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Abstract: We provide a new algorithm for the treatment of inverse problems which combines
the traditional SVD inversion with an appropriate thresholding technique in a well chosen new
basis. Our goal is to devise an inversion procedure which has the advantages of localization and
multiscale analysis of wavelet representations without losing the stability and computability of
the SVD decompositions. To this end we utilize the construction of localized frames (termed
“needlets”) built upon the SVD bases.

We consider two different situations : the “wavelet” scenario, where the needlets are as-
sumed to behave similarly to true wavelets, and the “Jacobi-type” scenario, where we assume
that the properties of the frame truly depend on the SVD basis at hand (hence on the op-
erator). To illustrate each situation, we apply the estimation algorithm respectively to the
deconvolution problem and to the Wicksell problem. In the latter case, where the SVD ba-
sis is a Jacobi polynomial basis, we show that our scheme is capable of achieving rates of
convergence which are optimal in the L2 case, we obtain interesting rates of convergence for
other Lp norms which are new (to the best of our knowledge) in the literature, and we also
give a simulation study showing that the NEED-VD estimator outperforms other standard
algorithms in almost all situations.

AMS 2000 subject classifications: Primary 62G05, 62G20; secondary 65J20.
Keywords and phrases: statistical inverse problems, minimax estimation, second-generation
wavelets.

1. Introduction

We consider the problem of recovering a function f from a blurred (by a linear operator) and noisy
version of f: Yε = Kf+εẆ. It is important to note that, in general, for a problem like this there exists
a basis which is fully adapted to the problem, and as a consequence, the inversion remains stable;
this is the Singular Value Decomposition (SVD) basis. The SVD basis, however, might be difficult to
determine and handle numerically. Also, it might not be appropriate for accurate description of the
solution with a small number of parameters. Furthermore, in many practical situations, the signal
exhibits inhomogeneous regularity, and its local features are particularly interesting to recover. In
such cases, other bases or frames (in particular, localized wavelet type bases) might be much more
appropriate for representation of the object at hand.
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Our goal is to devise an inversion procedure which has the advantages of localization and multi-
scale analysis of wavelet representations without losing the stability and computability of the SVD
decompositions. To this end we utilize the construction (due to Petrushev and his co-authors) of
localized frames (termed “needlets”) built upon particular bases - here the SVD bases. This con-
struction uses a Calderón type decomposition combined with an appropriate quadrature (cubature)
formula. It has the big advantage of producing frames which are close to wavelet bases in terms of
dyadic properties and localization, but because of their compatibility with the SVD bases provide
stable and easily computable schemes.

NEED-VD is an algorithm combining the traditional SVD inversion with an appropriate thresh-
olding technique in a well chosen new basis. It enables one to approximate the targeted functions
with excellent rates of convergence for any Lp loss function, and over a wide range of Besov spaces.

Our main idea is by combining the thresholding algorithm with SVD-based frames to create an
effective and practically feasible algorithm for solving the inverse problem described above. The
properties of the localized frame to be constructed depend on the underlying SVD basis. We will
consider two different behaviors, the first corresponds to a “wavelet” behavior in the sense that
the properties of the system are equivalent (as far as we are concerned) to the properties of a
true wavelet basis. This case typically arises in the deconvolution setting. In the second case, the
properties of the frame may differ from wavelet bases and truly depend on the SVD basis at hand
(hence on the operator K). We will explore in detail a case typically arising when the SVD basis
is a Jacobi polynomial basis. It is illustrated by the Wicksell problem. We show that our scheme
is capable of achieving rates of convergence which are optimal in the L2 case (to the best of our
knowledge, for the Wicksell problem this is the only case studied up to now). For other Lp norms
we obtain interesting rates of convergence, which are new in the literature.

We also give a simulation study for the Wicksell problem which shows that the NEED-VD
algorithm applied in combination with SVD based frames is valuable since it outperforms other
standard algorithms in almost all situations.

The paper is organized in the following way: the second section introduces the model, the classi-
cal SVD methods, and the two basic examples considered in this paper, i.e. the deconvolution and
Wicksell problems. The third section introduces the needlet construction, gives some basic proper-
ties of needlets and introduces the NEED-VD algorithm. The fourth section explores its properties
in the wavelet scenario. The main motivation for the NEED-VD algorithm is given there after. The
fifth section is devoted to the results in a Jacobi scenario. The sixth section is devoted to simulation
results. The proofs of the main results from sections 4–5 are given in sections 7–8, respectively. The
last section is an appendix which contains the definition and basic properties of the Jacobi needlets.

2. Inverse Models

Suppose H and K are two Hilbert spaces and let K : H 7→ K be a linear operator. The standard
linear ill-posed inverse problem consists in recovering a good approximation fε of the solution f of

g = Kf (1)

when only a perturbation Yε of g is observed. In this paper, we will consider the case when this
perturbation is an additive stochastic white noise. Namely, we observe Yε defined by the following
identity:

Yε = Kf+ εẆ, (2)
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where ε is the amplitude of the noise. It is supposed to be a small parameter which tends to
0. The error will be measured in terms of this small parameter. Here Ẇ is a K-white noise, i.e.
for any g, h ∈ K, ξ(g) := (Ẇ, g)K, ξ(h) := (Ẇ, h)K form random Gaussian vectors (centered)
with marginal variance ‖g‖2

K
, ‖h‖2

K
, and covariance (g, h)K (with the obvious extension when one

considers k functions instead of 2).
Equation (2) means that for any g ∈ K, we observe Yε(g) := (Yε, g)K = (Kf, g)K + εξ(g), where

ξ(g) ∼ N(0, ‖g‖2), and Y(g), Y(h) are independent random variables for orthogonal functions g
and h.

2.1. The SVD Method

Under the assumption that K is compact, there exist two orthonormal bases (SVD bases) (ek) of
H and (gk) of K, and a sequence (bk), bk → 0 as k→ ∞, such that

Kek = bkgk, K∗gk = bkek,

with K∗ being the adjoint operator of K.
The Singular Value Decomposition (SVD) of K

Kf =
∑

k

bk〈f, ek〉gk

gives rise to approximation of the type

fε =

N∑

k=0

b−1
k 〈Yε, gk〉ek,

where N = N(ε) has to be properly selected. This SVD method is very attractive theoretically
and can be shown to be asymptotically optimal in many situations (see Mathe and Pereverzev [22]
together with their non linear counterparts Cavalier and Tsybakov [6], Cavalier et al [5], Tsybakov
[32], Goldenschluger and Pereverzev [16], Efromovich and Koltchinskii [12]). It also has the big
advantage of performing a quick and stable inversion of the operator. However, it has serious lim-
itations: First, the SVD bases might be difficult to determine and handle numerically. Secondly,
while these bases are fully adapted to describe the operator K, they might not be appropriate for
accurate description of the solution with a small number of coefficients. Also in many practical sit-
uations, the signal has inhomogeneous regularitiy, and its local features are particularly interesting
to recover. In such cases, other bases (in particular, localized wavelet type bases) are much more
suitable for representation of the object at hand.

In the last ten years, various nonlinear methods have been developed, especially in the direct
case with the objective of automatically adapting to the unknown smoothness and local singular
behavior of the solution. In the direct case, one of the most attractive methods is probably wavelet
thresholding, since it allies numerical simplicity to asymptotic optimality on a large variety of
functional classes such as Besov or Sobolev spaces.

To apply this approach to inverse problems, Donoho [10] introduced a wavelet-like decompo-
sition, specifically adapted to the operator K (Wavelet-Vaguelette-Decomposition) and utilized a
thresholding algorithm to this decomposition. In Abramovitch and Silverman [1], this method was
compared with the similar vaguelette-wavelet decomposition. Other wavelet schemes should be men-
tioned here, such as the ones from Antoniadis and Bigot [3], Antoniadis & al [4], Dicken and Maass
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[9], and especially for the deconvolution problem, Penski & Vidakovic [28], Fan & Koo [13], Kalifa
& Mallat [19], Neelamani & al [26]. Later on Cohen et al [7] introduced an algorithm combining a
Galerkin inversion with a thresholding algorithm.

The approach developed here was greatly influenced by these works.

2.1.1. Deconvolution

The deconvolution problem is probably one of the most famous inverse problems, giving rise to a
great deal of investigations, specially in signal processing, and has an extensive bibliography. In the
deconvolution problem, we consider the following operator: Let in this case H = K be the set of
square integrable periodic functions, with the standard L2[0, 1] norm, and consider

f ∈ H 7→ Kf =

∫ 1

0

γ(u − t)f(t)dt ∈ H, (3)

where γ is a known function in H. It is generally assumed to be a regular function. A standard
example is the box-car function which plays an important role in extending this model to image
processing and specially to analysis of sequences of images.

In this case simple calculations show that the SVD bases ek and gk both coincide with the
Fourier basis. The singular values correspond to the Fourier coefficients of the function γ:

bk = γ̂k. (4)

2.1.2. Wicksell’s problem

Another typical example is the following classical Wicksell’s problem [33]. Suppose a population
of spheres is embedded in a medium. The spheres have radii that may be assumed to be drawn
independently from a density f. A random plane slice is taken through the medium and those
spheres that are intersected by the plane furnish circles which radii are the points of observation
Y1, . . . , Yn. The unfolding problem is then to determine the density of the sphere radii from the
observed circle radii. This problem also arises in medicine, where the spheres might be tumors in an
animal’s liver (see Nyshka et al [27]), as well as in numerous other contexts (biological, engineering,
etc.) see for instance Cruz-Orive [8].

The difficulty of estimating the target function is well illustrated by figure 1. The Wicksell
operator has a smoothing effect, thus the local variations of the target function become almost
invisible in the case of observations corrupted by noise. (Also compare the blurred and noised
observations in figure 6 to the target functions of figure 4.)

Following Wicksell [33] and Johnstone and Silverman [18], the Wicksell’s problem corresponds
to the following operator:

H = L2([0, 1], dµ), dµ(x) = (4x)−1dx, K = L2([0, 1], dλ), dλ(x) = 4π−1(1 − y2)1/2dy,

and

Kf(y) =
π

4
y(1 − y2)−1/2

∫1

y

(x2 − y2)−1/2f(x)dµ.

In this case, following [18], we have the following SVD bases:

ek(x) = 4(k+ 1)1/2x2P0,1k (2x2 − 1)

gk(y) = U2k+1(y).
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Fig 1. Heavisine function, its image by the Wicksell operator without and with gaussian noise with rsnr = 5

Here P0,1k is the kth degree Jacobi polynomial of type (0, 1) and Uk is the second type Chebishev
polynomial of degree k. The singular values are

bk =
π

16
(1 + k)−1/2. (5)

In this article, in order to avoid some additional technicalities, we consider this problem in the
white noise framework, which is simpler than the original problem described above in density terms.

3. General scheme for construction of frames (Needlets) and thresholding

Frames were introduced in the 1950’s by Duffin and Schaeffer [11] as a means for studying nonhar-
monic Fourier series. These are redundant systems which behave like bases and allow for a lot of
flexibility. Tight frame which are very close to orthonormal bases are particularly useful in signal
and image processing.

In the following we present a general scheme for construction of frames due to Petrushev and his
co-authors [25, 29, 30]. As will be shown this construction has the advantage of producing easily
computable frame elements which are extremely well localized in all cases of interest. Following
[25, 29, 30] we will term them “needlets”.

