complement graph of H. Observe that H has a perfect G-packing if and only if H_{1} and $H_{2}=\bar{H}$ can be packed into $K_{n}^{(r)}$. Now we apply Theorem 2. Notice that $d_{1}=d$ and $m_{1}=\left|E\left(H_{1}\right)\right|=\frac{n}{s}|E(G)|=\frac{n m}{s}$. The degree of any vertex in \bar{H} is at most $x\binom{n-1}{r-1}$ by the third condition. We have

$$
d_{2} \leq r x\binom{n-1}{r-1}-r+1 \leq r x\binom{n-1}{r-1}-1
$$

It suffices to have

$$
\left(d_{1}+1\right) m_{2}+\left(d_{2}+1\right) m_{1} \leq(d+1) x\binom{n}{r}+\left(r x\binom{n-1}{r-1}\right) \frac{n m}{s} \leq \frac{1}{e}\binom{n}{r}
$$

The second inequality is equivalent to

$$
x<\frac{1}{e\left(d+1+\frac{r^{2} m}{s}\right)}
$$

as desired.

6 Turán type extremal problems

For a fixed r-graph G, let $t(n, G)$ denote the smallest integer m such that every r-uniform hypergraph on n vertices with $m+1$ edges must contain a copy of G. The limit $\lim _{n \rightarrow \infty} \frac{t(n, G)}{\binom{n}{r}}$ always exists [9]. We denote it by $\pi(G)$. We have

Theorem 4 Suppose each edge in an r-graph G intersects at most d other edges. Then we have

$$
\begin{equation*}
\pi(G) \leq 1-\frac{1}{(d+1) e} \tag{11}
\end{equation*}
$$

Proof: Consider any r-graph H on n vertices and m edges, which do not contain a copy of G. Apply Theorem 2 to G and \bar{H}. Note that each edge of \bar{H} can intersect at most $r\binom{n-1}{r-1}-r+1$ other edges. It suffices to have

$$
(d+1)\left(\binom{n}{r}-m\right)+\left(r\binom{n-1}{r-1}-r+2\right)|E(G)| \leq \frac{1}{e}\binom{n}{r}
$$

We have

$$
\begin{aligned}
\frac{m}{\binom{n}{r}} \geq 1 & -\frac{1}{e(d+1)}+\frac{r^{2}}{n} \frac{|E(G)|}{d+1} \\
& =1-\frac{1}{e(d+1)}+O\left(\frac{1}{n}\right)
\end{aligned}
$$

as desired as $n \rightarrow \infty$ while d and r are fixed.
The general upper bound for Turán density in term of the number of edges is first obtained by Sidorenko [11]

$$
\pi(G) \leq 1-\frac{1}{f-1}
$$

for any r-graph G with f edges. It has slightly been improved by Keevash [8] to

$$
\begin{equation*}
\pi(G)<1-\frac{1}{f-1}-(1+O(1))\left(2 r!^{2 / r} f^{3-2 / r}\right)^{-1} \tag{12}
\end{equation*}
$$

for fixed $r \geq 3$ and $f \rightarrow \infty$.
If a hypergraph G is a clique, in which any pair of edges have non-empty intersection, then we have $d=f-1$. Inequality (12) is closer to the best known upper bound. For example, consider a special complete r-graph $K_{r+1}^{(r)}$ on $r+1$ vertices, de Caen [3], Sidorenko ([10]), Tazawa and Shirakura [13] proved

$$
1-\frac{(1+o(1)) \ln r}{2 r} \leq \pi\left(K_{r+1}^{(r)}\right) \leq 1-\frac{1}{r}
$$

The upper bound was improved [5] to

$$
\pi\left(K_{r+1}^{(r)}\right) \leq 1-\frac{5 r+12-\sqrt{9 r^{2}+24 r}}{2 r(r+3)}=1-\frac{1}{r}-\frac{1}{r^{2}}+O\left(\frac{1}{r^{3}}\right)
$$

for odd r.
Theorem 4 only gives

$$
\pi\left(K_{r+1}^{(r)}\right) \leq 1-\frac{1}{e(r+1)}
$$

It is still quite comparable to those best known upper bounds for $\pi\left(K_{r+1}^{(r)}\right)$ except for the constant coefficient e.

However, for hypergraph G with less intersection, (say, $d<\frac{f}{e}$) inequality (11) often offers a much better upper bound on $\pi(G)$ than inequality (12) does.

Acknowledgment: We thank Eva Czabarka for her suggestions at writing this paper.

References

[1] N. Alon, J. H. Spencer, The Probabilistic Method, second edition, John Wiley and Sons, New York, 2000.
[2] N. Alon and R. Yuster, H-factors in dense graphs, J. Comb. Theory, Ser. B 66 (1996), 269-282.
[3] D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs, Ars Comb. 16 (1983): 5-10.
[4] J. Beck, An algorithmic approach to the Lovász local lemma. I., Random Structures and Algorithms 2 (1991) 343-365.
[5] F. Chung and L. Lu, An upper bound for the Turán number $t_{3}(n, 4)$, J. Combin. Theory Ser. A 87(2), (1999), 381-389.
[6] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in Infinite and Finite Sets, A. Hajnal et. al., Eds., Colloq. Math. Soc. J. Bolyai 11, North Holland, Amsterdam, 1975, 609-627.
[7] P. Erdős and J. H. Spencer, Lopsided Lovász local lemma and latin transversals, Discrete Appl. Math. 30 (1991), 151-154.
[8] P. Keevash, The Turán problem for hypergraphs of fixed size, Electronic J. Combinatorics 12 (2005), \#N11.
[9] G. O. H. Katona, T. Nemetz, M. Simonovits, On a problem of Turán in the theory of graphs, (in Hungarian) Mat. Lapok 15 (1964), 228-238.
[10] A. Sidorenko, The method of quadratic forms in the combinatorial problem of Turán, Moscow Univ. Math. Bull. 37 No. 1 (1982), 1-5.
[11] A. Sidorenko, Extremal combinatorial problems in spaces with continuous measure, Issled. Operatsiǔi ASU 34 (1989), 34-40.
[12] J. H. Spencer, Ten Lectures on the Probabilistic Method, CBMS 52, SIAM, 1987.
[13] S. Tazawa and T. Shirakura, Bounds on the cardinality of clique-free family in hypergraphs, Math. Sem. Notes Kobe Univ. 11 (1983), 277-281.
[14] P. Turán, On an extremal problem in graph theory. Mat. Fiz. Lapok. 48 (1941): 436-452 (in Hungarian). English translation in Collected Papers of Paul Turán (P. Erdős, ed.), 231-240. Budapest: Akadémiai Kiadó, 1990.

[^0]: *University of South Carolina, Columbia, SC 29208. lu@math.sc.edu
 ${ }^{\dagger}$ University of South Carolina, Columbia, SC 29208. szekely@math.sc.edu This researcher was supported in part by the NSF DMS contract 0302307.