Recall first the definition of a tight frame.

Definition 1. Let H be a Hilbert space. A sequence (ψn) in H is said to be a tight frame if

‖f‖2 =
∑

n

|〈f,ψn〉|2 ∀f ∈ H.

Let (Y, µ) be a measure space with µ a finite positive measure. Suppose we have the following
decomposition

L2(Y, µ) =

∞⊕

k=0

Hk,

where the Hk’s are finite dimensional spaces. For simplicity, we assume that H0 is reduced to the
constants.

Let (eki )i=1,...,lk be an orthonormal basis of Hk. Then the orthogonal projector Lk onto Hk takes
the form

Lk(f)(x) =

∫

Y
f(y)Lk(x, y)dµ(y), ∀f ∈ L2(Y, µ),
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where

Lk(x, y) =

lk∑

i=1

eki (x)e
k
i (y).

Note the obvious property of the orthogonal projectors:

∫

Y
Lk(x, y)Lm(y, z)dµ(z) = δk,mLk(x, z). (6)

The construction, inspired by the ϕ-transform of Frazier and Jawerth [15], consists of two main
steps: (i) Calderón type decomposition and (ii) Discretization, which are described in the following
two subsections.

3.1. Calderón type decomposition

Let ϕ be a C∞ function supported in [−1, 1] such that 0 ≤ ϕ(ξ) ≤ 1 and ϕ(ξ) = 1 if |ξ| ≤ 1
2
. Define

a(ξ) ≥ 0 from
a2(ξ) = ϕ(ξ/2) −ϕ(ξ) ≥ 0.

Then ∑

j≥0

a2(ξ/2j) = 1, ∀|ξ| ≥ 1. (7)

We now introduce the operators

Λj =
∑

k≥0

a2(k/2j)Lk

and their kernel

Λj(x, y) =
∑

k≥0

a2(k/2j)Lk(x, y) =
∑

2j−1<k<2j+1

a2(k/2j)Lk(x, y).

The operators Λj provide a decomposition of L2(Y, µ) which we record in the following proposition.

Proposition 1. For all f ∈ L2(Y, µ), we have

f = L0(f) +

∞∑

j=0

Λj(f) in L2(Y, µ). (8)

Proof. By the definition of Lk and (7)

L0 +

J∑

j=0

Λj = L0 +

J∑

j=0

∑

k

a2(k/2j)Lk =
∑

k

ϕ(k/2J+1)Lk (9)

and hence

‖f − L0(f) −

J∑

j=0

Λj(f)‖2 =
∑

l≥2J+1

‖Ll(f)‖2 +
∑

2J≤l<2J+1

‖Ll(f)(1 −ϕ(l/2J+1)‖2

≤
∑

l≥2J

‖Ll(f)‖2 −→ 0 as J → ∞,

which completes the proof.
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3.2. Discretization

Let us define

Kk =

k⊕

m=0

Hm.

We make two additional assumptions which will enable us to discretize decomposition (8) from
Proposition 1:

(a)
f ∈ Kk, g ∈ Kl =⇒ fg ∈ Kk+l.

(b) Quadrature formula: For any k ∈ N0 there exists Xk a finite subset of Y (#X0 = 1) and
positive numbers λη > 0, η ∈ Xk, such that

∫

Y
fdµ =

∑

η∈Xk

ληf(η) ∀f ∈ Kk. (10)

We define
Mj(x, y) =

∑

k

a(k/2j)Lk(x, y) for j ≥ 0. (11)

Then as a consequence of (6), we have

Λj(x, y) =

∫

Y
Mj(x, z)Mj(z, y)dµ(z). (12)

It is readily seen that Mj(x, z) = Mj(z, x) and

z 7→ Mj(x, z) ∈ K2j+1−1 and hence z 7→ Mj(x, z)Mj(z, y) ∈ K2j+2−2.

Now, by (10)

Λj(x, y) =

∫

Y
Mj(x, z)Mj(z, y)dµ(z) =

∑

η∈X
2j+2−2

ληMj(x, η)Mj(η, y),

which implies

Λjf(x) =

∫

Y
Λj(x, y)f(y)dµ(y) =

∫

Y

∑

η∈X
2j+2−2

ληMj(x, η)Mj(η, y)f(y)dµ(y)

=
∑

η∈X
2j+2−2

√
ληMj(x, η)

∫

Y
f(y)

√
ληMj(y, η)dµ(y).

(13)

We are now prepared to introduce the desired frame. Let Zj = X2j+2−2 for j ≥ 0 and Z−1 = X0. We
define the frame elements (needlets) by

ψj,η(x) =
√
ληMj(x, η), η ∈ Zj, j ≥ −1. (14)

Notice that Z−1 consists of a single point and ψ0 = ψ−1,η, η ∈ Z−1, is the L2-normalized positive
constant. Now (13) becomes

Λjf(x) =
∑

η∈Zj

〈f,ψj,η〉ψj,η(x). (15)
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Proposition 2. The family (ψj,η)η∈Zj,j≥−1 is a tight frame for L2(Y, µ).

Proof. As

f = lim
J−→∞

L0(f) +

J∑

j=0

Λj(f)

we have

‖f‖2 = lim
J−→∞

〈L0(f), f〉 +

J∑

j=0

〈Λj(f), f〉.

But by (15)

〈Λj(f), f〉 =
∑

η∈Zj

〈f,ψj,η〉〈ψj,η, f〉 =
∑

η∈Zj

|〈f,ψj,η〉|2, j ≥ 0,

and since ψ0 is the normalized constant 〈L0(f), f〉 = |〈f,ψ0〉|2. Hence

‖f‖2 = |〈f,ψ0〉|2 +
∑

j∈N0, η∈Zj

|〈f,ψj,η〉|2,

which shows that (ψj,η) is a tight frame.

3.3. Localization properties

The critical property of the frame construction above which makes it so attractive is the excellent
localization of the frame elements (needlets) (ψj,η) in various settings of interest (see [24, 25,
29, 30]). The following figure (due to Paolo Baldi) is an illustration of this phenomenon. The
rapidly oscillating function is the Legendre polynomial of degree 28, whereas the localized one is
a needlet constructed as explained above using Legendre polynomials of degree ≤ 28 and centered
approximately at zero. Its localization is remarkable taking into account that both functions are
polynomials of the same degree.
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In the case of the unit sphere in R
d+1, where Hk are the spaces of spherical harmonics, the

following localization property of the needlets is established in Narcowich, Petrushev and Ward
[24, 25]: For any k there exists a constant Ck such that :

|ψjη(ξ)| ≤
Ck2

dj/2

[1 + 2j arccos < η, ξ >]k
.

In the case of Jacobi polynomials on [−1, 1], the localization of the needlets proved in Petrushev,
Xu [30] takes the form: For any k there exists a constant Ck such that

|ψjη(cos θ)| ≤
Ck2

j/2

(1 + 2j|θ − arccos η|)k
√
wα,β(2j, cos θ)

, |θ| ≤ π,

where wα,β(n, x) = (1 − x+ n−2)α+1/2(1 + x+ n−2)β+1/2 and α,β > −1/2.
The almost exponential localization of the needlets and their semi-orthogonal structure allows

to use them for characterization of spaces other than L2, in particular the more general Triebel-
Lizorkin and Besov spaces (see [25, 30]).

3.4. NEED-VD algorithm: thresholding needlet coefficients

We describe here the general idea of the method. The first step is to construct a needlet system
(frame) {ψjη : η ∈ Zj, j ≥ −1} as described in section 3, where Hk is simply the space spanned by
the k-th vector ek of the SVD basis.

The needlet decomposition of any f ∈ H takes the form

f =
∑

j

∑

η∈Zj

(f,ψjη)Hψjη.

Using Parseval’s identity, we have βjη = (f,ψjη)H =
∑
i fiψ

i
jη with fi = (f, ei)H and ψijη =

(ψjη, ei)H. If we put Yi = (Yε, gi)K, then

Yi = (Kf, gi)K + εξi = (f, K∗gi)K + εξi = (
∑

j

fjej, K
∗gi)H + εξi = bifi + εξi,

where ξi = (Ẇ, gi)K form a sequence of centered Gaussian variables with variance 1. Thus

β̂jη =
∑

i

Yi

bi
ψijη

is an unbiased estimate of βjη. Notice that from the needlet construction (see the previous section)
it follows that the sum above is finite. More precisely, ψijη 6= 0 only for 2j−1 < i < 2j+1.

Let us consider the following estimate of f:

f̂ =

J∑

j=−1

∑

η∈Zj

t(β̂jη)ψjη,

where t is a thresholding operator defined by

t(β̂jη) = β̂jηI{|β̂jη| ≥ κtεσj} with (16)

tε = ε

√

log
1

ε
. (17)
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Here κ is a tuning parameter of the method which will be properly selected later on. Notice that the
thresholding depends on the resolution level j through the constant σj which will also be specified
later on, and the same with regard to the upper level of details J.

We will particularly focus on two situations (corresponding to the two examples discussed above).
In the first case (see subsection 4), the needlets have very nice properties and behave exactly like
wavelets. This is for instance the case of the deconvolution, where the SVD basis is the Fourier basis.
However, more complicated problems e.g. the Wicksell’s problem exhibit more delicate concentra-
tion properties for the needlets giving rise to different behaviors in terms of rates of convergence
for the estimators.

4. NEED-VD in wavelet scenario

In this section, we assume that the needlet system has the following properties: For any 1 ≤ p < ∞,
there exist positive constants cp, Cp, and Dp such that

Card Zj ≤ C2j, (18)

cp2
j(
p
2

−1) ≤ ‖ψjη‖pp ≤ Cp2j(
p
2

−1), (19)

‖
∑

η∈Zj

uηψjη‖pp ≤ Dp
∑

η∈Zj

|uη|
p‖ψjη‖pp, for any any collection (uη). (20)

We define the space Bsπ,r as the collection of all functions f with f =
∑
j≥0

∑
η∈Zj

βjηψjη such
that

‖f‖Bsπ,r := ‖(2j[s+12− 1
π

]‖(βjη)η∈Zj
‖lπ)j≥0‖lr < ∞, and (21)

f ∈ Bsπ,r(M) ⇐⇒ ‖f‖Bsπ,r ≤M. (22)

Theorem 1. Let 1 < p < ∞, 2ν + 1 > 0, and

σ2j :=
∑

i

[
ψijη

bi
]2 ≤ C22jν, ∀ j ≥ 0. (23)

Suppose κ2 ≥ 16p and 2J = [tε]
−2
2ν+1 with tε as in (16).

Then for f ∈ Bsπ,r(M) with π ≥ 1, s ≥ 1/π, r ≥ 1 (with the restriction r ≤ π if s = (ν+ 1
2
)(p
π
−1)),

we have
E‖f̂ − f‖pp ≤ C log(1/ε)p−1[ε

√
log(1/ε)]µp, (24)

where

µ =
s

s+ ν + 1/2)
, if s ≥ (ν +

1

2
)(
p

π
− 1)

µ =
s − 1/π+ 1/p

s+ ν + 1/2 − 1/π)
, if

1

π
≤ s < (ν +

1

2
)(
p

π
− 1).

The proof of this theorem is given in section 7.
Remarks :

1. These results are essentially minimax (see Willer [34]) up to logarithmic factors. We find
back here the elbow, which was already observed in the direct problem, as well as in the
deconvolution setting (see [17], for instance).
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2. Condition (23) is essential in this problem. In the deconvolution case, the SVD basis is the
Fourier basis and hence ψijη are simply the Fourier coefficients of ψjη. Then assuming that we
are in the so-called “regular” case (bk ∼ k−ν, for all k), it is easy to show that (23) is true for
the needlet system as constructed above (see also the discussion in the following subsection).
A similar remark can be made regarding conditions (19) and (20). In the deconvolution setting,
the needlet construction is not strictly needed and, as is shown in Johnstone, Kerkyacharian,
Picard, Raimondo[17], the periodized Meyer wavelet basis (see Meyer [23] and Mallat [21]) can
replace the needlet construction. Condition (23) also holds in more general cases such as the
box-car deconvolution, see [17], [20] where this algorithm is applied using Meyer’s wavelets.
3

4.1. Condition (23) and the needlet construction

The following lines are intended to a posteriori motivate our decision to built upon the needlet
construction. As was mentioned above condition (23) is very important for our algorithm. The
proof will reveale that it is essential, since σ2j is exactly the variance of our estimator of βjη, so in
a sense no other thresholding strategy can be better.

Let us now examine how condition (23) links the frame (ψjη) with the SVD basis (ek). To see
this clearly let us suppose that (ψjη) is an arbitrary frame and let us place ourselves in the regular
case:

bi ∼ i−ν

(this means that there exist two positive constants c and c ′ such that c ′i−ν ≤ bi ≤ ci−ν). If
condition (23) holds true, we have

C22jν ≥
∑

m

∑

2m≤i≤2m+1−1

[
ψijη

bi
]2.

Hence, ∀ m ≥ j, ∑

2m≤i≤2m+1−1

[ψijη]
2 ≤ c22ν(j−m).

This means that the energy of ψijη decays exponentially for i ≥ 2j, which reviles the role of the
Littlewood Paley decomposition in the previous construction, replacing the exponential discrepancy
by a cut-off.

The following proposition establishes a kind of converse property: The construction of needlet
systems always implies that condition (23) is satisfied in the regular case.

Proposition 3. If (ψj,η) is a frame such that {i : ψijη 6= 0} is contained in a set {C12
j, . . . , C22

j},
and bi ∼ i−ν, then

σ2j :=
∑

i

[
ψijη

bi
]2 ≤ C22jν.

Proof. Since the elements of an arbitrary frame are bounded in norm and ψijη 6= 0 only for C12
j ≤

i ≤ C22j, we have
∑

i

[
ψijη

bi
]2 ≤ C22jν‖ψj,η‖2 ≤ C ′22jν.
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5. NEED-VD in a Jacobi-type case

Properties (19)-(20) are not necessarily valid for an arbitrary needlet system, since as mentioned
above the localization properties of the frame elements depend on the initial underlying basis, and
hence on the problem at hand. We will consider here a particular case motivated by Wicksell’s
problem.

We consider the space H = L2(I, dγ(x)), where I = [−1, 1], dγ(x) = ωα,β(x)dx,

ωα,β(x) = cα,β(1 − x)α(1 + x)β, α, β > −1/2,

and cα,β is selected so that
∫
I
dγα,β(x) = 1. We will assume that α ≥ β (otherwise we can

interchange the roles of α and β).
Let (Pk)k≥0 be the L2(I, dγ(x)) normalized Jacobi polynomials. We assume that the Jacobi

polynomials appear as an SVD basis of the operator K. This is the case of Wicksell’s problem,
where β = 0, α = 1, bk ∼ k−1/2.

In the Jacobi case, the needlets have been introduced and studied in Petrushev and Xu [30]. See
also the appendix, where the definition and some important properties of Jacobi needlets are given.

We will state our results in a more general setting, assuming that only a few conditions on the
needlet system are valid. Note that these conditions are obeyed by the needlet system (Jacobi
needlets) constructed using the Jacobi polynomials (Pk)k≥0. The proofs are given in the appendix.

We will consider two sets of conditions. The first one (which only depends on α) is the following:

Card Zj ≤ 2j, (25)
∑

η∈Zj

‖ψjη‖pp ≤ Cp2jp/2 ∨ 2j(p−2)(1+α), ∀j, ∀ p 6= 2 +
1

α+ 1/2
, (26)

‖
∑

η∈Xj

βηψj,η‖p ≤ C(
∑

η∈Xj

|βη|
p‖ψj,η‖pp)1/p. (27)

We define the space B̃sπ,r as the collection of all functions f on [−1, 1] with representation

f =
∑

j≥−1

∑

η∈Zj

βjηψjη

such that

‖f‖
B̃sπ,r

:= ‖(2js(
∑

|βj,η|
π‖ψj,η‖ππ)1/π)j≥−1‖lr < ∞, and (28)

f ∈ B̃sπ,r(M) ⇐⇒ ‖f‖
B̃sπr

≤M. (29)

Theorem 2. Let 1 < p < ∞ and α ≥ β > − 1
2
. Suppose

tε = ε
√

log 1/ε and 2J = t
− 2
1+2ν

ε .

Let κ2 ≥ 16p[1 + 4{(α
2

− α+1
p

)+ ∨ (β
2

− β+1
p

)+}] and assume that we are in the regular case, i.e.

bi ∼ i−ν, ν > −
1

2
.
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Then for f ∈ B̃sp,r(M) with s > [ 1
2

− 2(α+ 1)(1
2

− 1
p
)]+, we have

E‖f̂ − f‖pp ≤ C[log(1/ε)]p−1[ε
√

log(1/ε)]µp,

where

(i) if p < 2 + 1
α+1/2

, then

µ =
s

s+ ν + 1
2

;

(ii) if p > 2 + 1
α+1/2

, then

µ =
s

s + ν + (α+ 1)(1 − 2
p
)
.

Remarks :

1. In the case p < 2 + 1
α+1/2

, the rate obtained here is the usual one, and can be proved to be

minimax (see [34]). The case p > 2 + 1
α+1/2

introduces a new rate of convergence, which is
always better than in the first case.

2. Conditions (25)–(27) enabled us to estimate the rates of convergence of our scheme, whenever
the index π of the Besov space is the same as the index of the loss function (p = π). In the
sequel, we will study the case where p and π are independently chosen. This requires, however,
some additional assumptions. 3

If in addition to properties (25)–(27), we now assume that the following conditions are fulfilled:
For any η ∈ Zj, j ≥ 0,

c2j(p−2)(α+1)k(η)−(p−2)(α+1/2) ≤ ‖ψjη‖pp ≤ C2j(p−2)(α+1)k(η)−(p−2)(α+1/2), k(η) < 2j−1, (30)

c2j(p−2)(β+1)k ′(η)−(p−2)(β+1/2) ≤ ‖ψjη‖pp ≤ C2j(p−2)(β+1)k ′(η)−(p−2)(β+1/2), k ′(η) = 2j − k(η) < 2j−1,

(31)

where k(η) ∈ {1, . . . , 2j} is the index of η ∈ Zj. Here we assume that the points in Zj are ordered
so that η1 > η2 > · · · > η2j . Note that in the case of Jacobi needlets Zj consists of the zeros of the

Jacobi polynomial Pα,β
2j

(see the appendix). In the following we will briefly write k instead of k(η)
and k ′ instead of k ′(η). Of course, (26) is now a consequence of conditions (30)–(31).

Observe the important fact that properties (30)–(31) are valid in the case of Jacobi Polynomials
(see the appendix).

Theorem 3. Let 1 < p < ∞ and α ≥ β > − 1
2
. Suppose that conditions (25)− (27) and (30)− (31)

are fulfilled. Let

2J = t
− 2
1+2ν

ε and κ2 ≥ 16p[1 + 4{(
α

2
−
α+ 1

p
)+ ∨ (

β

2
−
β + 1

p
)+}]

and suppose that we are in the regular case, i.e.

bi ∼ i−ν, ν > −
1

2
.

Then for f ∈ B̃sπ,r(M) with s > maxγ∈{α,β}{
1
2

− 2(γ + 1)(1
2

− 1
π
) ∨ 2(γ + 1)( 1

π
− 1
p
) ∨ 0}, we have

E‖f̂− f‖pp ≤ C[log(1/ε)]p−1+a[ε
√

log(1/ε)]µp, (32)



G. Kerkyacharian et al./NEED-VD: estimation in inverse problems 14

where

µ = min{µ(s), µ(s, α), µ(s, β)} and a = max{a(α), a(β)} ≤ 2 with

µ(s) =
s

s + ν+ 1
2

,

µ(s, γ) =
s− 2(1 + γ)( 1

π
− 1
p
)

s + ν+ 2(1 + γ)( 1
2

− 1
π
)

and, a(γ) =

{
I{δp = 0} if [p− π][1 − (p− 2)(γ + 1/2)] ≥ 0,

(γ+1
2
)(π−p)

(π−2)(γ+1/2)−1
+ I{δs = 0} if [p− π][1 − (p− 2)(γ + 1/2)] < 0,

with δp = 1 − (p− 2)(γ + 1/2) and δs = s[1 − (p − 2)(γ + 1/2)] − p(2ν + 1)(γ + 1)( 1
π

− 1
p
).

The proofs of Theorems 2 and 3 are relegated to section 8.
Remarks :

1. Naturally, Theorem 2 follows by Theorem 3. We stated this two theorems separately because
the hypotheses of Theorem 2 are less restrictive than the conditions in Theorem 3 and hence
Theorem 2 potentially has wider range of application than Theorem 3.

2. It is interesting to notice that the convergence rates in (32) depend only on three distinctive
regions for the parameters (which are actually present in Theorem 2, but hidden in the
condition α ≥ β), which depends on a very subtle interrelation between the parameters
s, α, β, p, π.

3. It is also interesting to note that the usual rates of convergence obtained e.g. in the wavelet
scenario are realized in the extreme case α = β = − 1

2
. 3

6. Simulation study

In this section we investigate the numerical performances of the Need-VD estimator in the context
of the Wicksell problem described in section 2.1.2. We compare the results for simulated datasets
to those obtained with several SVD methods.

6.1. The estimators

6.1.1. Singular value decomposition estimators

With the notations introduced before, f can be naturally estimated by the following linear estimator
based on the singular value decomposition of operator K:

f̂ =
∑

i

λi
Yi

bi
ei,

where (λi)i∈N is a deterministic filter.

In the simulations a first SVD estimator with projection weights was used:

{
λi = 1 if i ≤ N,
λi = 0 if i > N,
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where the parameter N was fitted for each setting so as to minimize the root mean square error
(RMSE) of the estimator.

We also use the SVD estimator developed in Cavalier and Tsybakov [6], which is completely
adaptive with a data driven choice of the filter and thus much more convenient than the former in
practice. The values of λi are constant in blocs Ij = [κj−1, κj − 1] with limits κ0 = 1 and κJ = N+ 1

determined further: 



λi =

(
1 −

σ2
j
(1+∆

γ
j
)

‖Ȳ‖2
(j)

)
+

if i ∈ Ij, j = 1, . . . J,

λi = 0 if i > N,

where:

Ȳi =
Yi

bi
, ‖Ȳ‖2(j) =

∑

i∈Ij

Ȳ2i , σ2j = ε2
∑

i∈Ij

b−2
i , ∆j =

maxi∈Ij b
−2
i∑

i∈Ij
b−2
i

, 0 < γ < 1/2,

and we used the notation x+ = max(0, x).

The blocks are determined by the following procedure. Let νε ∼ max(5, log log(1/ε)) and ρε =
1

log(νε)
, we define:






κj = 1 if j = 0,

κj = νε if j = 1,

κj = κj−1 + bνερε(1 + ρε)
j−1c if j = 2, . . . , J,

where J is large enough such that: κJ > max{m :
∑m
i=1 b

−2
i ≤ ε−2ρ−3

ε }.

In the simulation settings considered further the value taken by κJ = N+1 is too large compared
to the level n of the discretization resolution, thus the estimation was performed at the level
N0 = min (n

2
, N) instead of N.

6.1.2. Construction of the needlet basis

Every needlet ψj,ηk defined on I = [−1, 1] is a linear combination of Jacobi polynomials as described
in section 3, with weights depending on some filter a. This function is chosen as:

a(x) =
√
ϕ(x/2) −ϕ(x), ∀x ≥ 0

where ϕ(x) = I{x < 0.5} + P(x)I{0.5 ≤ x ≤ 1} and P is a polynomial adjusted such that the
corresponding needlet is sufficiently regular. In practice this choice seems to be slightly better than
a C∞ filter with exponential shape.

The shape of a is given by figure 2, and some examples of needlets are given in figure 3. Their
amplitudes and supports fit automatically to the location of η: the needlets located near the edges
of I are much sharper than those located in the middle.

Finally NeedVD is performed by using the following basis (ψ̃j,η) adapted to the Wicksell problem:

∀x ∈ [0, 1], ψ̃j,η(x) = 4
√
2x2ψj,η(2x

2 − 1).
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Fig 2. Filter a with polynomial shape
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Fig 3. Examples of needlets: ψ7,η10
, ψ7,η40

, ψ7,η80
and ψ7,η120

(from left to right)

With such a basis we have for all i ∈ N:

ψ̃ij,η = a(i/2j−1)Pi(η)
√
bj,η,

thus the estimated coefficients of f in the frame are very easy to compute.

6.2. Parameters of the simulation

We consider the four commonly used target functions f represented in figure 4, and three levels of
noise σ corresponding to three values of the root signal to noise ratio of K(f): rsnr ∈ {3, 5, 7}. The
discretization resolution level is set to n = 1024, and the constant η in the thresholds of NeedVD
is set to η = 0.75

√
2.

0 0.5 1

0

0.5

1
Blocks

0 0.5 1

0

0.5

1
Bumps

0 0.5 1

−0.5

0

0.5

Heavisine

0 0.5 1

−0.5

0

0.5

Doppler

Fig 4. Target functions

The estimation error is evaluated by a Monte Carlo approximation of several Lp(µ) losses:
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• L1 is computed as the average over 20 runs of 1
n

n∑

i=1

|f( i
n
) − f̂( i

n
)|/(4i

n
).

• RMSE is computed as the average over 20 runs of

√
1
n

n∑

i=1

(f( i
n
) − f̂( i

n
))2/(4i

n
).

In each run, the gaussian noise component is simulated independently of its values in the other
runs.
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Fig 5. Value of the mean square error of the non adaptive SVD estimator (y-axis) for each value of N (x-axis) for
rsnr = 7 to rsnr = 3 (from top to bottom) and for the target function Blocks, Bumps, Heavisine and Doppler (from
left to right)

6.3. Analysis of the results

The performance of the non adaptive SVD estimator depends very strongly on the choice of N (see
figure 5). A large N is needed in the case of small noise (first row of the figure) and in the case of
very oscillating functions such as Doppler and Bumps. However even with this optimal a posteriori

SVD Adaptive SVD NeedVD
low med high low med high low med high

Blocks 0.0452 0.0495 0.0677 0.0399 0.0465 0.0591 0.0347 0.0404 0.0511
Bumps 0.0324 0.0388 0.0463 0.0258 0.0295 0.0361 0.0180 0.0206 0.0270

Heavisine 0.0257 0.0305 0.0402 0.0248 0.0299 0.0401 0.0205 0.0254 0.0321
Doppler 0.1032 0.1138 0.1307 0.1002 0.1085 0.1230 0.0858 0.0909 0.1007

Table 1

Error L1 for each target, each noise level and each estimator
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Fig 6. From top to bottom: observed data, NeedVD estimator, adaptive SVD estimator and non adaptive SVD esti-
mator for high noise (rsnr=3)

choice of N, the adaptive filter leads to better results than the non adaptive projection weights as
shown in tables 1 and 2. Indeed the former is more adapted to the ill posed nature of the problem
and to the variations of the noise, by adjusting over the singular values (bk) and the data (yk).

Moreover the NeedVD estimator generally outperforms both SVD estimators. As can be seen on
figure 6, the differences are obvious in high noise for the Bumps and Doppler targets, where the
SVD estimators are very noisy (in fact all the estimators happen to leave some noise unfiltered near
the right edge of the interval, which is given lesser importance by errors measured with the weight
µ(x) = 1/(4x), for x ∈]0, 1].) This order of comparison is confirmed by the lower values of L1 and
RMSE for NeedVD than for SVD in all the settings (see tables 1 and 2).

7. Proof of Theorem 1

In this proof, C will denote an absolute constant which may change from one line to the other.
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SVD Adaptive SVD NeedVD
low med high low med high low med high

Blocks 0.0714 0.0790 0.0959 0.0665 0.0743 0.0900 0.0606 0.0673 0.0816
Bumps 0.0489 0.0577 0.0706 0.0453 0.0508 0.0617 0.0378 0.0416 0.0523

Heavisine 0.0278 0.0327 0.0422 0.0266 0.0317 0.0418 0.0235 0.0288 0.0379
Doppler 0.1092 0.1200 0.1378 0.1042 0.1114 0.1258 0.0969 0.0999 0.1071

Table 2

Error L2 for each target, each noise level and each estimator

First we have the following decomposition :

E‖f̂− f‖pp ≤ 2p−1{E‖
J∑

j=−1

∑

η∈Zj

(t(β̂jη) − βjη)ψjη‖pp + ‖
∑

j>J

∑

η∈Zj

βjηψjη‖pp}

=: I+ II

The term II is easy to analyse, as follows: Since f belongs to Bsπ,r(M), using standard embedding
results (which in this case simply follows from direct comparisons between lq norms) we have that

f also belong to B
s−( 1

π
− 1
p

)+

p,r (M ′), for some constant M ′. Hence

‖
∑

j>J

∑

η∈Zj

βjηψjη‖p ≤ C2−J[s−( 1
π

− 1
p

)+]
.

Then we only need to verify that
s−( 1

π
− 1
p

)+

ν+1/2
is always larger that µ, which is not difficult.

Bounding the term I is more involved. Using the triangular inequality together with Hölder in-
equality, and property (20) for the second line, we get

I ≤ 2p−1Jp−1
J∑

j=−1

E‖
∑

η∈Zj

(t(β̂jη) − βjη)ψjη‖pp

≤ 2p−1Jp−1C

J∑

j=−1

∑

η∈Zj

E|t(β̂jη) − βjη|
p‖ψjη‖pp.

Now, we separate four cases :

∑J
j=−1

∑
η∈Zj

E|t(β̂jη) − βjη|
p‖ψjη‖pp =

∑J
j=−1

∑
η∈Zj

E|t(β̂jη) − βjη|
p‖ψjη‖pp

{
I{|β̂jη| ≥ κtεσj}

+I{|β̂jη| < κtεσj}

}

≤ ∑J
j=−1

∑
η∈Zj

[
E|β̂jη − βjη|

p‖ψjη‖ppI{|β̂jη| ≥ κtεσj}
{
I{|βjη| ≥ κ

2
tεσj} + I{|βjη| <

κ
2
tεσj}

}

+|βjη|
p‖ψjη‖ppI{|β̂jη| < κtεσj}

{
I{|βjη| ≥ 2κtεσj}

+I{|βjη| < 2κtεσj}

}]

≤ : Bb+ Bs+ Sb+ Ss.
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If we notice that β̂jη − βjη =
∑
i
Yi−bifi
bi

ψijη = ε
∑
i ξi

ψi
jη

bi
is a gaussian random variable centered,

and with variance ε2
∑
i[
ψi
jη

bi
]2, we have using standard properties of the gaussian distribution, for

any q ≥ 1, if we recall that we set σ2j =:
∑
i[
ψi
jη

bi
]2 ≤ C22jν, and denote by sq the qth absolute

moment of the gaussian distribution when centered and with variance 1:

E|β̂jη − βjη|
q ≤ sqσqj εq

P{|β̂jη − βjη| ≥
κ

2
tεσj} ≤ 2εκ

2/8

Hence,

Bb ≤
J∑

j=−1

∑

η∈Zj

σ
p
j ε
p‖ψjη‖ppI{|βjη| ≥

κ

2
tεσj}

Ss ≤
J∑

j=−1

∑

η∈Zj

|βjη|
p‖ψjη‖ppI{|βjη| < 2κtεσj}.

And,

Bs ≤
J∑

j=−1

∑

η∈Zj

[E|β̂jη − βjη|
2p]1/2[P{|β̂jη − βjη| ≥

κ

2
tεσj}]

1/2‖ψjη‖ppI{|βjη| <
κ

2
tεσj}

≤
J∑

j=−1

∑

η∈Zj

s
1/2
2p σ

p
j ε
p21/2εκ

2/16‖ψjη‖ppI{|βjη| <
κ

2
tεσj}

≤ C
J∑

j=−1

2jp(ν+1
2
)εpεκ

2/16 ≤ Cεκ2/16.

Now, if we remark that the βjη are necessarily all bounded by some constant (depending on M)
since f belongs to Bsπ,r(M), and using (19),

Sb ≤
J∑

j=−1

∑

η∈Zj

|βjη|
p‖ψjη‖ppP{|β̂jη − βjη| ≥ 2κtεσj}I{|βjη| ≥ 2κtεσj}

≤
J∑

j=−1

∑

η∈Zj

|βjη|
p‖ψjη‖pp2εκ

2/8I{|βjη| ≥ 2κtεtεσj}

≤ C
J∑

j=−1

2j
p
2 εκ

2/8 ≤ Cε
κ2

8
−

p
(2ν+1) .

It is easy to check that in any cases if κ2 ≥ 16p the terms Bs and Sb are smaller than the rates
announced in the theorem.

If we recall that:

tε = ε

√

log
1

ε
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We have using (19) and condition (23) for any z ≥ 0:

Bb ≤ Cεp
J∑

j=−1

2j(νp+
p
2

−1)
∑

η∈Zj

I{|βjη| ≥
κ

2
tεσj}

≤ Cεp
J∑

j=−1

2j(νp+
p
2

−1)
∑

η∈Zj

|βjη|
z[tεσj]

−z

≤ Ctεp−z
J∑

j=−1

2j[ν(p−z)+
p
2

−1]
∑

η∈Zj

|βjη|
z

Also, for any p ≥ z ≥ 0

Ss ≤ C
J∑

j=−1

2j(
p
2

−1)
∑

η∈Zj

|βjη|
zσ
p−z
j [tε]

p−z

≤ C[tε]
p−z

J∑

j=−1

2j(ν(p−z)+
p
2

−1)
∑

η∈Zj

|βjη|
z

So in both cases we have the same bound to investigate. We will write this bound on the following
form (forgetting the constant) :

I+ II = tε
p−z1 [

j0∑

j=−1

2j[ν(p−z1)+
p
2

−1]
∑

η∈Zj

|βjη|
z1 ] + tε

p−z2 [

J∑

j=j0+1

2j[ν(p−z2)+
p
2

−1]
∑

η∈Zj

|βjη|
z2 ]

The constants zi and j0 will be chosen depending on the cases, with the only constraint p ≥ zi ≥ 0.
Notice first, that we only need to investigate the case p ≥ π, since when p ≤ π, Bsπr(M) ⊂

Bspr(M
′).

Let us first consider the case where s ≥ (ν + 1
2
)(p
π

− 1), put

q =
p(2ν + 1)

2(s + ν) + 1

and observe that on the considered domain, q ≤ π and p > q. In the sequel it will be useful to
observe that we have s = (ν + 1

2
)(p
q

− 1). Now, taking z2 = π, we get :

II ≤ tεp−π[

J∑

j=j0+1

2j[ν(p−π)+
p
2

−1]
∑

η∈Zj

|βjη|
π]

Now, as
p

2q
−
1

π
+ ν(

p

q
− 1) = s+

1

2
−
1

π

and ∑

η∈Zj

|βjη|
π = 2−jπ(s+ 1

2
− 1
π

)τπj
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with (τj)j ∈ lr (this last thing is a consequence of the fact that f ∈ Bsπ,r(M) and item (5)), we can
write :

II ≤ tεp−π
∑

j=j0+1

2
jp(1−π

q
)(ν+1

2
)
τπj

≤ Ctεp−π2
j0p(1−π

q
)(ν+1

2
)

The last inequality is true for any r ≥ 1 if π > q and for r ≤ π if π = q. Notice that π = q is

equivalent to s = (2ν+1)( p
2π

− 1
2
). Now if we choose j0 such that 2j0

p
q

(ν+1
2
)
∼ tε

−1 we get the bound

tε
p−q

which exactly gives the rate announced in the theorem for this case.
As for the first part of the sum (before j0), we have, taking now z1 = q̃, with q̃ ≤ π, so that

[ 1
2j

∑
η∈Zj

|βjη|
q̃]
1

q̃ ≤ [ 1
2j

∑
η∈Zj

|βjη|
π]
1
π , and using again (7),

I ≤ tεp−q̃[

j0∑

−1

2j[ν(p−q̃)+
p
2

−1]
∑

η∈Zj

|βjη|
q̃]

≤ tεp−q̃[

j0∑

−1

2j[ν(p−q̃)+
p
2

−
q̃
π

][
∑

η∈Zj

|βjη|
π]
q̃
π ]

≤ tεp−q̃

j0∑

−1

2
j[(ν+1

2
)p(1−

q̃
q

)]
τ
q̃
j

≤ Ctεp−q̃2
j0[(ν+1

2
)p(1−

q̃
q

)]

≤ Ctεp−q

The last two lines are valid if q̃ is chosen strictly smaller than q (this is possible since π ≥ q).
Let us now consider the case where s < (2ν + 1)( p

2π
− 1
2
), and choose now

q =
p

2(s + ν− 1
π
) + 1

.

In such a way that we easily verify that p− q = 2
s−1/π+1/p
1+2(ν+s−1/π)

, q− π =
(p−π)(1+2ν)

2(s+ν− 1
π

)+1
> 0, because s

is supposed to be larger that 1
π
. Furthermore we also have s + 1

2
− 1
π

= p
2q

− 1
q

+ ν(p
q

− 1).
Hence taking z1 = π and using again the fact that f belongs to Bsπ,r(M),

I ≤ tεp−π[

j0∑

−1

2j[ν(p−π)+
p
2

−1]
∑

η∈Zj

|βjη|
π]

≤ tεp−π

j0∑

−1

2
j[(ν+1

2
− 1
p

)
p
q

(q−π)]
τπj

≤ Ctεp−π2
j0[(ν+1

2
− 1
p

)
p
q

(q−π)]
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This is true since ν + 1
2

− 1
p

is also strictly positive because of our constraints. If we now take

2
j0
p
q

(ν+1
2
− 1
p

)
∼ tε

−1 we get the bound
tε
p−q

which is the rate announced in the theorem for this case.
Again, for II, we have, taking now z2 = q̃ > q(> π)

II ≤ tεp−q̃[

J∑

j=j0+1

2j[ν(p−q̃)+
p
2

−1]
∑

η∈Zj

|βjη|
q̃]

≤ Ctεp−q̃
∑

j=j0+1

2
j[(ν+1

2
− 1
p

)
p
q

(q−q̃)]
z
q̃
π

j

≤ Ctεp−q̃2
j0[(ν+1

2
− 1
p

)
p
q

(q−q̃)]

≤ Ctεp−q

8. Proof of the Theorems 2 and 3

The proof essentially follows the same steps as in the previous section. However, the following
proposition will be helpful in the sequel.

Proposition 4. Let us suppose that the following estimates are verified : Under the conditions (30)
and (31), we have

1.
π ≥ p⇒ (

∑

η

|βjη|
p‖ψj,η‖pp)1/p ≤ (

∑

η

|βjη|
π‖ψj,η‖ππ)1/π

2.

π < p⇒ (
∑

η,k(η)<2j−1

|βjη|
p‖ψj,η‖pp)1/p ≤ (

∑
η,k(η)<2j−1 |βjη|

π‖ψj,η‖ππ)1/π22j(α+1)(1/π−1/p)

π < p ⇒ (
∑

η,k(η)≥2j−1

|βjη|
p‖ψj,η‖pp)1/p ≤ (

∑
η,k(η)≥2j−1 |βjη|

π‖ψj,η‖ππ)1/π22j(β+1)(1/π−1/p)

Proof. • If π ≥ p clearly, because, CardZj ≤ 2j,

(
∑

η∈Zj

|βjη|
p‖ψj,η‖pp)1/p ≤ 2j(1/p−1/π)(

∑

η∈Zj

|βjη|
π‖ψj,η‖πp)1/π

But, using (30) and (31),

π ≥ p ⇒ ‖ψj,η‖p ≤ C‖ψj,η‖π2j(1/π−1/p).

So
(
∑

η

|βjη|
p‖ψj,η‖pp)1/p ≤ (

∑

η

|βjη|
π‖ψj,η‖ππ)1/π

• If π ≤ p, clearly

(
∑

η,k(η)<2j−1

|βjη|
p‖ψj,η‖pp)1/p ≤ (

∑

η,k(η)<2j−1

|βjη|
π‖ψj,η‖πp)1/π
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But
‖ψj,η‖p ≤ C‖ψj,η‖π2j2(α+1)(1/π−1/p), ∀η k(η) < 2j−1

Hence, (
∑

η,k(η)<2j−1

|βjη|
p‖ψj,η‖pp)1/p ≤ (

∑

η,k(η)<2j−1

|βjη|
π‖ψj,η‖ππ)1/π22j(α+1)(1/π−1/p)

The proof of the inequality with β instead of α obviously is identical.

Going back to the main stream of the proof, we first decompose :

E‖f̂ − f‖pp ≤ 2p−1{E‖
J∑

j=−1

∑

η∈Zj

(t(β̂jη) − βjη)ψjη‖pp + ‖
∑

j>J

∑

η∈Zj

βjηψjη‖pp}

=: I+ II

• For II, using (27),

‖
∑

j>J

∑

η∈Zj

βjηψjη‖pp ≤ (
∑

j>J

‖
∑

η∈Zj

βjηψjη‖p)p ≤ C[
∑

j>J

(
∑

η∈Zj

‖βjηψjη‖pp)1/p]p

If π ≥ p, if we put δ = 2
1+2ν

, using f ∈ B̃sp,r(M),

II ≤ C2−Jsp = Ctδspε

If π < p, we decompose II in the following way
II ≤ C{[

∑
j>J(

∑
η,k(η)<2j−1 |βjη|

p‖ψjη‖pp)1/p]p + [
∑
j>J(

∑
η,k(η)≥2j−1 |βjη|

p‖ψjη‖pp)1/p]p} := II(α) +

II(β).
Now, using (4), and f ∈ B̃sp,r(M),

II(α) ≤ C[
∑

j>J

2−js2j2(α+1)(1/π−1/p)]p

If s > 2(α+ 1)(1/π − 1/p)

II(α) ≤ C2−J(s−2(α+1)(1/π−1/p))p = Ct
δ(s−2(α+1)(1/π−1/p))p
ε .

The term II(β) can be treated in the same way.
• For I
Using the triangular inequality together with Hölder inequality, and (27) for the second line, we

get

I ≤ 2p−1Jp−1
J∑

j=−1

E‖
∑

η∈Zj

(t(β̂jη) − βjη)ψjη‖pp

≤ 2p−1Jp−1C

J∑

j=−1

∑

η∈Zj

E|t(β̂jη) − βjη|
p‖ψjη‖pp

≤ 2p−1Jp−1C[I(α) + I(β)]
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In the last line we separated as previously, in the sum η ∈ Zj, the indices k(η) < 2j−1 and k(η) ≥
2j−1. We will only investigate in the sequel I(α), since the argument for I(β) goes in the same way.

Now, we separate four cases :

J∑

j=−1

∑

η,k(η)<2j−1

E|t(β̂jη) − βjη|
p‖ψjη‖pp =

J∑

j=−1

∑

η,k(η)<2j−1

E|t(β̂jη) − βjη|
p‖ψjη‖pp

{
I{|β̂jη| ≥ κtεσj}

+ I{|β̂jη| < κtεσj}

}

≤
J∑

j=−1

∑

η,k(η)<2j−1

[
E|β̂jη − βjη|

p‖ψjη‖ppI{|β̂jη| ≥ κtεσj}

{
I{|βjη| ≥

κ

2
tεσj} + I{|βjη| <

κ

2
tεσj}

}

+ |βjη|
p‖ψjη‖ppI{|β̂jη| ≥ κtεσj}

{
I{|βjη| ≥ 2κtεσj}

+ I{|βjη| < 2κtεσj}

}]

≤: Bb+ Bs+ Sb+ Ss

If we notice, as before, that β̂jη − βjη =
∑
i
Yi−bifi
bi

ψijη = ε
∑
i ξi

ψi
jη

bi
is a gaussian random vari-

able centered, and with variance ε2
∑
i(
ψi
jη

bi
)2, we have using standard properties of the gaussian

distribution, for any q > 0 :

E|β̂jη − βjη|
q ≤ sq[ε2

∑

i

(
ψijη

bi
)2]q/2 ≤ sqσqj εq ≤ C2jνqεq

P{|β̂jη − βjη| ≥
κ

2
ε

√

log
1

ε
σj} ≤ cεκ

2/8

Hence,

Bb ≤
J∑

j=−1

∑

η,k(η)<2j−1

σ
p
j ε
p‖ψjη‖ppI{|βjη| ≥

κ

2
ε

√

log
1

ε
σj}

Ss ≤
J∑

j=−1

∑

η,k(η)<2j−1

|βjη|
p‖ψjη‖ppI{|βjη| < 2κε

√

log
1

ε
σj}
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And,

Bs ≤
J∑

j=−1

∑

η,k(η)<2j−1

[E|β̂jη − βjη|
2p]1/2[P{|β̂jη − βjη| ≥

κ

2
ε

√

log
1

ε
σj}]

1/2

‖ψjη‖ppI{|βjη| <
κ

2
ε

√

log
1

ε
σj}

≤
J∑

j=−1

∑

η,k(η)<2j−1

σ
1/2
2p σ

p
j ε
pc1/2εκ

2/16‖ψjη‖ppI{|βjη| <
κ

2
ε

√

log
1

ε
σj}

≤ c ′εpεκ
2/16

J∑

j=−1

2jpν
∑

η∈Zj

‖ψjη‖pp

≤ c ′εpεκ
2/162J(νp+(p/2)∨(p−2)(1+α))

using (26). Now, if we remark that the βjη are necessarily all bounded by some constant M, since

f ∈ B̃sp,r(M),

Sb ≤
J∑

j=−1

∑

η,k(η)<2j−1

|βjη|
p‖ψjη‖ppP{|β̂jη − βjη| ≥ 2κε

√

log
1

ε
σj}I{|βjη| ≥ 2κε

√

log
1

ε
σj}

≤
J∑

j=−1

∑

η,k(η)<2j−1

|βjη|
p‖ψjη‖ppcεκ

2/8I{|βjη| ≥ 2κε
√

log
1

ε
σj}

≤ cεκ
2/8

J∑

j=−1

∑

η∈Zj

‖ψjη‖pp

≤ c"ε
κ2

8 2J(p/2∨(p−2)(1+α))

It is easy to check that in any cases for κ2 large enough, the terms Bs and Sb are smaller than
the rates announced in the two theorems.

Now we focus on the bounds of Bb and Ss. Let q ∈ [0, p], we always have:

εp
J∑

j=−1

∑

η,k(η)<2j−1

σ
p
j ‖ψjη‖ppI{

|βjη|

σj
≥ κ

2
tε} ≤ εp∑J

j=−1

∑
η,k(η)<2j−1

σ
p
j
‖ψjη‖

p
p|βjη|q

(κσjtε/2)q

≤ εp(κtε/2)−q
∑J
j=−1

∑
η,k(η)<2j−1 σ

p−q
j ‖ψjη‖pp|βjη|q

And

J∑

j=−1

∑

η,k(η)<2j−1

|βjη|
p‖ψjη‖ppI{|βjη| < 2κtεσj} ≤ ∑J

j=−1(2κtεσj)
p−q

∑
η,k(η)<2j−1 |βjη|

q‖ψjη‖pp

≤ (2κtε)
p−q

∑J
j=−1

∑
η,k(η)<2j−1 σ

p−q
j ‖ψjη‖pp|βjη|q.
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So like in the wavelet scenario we have the same bound to investigate:

Bb+ Ss ≤
J∑

j=−1

∑

η,k(η)<2j−1

(tεσj)
p−q‖ψjη‖pp|βjη|q,

then we use (30) and we separate as before the bound obtained in two terms A and B with some
parameters j0, z1 and z2 determined later, depending on the cases :

A :=

j0∑

j=−1

(tεσj)
p−z12j(p−2)(α+1)

∑

η,k(η)<2j−1

|βjη|
z1k−(p−2)(α+1/2)

B :=

J∑

j=j0+1

(tεσj)
p−z22j(p−2)(α+1)

∑

η,k(η)<2j−1

|βjη|
z2k−(p−2)(α+1/2).

Let us first suppose that p ≤ π and (p−2)(α+1/2) ≤ 1, or that p ≥ π and (p−2)(α+1/2) ≥ 1.
Then we take z1 = 0 and z2 = p, and let us denote δp = 1 − (p − 2)(α + 1

2
). We have:

A =

j0∑

j=−1

(tεσj)
p2j(p−2)(α+1)

∑

η,k(η)<2j−1

k−(p−2)(α+1/2)

=

j0∑

j=−1

(tεσj)
p2j(p/2)∨(p−2)(α+1)jI(δp=0)

≤ C(tεσj0)
p2j0(p/2)∨(p−2)(α+1)(log

1

ε
)I(δp=0).

And by treating B as was done previously with the term II(α), we obtain:

B =

J∑

j=j0+1

2j(p−2)(α+1)
∑

η,k(η)<2j−1

|βjη|
pk−(p−2)(α+1/2)

≤ C2
−j0p[s−2(α+1)( 1

π
− 1
p

)+]
.

So if p ≤ π and (p − 2)(α + 1/2) ≤ 1 we set 2j0 = t
−1/[s+ν+ 1

2
]

ε , which yields:

A+ B ≤ Ct
p s

s+ν+1
2

ε (log
1

ε
)I(δp=0),

and if p ≥ π and (p− 2)(α + 1/2) ≥ 1 we take 2j0 = t
−1/[s+ν+(α+1)(1− 2

π
)]

ε , which yields:

A+ B ≤ Ct
p
s−2(α+1)(1π− 1

p )

s+ν+(α+1)(1−2π )

ε (log
1

ε
)I(δp=0).

In the other cases: p < π and (p − 2)(α + 1/2) > 1, or p > π and (p − 2)(α + 1/2) < 1, let us set

q =
(p−2)(α+1/2)−1
(π−2)(α+1/2)−1

π, which satisfies:

p− q =
2(α + 1)(π − p)

(π − 2)(α + 1/2) − 1
, and π− q =

π(α + 1/2)(π − p)

(π − 2)(α + 1/2) − 1
,
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so q ∈]0, p∧ π[ under the assumptions made above.

Let us bound the quantity
∑
η,k(η)<2j−1 |βjη|

qk−(p−2)(α+1/2). We define:

δ1 = −
q

π
(π − 2)(α + 1/2), and δ2 = −(p− 2)(α + 1/2) − δ1.

Using Hölder inequality, (30), and the fact that f ∈ B̃sp,r(M), we have:

∑

η,k(η)<2j−1

|βjη|
qk−(p−2)(α+1/2) =

∑

η∈Zj

|βjη|
qkδ1kδ2

≤ [
∑

η,k(η)<2j−1

|βjη|
πk−(π−2)(α+1/2)]

q
π [

∑

η,k(η)<2j−1

k

δ2

1−
q
π ]1−

q
π

≤ C2−jsq−j
q
π

(π−2)(α+1)[
∑

η,k(η)<2j−1

k
πδ2
π−q ]1−

q
π

= C2−j(p−2)(α+1)2j(−sq+
p−q
2

)j1−
q
π .

In the last line we used the fact that :

(p− 2)(α + 1) − sq −
q

π
(π − 2)(α + 1) = −sq+

p− q

2
, and

πδ2

π− q
= −1.

1. Let us assume that:

−sq + (p− q)(ν +
1

2
) < 0,

i.e. that:
−sπ[(p − 2)(α + 1/2) − 1] + (α+ 1)(π − p)(2ν + 1)

(π − 2)(α + 1/2) − 1
< 0.

Then we take z1 = 0 and z2 = q:

A =

j0∑

j=−1

(tεσj)
p2j(p−2)(α+1)

∑

η,k(η)<2j−1

k−(p−2)(α+1/2)

≤ (tεσj0)
p2j0(p/2)∨(p−2)(α+1),

B =

J∑

j=j0+1

(tεσj)
p−q2j(p−2)(α+1)

∑

η,k(η)<2j−1

|βjη|
qk−(p−2)(α+1/2)

≤ C[

J∑

j=j0+1

(tεσj)
p−q2j(−sq+

p−q
2

)]J1−
q
π

≤ C(tεσj0)
p−q2j0(−sq+

p−q
2

)(log
1

ε
)1−

q
π .

If (p− 2)(α + 1/2) > 1 we take 2j0 = t
−1/[s+ν+(α+1)(1− 2

π
)]

ε , which yields:

A+ B ≤ Ct
p
s−2(α+1)(1π− 1p )

s+ν+(α+1)(1−2π )

ε (log
1

ε
)1−

q
π ,
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and if (p − 2)(α + 1/2) < 1 we take 2j0 = t
−1/[s+ν+ 1

2
]

ε , which yields:

A+ B ≤ Ct
p s

s+ν+1
2

ε (log
1

ε
)1−

q
π .

Notice that, because of our conditions on s, we always have j0 ≤ J.

2. Let us now assume that:

−sπ[(p − 2)(α + 1/2) − 1] + (α+ 1)(π − p)(2ν + 1)

(π − 2)(α + 1/2) − 1
> 0.

Then we take z1 = q and z2 = p:

A ≤ C[

j0∑

j=−1

(tεσj)
p−q2j(−sq+

p−q
2

)]J1−
q
π

≤ C(tεσj0)
p−q2j0(−sq+

p−q
2

)(log
1

ε
)1−

q
π ,

and as before with the bias term II(α) :

B ≤
J∑

j=j0+1

2j(p−2)(α+1)
∑

η,k(η)<2j−1

|βjη|
pk−(p−2)(α+1/2)

≤ C2
−j0p[s−2(α+1)( 1

π
− 1
p

)+]
.

If π > p we take 2j0 = t
−1/[s+ν+ 1

2
]

ε , which yields:

A+ B ≤ Ct
p s

s+ν+1
2

ε (log
1

ε
)1−

q
π ,

and if π < p we take 2j0 = t
−1/[s+ν+(α+1)(1− 2

π
)]

ε , which yields:

A+ B ≤ Ct
p
s−2(α+1)(1π− 1p )

s+ν+(α+1)(1−2π )

ε (log
1

ε
)1−

q
π .

3. Let us finally assume that:

−sπ[(p − 2)(α + 1/2) − 1] + (α+ 1)(π − p)(2ν + 1) = 0.

We take z1 = q and z2 = p as previously:

A+B ≤ C
j0∑

j=−1

tp−q
ε j1−

q

π+C2
−j0p[s−2(α+1)( 1

π
− 1
p

)+] ≤ Ctp−q
ε (log

1

ε
)2−

q

π+C2
−j0p[s−2(α+1)( 1

π
− 1
p

)+]
.

We proceed exactly like in the previous case, and we obtain the same rate whether π ≥ p or
π < p:

A+ B ≤ Ct
p s

s+ν+1
2

ε (log
1

ε
)2−

q
π .
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We can sum up all the results for Bb and Ss (and thus on I(α)) very simply:

if 2(α + 1)( 1
π

− 1
p
) < s and s[1 − (p− 2)(α + 1/2)] ≤ p(2ν + 1)(α + 1)( 1

π
− 1
p
) then:

Bb+ Ss ≤ Ct
p
s+2(α+1)(1p− 1π )

s+ν+(α+1)(1−2π )

ε (log
1

ε
)a,

if s[1 − (p− 2)(α + 1/2)] > p(2ν + 1)(α + 1)( 1
π

− 1
p
) then:

Bb+ Ss ≤ Ct
p s

s+ν+1
2

ε (log
1

ε
)a,

where the power of the log factor depends on the parameters:

a =

{
I{δp = 0} if [p− π][1 − (p − 2)(α + 1/2)] ≥ 0,

(α+1
2
)(π−p)

(π−2)(α+1/2)−1
+ I{δs = 0} if [p− π][1 − (p − 2)(α + 1/2)] < 0,

with δp = 1 − (p− 2)(α + 1/2) and δs = s[1 − (p− 2)(α + 1/2)] − p(2ν + 1)(α + 1)( 1
π

− 1
p
).

Note that the first term in the second case is bounded by 1, so we have a ≤ 2 whatever the case.

9. Appendix: Needlets induced by Jacobi polynomials

9.1. Jacobi needlets: Definition and basic properties

In this section we apply the general scheme from §3 for the construction of Jacobi needlets. We begin
by introducing some necessary notation. We denote I = [−1, 1] and dγα,β(x) = cα,βωα,β(x)dx,

where
ωα,β(x) = (1 − x)α(1 + x)β; α,β > −1/2,

and cα,β is defined by
∫
I
dγα,β(x) = 1. Assume Pα,β are the classical Jacobi polynomials (cf. e.g.

[31]). Let Πα,βk be the Jacobi polynomial of degree k, normalized in L2(dγαβ), i.e.

∫

I

Π
α,β
k Πα,βn dγα,β = δm,n.

Let a(ξ) be as in §3.1 with the additional condition: a(ξ) > c > 0 for 3/4 ≤ ξ ≤ 7/4. Note that
suppa ⊂ [1/2, 2]. We define as as in §3.1

Λj(x, y) =
∑

k

a(k/2j)Π
α,β
k (x)Π

α,β
k (y).

Let ην = cos θj,ν, ν = 1, 2, . . . , 2j, be the zeros of the Jacobi polynomial P2j ordered so that
η1 > η2 > · · · > η2j and hence 0 < θj,1 < θj,2 < · · · < θj,2j < π. It is well known that (cf. [31])

θj,ν ∼
νπ

2j
. (33)

We set
Xj = {ην : ν = 1, 2, . . . , 2j}.
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Let Πn denote the space of all polynomials of degree ≤ n. As is well known [31] the zeros of the
Jacobi polynomial P2j serve as knots of the Gaussian quadrature which is exact for all polynomials
from Π2j+1−1, that is, ∫

I

Pdγα,β =
∑

ην∈Xj

bj,ηνP(ην), ∀P ∈ Π2j+1−1,

where the coefficients bj,ην > 0 are the Christoffel numbers [31] and bj,ην ∼ 2−jωα,β(2j;ην) with

ωα,β(2j; x) := (1 − x+ 2−2j)α+1/2(1 + x+ 2−2j)β+1/2.

We now define the Jacobi needlets by

ψj,ην(x) =
√
bj,ηνΛ2j(x, ην), ν = 1, 2, . . . , 2j; j ≥ 0,

and we set ψ0(x) = ψ−1,η(x) = 1, η ∈ X−1 with X−1 consisting of only one point η = 0. From
Proposition 2, (ψj,ην) is a tight frame of L2(dγαβ), i.e.

‖f‖22 =
∑

j≥−1

∑

η∈Xj

|〈f,ψj,η〉|2, ∀f ∈ L2(dγαβ).

Hence
‖ψj,ην‖2 ≤ 1, (34)

which cannot be an equality since otherwise the needlet system (ψj,ην) would be an orthonormal
basis and this is impossible because

∑

ν

√
bj,ηνψj,ην =

∑

ν

bj,ηνL2j(x, ην) =

∫

I

L2j(x, y)dγ(x) = 0.

We now recall the two main results from [30] which will be essential steps in our development.

Theorem 4. For any l ≥ 1 there exists a constant Cl > 0 such that

|ψj,ην(cos θ)| ≤ Cl
1√

ωα,β(2j, cos θ)

2j/2

(1 + 2j|θ − πν
2j

|)l
, 0 ≤ θ ≤ π. (35)

Obviously

ωα,β(2j; cos θ) = (2 sin2(θ/2) + 2−2j)α+1/2(2 cos2(θ/2) + 2−2j)β+1/2. (36)

Therefore, 0 ≤ θ ≤ π/2 =⇒ ωα,β(2j, cos θ) ∼ ((2jθ+ 1)2α+12−j(2α+1) and hence

|ψj,ην(cos θ)| ≤ Cl
2j(1+α)

(1 + 2j|θ − νπ
2j

|)l
1

(2jθ+ 1)α+1/2
, 0 ≤ θ ≤ π/2. (37)

Similarly, from (36)

π/2 ≤ θ ≤ π =⇒ ωα,β(2j, cos θ) ∼ (2j(π − θ) + 1)2β+12−j(2β+1)

and hence

|ψj,ην(cos θ)| ≤ Cl
2j(1+β)

(1 + 2j|θ − νπ
2j

|)l
1

(2j(π − θ) + 1)β+1/2
, π/2 ≤ θ ≤ π. (38)
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Theorem 5. Let 0 < p ≤ ∞. Then

‖ψj,ην‖p =
( ∫

I

|ψj,ην(x)|
pdγα,β

)1/p
≤ Cp

( 2j

ωα,β(2j;ην)

)1/2−1/p
.

Using (33) and (36), we infer ωα,β(j;ην) ∼ 2−j(2α+1)ν2α+1 if 1 ≤ ν ≤ 2j−1 and ωα,β(j;ην) ∼

2−j(2β+1)(2j − ν + 1)2β+1 if 2j−1 < ν ≤ 2j. Consequently,

1 ≤ ν ≤ 2j−1 =⇒ ‖ψj,ην‖p ≤ Cp
(
2j(α+1)

να+1/2

)1−2/p
, (39)

2j−1 < ν ≤ 2j =⇒ ‖ψj,ην‖p ≤ Cp
(

2j(β+1)

(2j − ν + 1)β+1/2

)1−2/p
. (40)

9.2. Estimation of the Lp norms of the needlets

Here we establish estimates (30)–(31) for the norms of the Jacobi needlets. In fact we only need to
prove the lower bounds because the upper bounds are given above, see Theorem 5 and (39)–(40).
We record these bounds in the following theorem. We want to express our thanks to Yuan Xu for
communicating to us another proof of this result.

Theorem 6. ∀ 0 < p ≤ ∞, ∀j ∈ N,

∀ ν = 1, . . . , 2j−1, cp

(
2j(α+1)

να+1/2

)1−2/p
≤ ‖ ψj,ην‖p ≤ Cp

(
2j(α+1)

να+1/2

)1−2/p

∀ 2j−1 < ν ≤ 2j, cp

(
2j(β+1)

(1 + (2j − ν))β+1/2

)1−2/p
≤ ‖ ψj,ην‖p ≤ Cp

(
2j(β+1)

(1 + (2j − ν))β+1/2

)1−2/p

A critical role in the proof of this theorem will play the following proposition.

Proposition 5. Let c� be an arbitrary positive constant. Then there exists a constant c > 0 such
that

2N−1∑

k=N

[P
α,β
k (cos θ)]2 ≥ cωα,β(N; cos θ)−1 for c�N−1 ≤ θ ≤ π − c�N−1, N ≥ 2. (41)

Proof. The proof will rely on the well known asymptotic representation of Jacobi polynomials (sf.
[31, Theorem 8.21.12, p. 195]): For any constants c > 0 and ε > 0

(
sin
θ

2

)α (
cos

θ

2

)β
Pα,βn (cos θ) = N−α Γ(n + α+ 1)

n!

( θ

sin θ

)1/2
Jα(Nθ) + θ1/2O(n−3/2) (42)

for cn−1 ≤ θ ≤ π − ε, where N = n + (α + β + 1)/2 and Jα is the Bessel function. Further, using
the well known asymptotic identity

Jα(z) =

(
2

πz

)1/2
cos(z+ γ) + O(z−3/2), z → ∞ (γ = −απ/2− π/4), (43)

one obtains (sf. [31, Theorem 8.21.13, p. 195])

Pα,βn (cos θ) = (πn)−1/2

(
sin
θ

2

)−α−1/2 (
cos

θ

2

)−β−1/2

{cos(Nθ + γ) + (nθ)−1O(1)} (44)
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for cn−1 ≤ θ ≤ π− cn−1.
As is well known the Jacobi polynomials Pα,βk and Pα,βk+1 have no common zeros and hence it

suffices to prove (41) only for sufficiently large N. Also, Pα,βk (−x) = (−1)kP
β,α
k (x) and therefore it

suffices to prove (41) only in the case c�N−1 ≤ θ ≤ π/2.
Denote by FN(θ) the left-hand side quantity in (41). Then by (44), applied with c = 1/2, it

follows that

FN(θ) ≥ N−1θ−2α−1
2N−1∑

k=N

(
c1 cos2(kθ+ h(θ)) − c2(kθ)

−2
)

≥ c ′N−1θ−2α−1
2N−1∑

k=N

cos2(kθ+ h(θ)) − c ′′θ−2α−1(Nθ)−2,

for N−1 ≤ θ ≤ π/2, where h(θ) = (α + β + 1)θ/2 − πα/2 − π/4. It is easy to verify that for
πN−1 ≤ θ ≤ π/2

2N−1∑

k=N

cos2(kθ + h) =
N

2
+

sinNθ

2 sin θ
cos((3N − 1)θ + 2h) ≥ N

2

(
1 −

π

2Nθ

)
≥ N

4
.

Therefore,

FN(θ) ≥ θ−2α−1(c ′/4− c ′′(Nθ)−2) ≥ (c ′/8)θ−2α−1 ≥ cωα,β(N; θ) for c∗N−1 ≤ θ ≤ π/2, (45)

where c∗ = max{π, (8c ′′/c ′)1/2} > 0.
It remains to establish (41) for c�N−1 ≤ θ ≤ c∗N−1. Denote δ = (α + β + 1)/2. We now apply

(42) with c = c� and ε = π/2 to obtain using that Γ(n + α+ 1)/n! ∼ nα, sin θ ∼ θ, and (43)

[
P
α,β
k (cos θ)

]2
≥ θ−2α

(
c1[Jα((k + δ)θ)]2 − c2k

−3/2θ1/2|Jα((k+ δ)θ)|
)

≥ c1θ−2α[Jα((k+ δ)θ)]2 − cθ−2αk−2.

Choose λ so that θ = λ
N

and c� ≤ λ ≤ c∗. Summing up above we get

FN(θ) ≥ c1θ−2α
2N−1∑

k=N

[Jα((k+ δ)θ)]2 − cθ−2αN−1

= c1θ
−2αN

2N−1∑

k=N

1

N

[
Jα

((k+ δ)λ

N

)]2
− cθ−2αN−1

= c1θ
−2αN

N−1∑

j=0

1

N

[
Jα

( jλ
N

+ λ+
δλ

N

)]2
− cθ−2αN−1.

Obviously, the last sum above involves only values of the Bessel function Jα(θ) for c� ≤ θ ≤ c∗(2+δ)
and hence uniformly in λ ∈ [c�, c∗]

∣∣∣
N−1∑

j=0

1

N

[
Jα

( jλ
N

+ λ+
δλ

N

)]2
−

N−1∑

j=0

1

N

[
Jα

( jλ
N

+ λ
)]2∣∣∣ −→ 0, N −→ ∞.
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The second sum above can be viewed as a Riemann sum of the integral
∫1
0
J2α(λ(θ+ 1))dθ, which is

a continuous function of λ ∈ [c�, c∗] and hence minλ∈[c�,c∗]

∫1
0
J2α(λ(θ+1))dθ ≥ c̃ > 0. Consequently,

for sufficiently large N

FN(θ) ≥ θ−2α(c̃c1N/2− cN−1) ≥ cθ−2αN ≥ cωα,β(N; θ) for c�N−1 ≤ θ ≤ c∗N−1.

From this and (45) it follows that (41) holds for sufficiently large N and this completes the proof
of Proposition 5.

Proof of Theorem 6. We first note that (sf. [31]) Πα,βk (x) ∼ k1/2P
α,β
k (x) and hence

‖ψj,ην‖22 = bj,ν
∑

2j−2<k<2j

a2(k/2j)(Π
α,β
k (cos θj,ν))

2

≥ cωα,β(2j;ην)
∑

2j−2<k<2j

a2(k/2j)(P
α,β
k (cos θj,ν))

2

≥ cωα,β(2j;ην)
∑

3
4
2j≤k≤7

4
2j

(P
α,β
k (cos θj,ν))

2.

Observe also that there exists a constant c� > 0 such that c�/2j ≤ θj,ν ≤ π− c�/2j, ν = 1, 2, . . . , 2j.
We now employ Proposition 5 and (34) to conclude that

0 < c ≤ ‖ψj,ην‖2 ≤ 1. (46)

We need to establish only the lower bound in Theorem 6. Recall first the upper bound from
Theorem 5

‖ψj,ην‖p ≤ Cp
( 2j

ωα,β(2j;ην)

)1/2−1/p
, 0 < p ≤ ∞. (47)

Suppose 2 < p < ∞ and let 1/p+ 1/q = 1. By (46) and Hölder’s inequality we have

0 < c ≤ ‖ψj,ην‖22 ≤ ‖ψj,ην‖p‖ψj,ην‖q ≤ c‖ψj,ην‖p
( 2j

ωα,β(2j;ην)

)1/2−1/q

which yields

‖ψj,ην‖p ≥ c
( 2j

ωα,β(2j;ην)

)1/2−1/p
. (48)

The case p = ∞ is similar. In the case 0 < p < 2, we have using (46)

0 < c ≤ ‖ψj,ην‖22 ≤ ‖ψj,ην‖pp‖ψj,ην‖2−p∞ ≤ c‖ψj,ην‖pp
( 2j

ωα,β(2j;ην)

)1−p/2
,

which implies (48). The lower bound estimates in Theorem 6 follow by (48).

9.3. Bounding for the norm of a linear combination of needlets

Our goal is to prove estimate (27), which we record in the following theorem:

Theorem 7. Let 0 < p < ∞. Then there exists a constant Cp > 0 such that for any collection of
numbers {λν : ν = 1, 2, . . . , 2j}, j ≥ 0,

‖
2j∑

ν=1

λνψj,ην‖pLp(γα,β)
≤ Cp

2j∑

ν=1

|λν|
p‖ψj,ην‖pLp(γα,β)

. (49)
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Proof. Consider the maximal operator

(Msf)(x) = sup
J3x

( 1
|J|

∫

J

|f(u)|sdu
)1/s

, s > 0,

where the supremum is taken over all intervals J ⊂ [−1, 1] which contain x and |J| denotes the length
of J. As elsewhere, let α ∧ β > −1/2. It is well known the weight ωα,β(x) = (1 − x)α(1 + x)β on
[−1, 1] belongs to the Muckenhoupt class Ap with p > 1 if α∨β ≤ p−1. Then in the weighted case
the Fefferman-Stein maximal inequality (see [14] and [2]) can be stated as follows: If 1 < p, r < ∞
and ωα,β ∈ Ap, then for any sequence of functions (fk) on [−1, 1]

∥∥∥
(∑

k

(M1fk)
r
)1/r∥∥∥

Lp(γα,β)
≤ Cp,r

∥∥∥
(∑

k

|fk|
r
)1/r∥∥∥

Lp(γα,β)
.

Using that M1|f|
s = (Msf)

s one easily infers from above that the following maximal inequality
holds: If 0 < p, r < ∞ and 0 < s < min{p, r, p

α∨β+1
}, then for any sequence of functions (fk) on

[−1, 1]
∥∥∥
(∑

k

(Msfk)
r
)1/r∥∥∥

Lp(γα,β)
≤ C

∥∥∥
(∑

k

|fk|
r
)1/r∥∥∥

Lp(γα,β)
. (50)

As in §9.1, let ην = cos θj,ν, ν = 1, 2, . . . , 2j, be the zeros of the Jacobi polynomial Pα,β
2j

. Set

η0 = 1, η2j+1 = −1 and θj,0 = 0, θj,2j+1 = π, respectively. Denote Iν = [
ην+ην+1

2
,
ην+ην−1

2
] and put

Hν = hν1Iν with hν =
( 2j

ωα,β(2j;ην)

)1/2
,

where 1Iν is the indicator function of Iν.
We next show that for any s > 0

|ψj,ην(x)| ≤ c(MsHν)(x), x ∈ [−1, 1], ∀ν = 1, 2, . . . , 2j, j ≥ 0. (51)

Obviously, (Ms1Iν)(x) = 1Iν(x) for x ∈ Iν. Let x ∈ [−1, 1] \ Iν and set cos θ = x, θ ∈ [0, π]. Then

[(Ms1Iν)(x)]
s ∼

|Iν|

|x − ην|
∼
ην−1 − ην+1

|x − ην|
∼

sin 1
2
(θj,ν+1 − θj,ν−1) sin 1

2
(θj,ν+1 + θj,ν−1)

sin 1
2
|θ − θj,ν| sin

1
2
(θ + θj,ν)

∼
2−jθj,ν

|θ − θj,ν|(θ + θj,ν)
.

Using that θj,ν ≥ c∗2−j for some constant c∗ > 0, one easily verifies the inequality

θj,ν

θ + θj,ν
≥ 1

(2 + c−1∗ )(1 + 2j|θ − θj,ν|)
.

From above it follows that

(Ms1Iν)(cos θ) ≥
c

(1 + 2j|θ − θj,ν|)2/s
, θ ∈ [0, π],

which along with (35) (applied with l ≥ 2/s) yields (51).
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Combining (51) and (50) we get

‖
2j∑

ν=1

λνψj,ην‖pLp(γα,β)
≤ c

2j∑

ν=1

|λν|
p‖Hν‖pLp(γα,β)

. (52)

Straightforward calculation show that ‖1Iν‖Lp(γα,β) ∼
(
2−jωα,β(2j;ην)

)1/p
and hence, using The-

orem 6,

‖Hν‖Lp(γα,β) ∼
( 2j

ωα,β(2j;ην)

)1/2−1/p
∼ ‖ψj,ην‖Lp(γα,β).

This coupled with (52) implies (49).

References

[1] F. Abramovich and B. W. Silverman. Wavelet decomposition approaches to statistical inverse
problems. Biometrika, 85(1):115–129, 1998.

[2] Kenneth F. Andersen and Russel T. John. Weighted inequalities for vector-valued maximal
functions and singular integrals. Studia Math., 69(1):19–31, 1980/81.

[3] A. Antoniadis and J. Bigot. Poisson inverse models. 2004. Preprint Grenoble.
[4] A. Antoniadis, J. Fan, and I. Gijbels. A wavelet method for unfolding sphere size distributions.

The Canadian Journal of Statistics, 29:265–290, 2001.
[5] L. Cavalier, G. K. Golubev, D. Picard, and A. B. Tsybakov. Oracle inequalities for inverse

problems. Ann. Statist., 30(3):843–874, 2002.
[6] Laurent Cavalier and Alexandre Tsybakov. Sharp adaptation for inverse problems with random

noise. Probab. Theory Related Fields, 123(3):323–354, 2002.
[7] Albert Cohen, Marc Hoffmann, and Markus Reiß. Adaptive wavelet Galerkin methods for

linear inverse problems. SIAM J. Numer. Anal., 42(4):1479–1501 (electronic), 2004.
[8] L.M. Cruz-Orive. Distribution-free estimation of sphere size distributions from slabs showing

overprojections and truncations, with a review of previous methods. J. Microscopy, 131:265–
290, 1983.

[9] V. Dicken and P. Maass. Wavelet-Galerkin methods for ill-posed problems. J. Inverse Ill-Posed
Probl., 4(3):203–221, 1996.

[10] David L. Donoho. Nonlinear solution of linear inverse problems by wavelet-vaguelette decom-
position. Appl. Comput. Harmon. Anal., 2(2):101–126, 1995.

[11] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series. Trans. Amer. Math.
Soc., 72:341–366, 1952.

[12] Sam Efromovich and Vladimir Koltchinskii. On inverse problems with unknown operators.
IEEE Trans. Inform. Theory, 47(7):2876–2894, 2001.

[13] J. Fan and J.K. Koo. Wavelet deconvolution. IEEE Transactions on Information Theory,
48(3):734–747, 2002.

[14] C. Fefferman and E. M. Stein. Some maximal inequalities. Amer. J. Math., 93:107–115, 1971.
[15] M. Frazier, B. Jawerth, and G. Weiss. Littlewood paley theory and the study of functions

spaces. CMBS, 79, 1991. AMS.
[16] Alexander Goldenshluger and Sergei V. Pereverzev. On adaptive inverse estimation of linear

functionals in Hilbert scales. Bernoulli, 9(5):783–807, 2003.
[17] Iain M. Johnstone, Gérard Kerkyacharian, Dominique Picard, and Marc Raimondo. Wavelet

deconvolution in a periodic setting. J. R. Stat. Soc. Ser. B Stat. Methodol., 66(3):547–573,
2004.



G. Kerkyacharian et al./NEED-VD: estimation in inverse problems 37

[18] Iain M. Johnstone and Bernard W. Silverman. Discretization effects in statistical inverse
problems. J. Complexity, 7(1):1–34, 1991.
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175 rue du Chevaleret,
75013 Paris, France
E-mail: {kerk,picard,willer}@math.jussieu.fr

Pencho Petrushev
Department of Mathematics
University of South Carolina
Columbia, SC 29208
e-mail: pencho@math.sc.edu

mailto:pencho@math.sc.edu

	IMI_Cover.doc
	2006:09 
	NEED-VD: a second generation wavelet algorithm for estimation in inverse problems  
	G. Kerkyacharian, P. Petrushev, D. Picard and T. Willer 

	Petrushev3.pdf
	Introduction
	Inverse Models
	The SVD Method
	Deconvolution
	Wicksell's problem


	General scheme for construction of frames (Needlets) and thresholding
	Calderón type decomposition
	Discretization
	Localization properties
	NEED-VD algorithm: thresholding needlet coefficients

	NEED-VD in wavelet scenario
	Condition (23) and the needlet construction

	NEED-VD in a Jacobi-type case
	Simulation study
	The estimators
	Singular value decomposition estimators
	Construction of the needlet basis

	Parameters of the simulation
	Analysis of the results

	Proof of Theorem 1
	Proof of the Theorems 2 and 3
	Appendix: Needlets induced by Jacobi polynomials
	 Jacobi needlets: Definition and basic properties
	Estimation of the Lp norms of the needlets 
	Bounding for the norm of a linear combination of needlets

	References


