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LOCALIZED POLYNOMIAL FRAMES ON THE BALL

PENCHO PETRUSHEV AND YUAN XU

Abstract. Almost exponentially localized polynomial kernels are constructed
on the unit ball Bd in Rd with weights Wµ(x) = (1 − |x|2)µ−1/2, µ ≥ 0,
by smoothing out the coefficients of the corresponding orthogonal projectors.
These kernels are utilized to the design of cubature formulae onBd with respect
to Wµ(x) and to the constriction of polynomial tight frames in L2(Bd,Wµ)
(called needlets) whose elements have nearly exponential localization.

1. Introduction

The construction of bases and frames on various domains, in particular on Rd
and on the d-dimensional cube, sphere, and ball, is important from many prospec-
tives and has numerous applications. The example of Meyer’s wavelets [6] and
the ϕ-transform of Frazier and Jawerth [5] clearly shows the advantage of using
localized bases or frames for decomposition of function and distribution spaces on
Rd in contrast to other means such as atomic decompositions or Fourier series
(in the periodic case). Three of their features, (i) infinite smoothness, (ii) almost
exponential space localization, and (iii) infinitely vanishing moments, make them
a universal tool for decomposing most of the classical spaces on Rd, including Besov
and Triebel-Lizorkin spaces. The key to this is that the coefficients in the wavelet
or ϕ-transform expansions precisely capture the information in the norms defining
the corresponding spaces.

Our primary goal in this article is to develop a similar tool for decomposition of
weighted spaces of functions or distributions on the unit ball Bd in Rd (d > 1) with
weights

Wµ(x) := (1− |x|2)µ−1/2, µ ≥ 0,
where |x| is the Euclidean norm of x ∈ Rd. The situation here, however, is much
more complicated than on Rd (the shift invariant case) or on the torus or even on the
sphere due to several reasons: (i) there are no dilation or translation operators on
Bd, (ii) the boundary of Bd in combination with the weight Wµ(x) creates a great
deal of inhomogeneity, (iii) orthogonal systems such as orthogonal polynomials on
Bd are much less friendly than the trigonometric system, and (iv) there are no
uniformly distributed points on Bd or on the d-dimensional unit sphere Sd.

Our approach to the problem at hand will heavily rely on orthogonal polynomials
in the weighted spaces L2(Bd,Wµ). The standard Hilbert space theory gives the
orthogonal decomposition

(1.1) L2(Bd,Wµ) =
∞∑
n=0

⊕
Vdn, Vdn ⊂ Πd

n,
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where Vdn is the subspace of all polynomials of degree n which are orthogonal to
lower degree polynomials in L2(Bd,Wµ). Note that dimVdn =

(
n+d−1
n

) ∼ nd−1, so
Vdn is a large subspace of L2. The orthogonal projector Projn : L2(Bd,Wµ) 7→ Vdn
can be written as

(Projn f)(x) = bµd

∫

Bd
f(y)Pn(Wµ;x, y)Wµ(y)dy.

Here Pn(Wµ;x, y) is its kernel and bµd is the normalization constant of Wµ, namely,
(bµd )−1 :=

∫
Bd
Wµ(x)dx. It is crucial for our further development that the kernels

Pn(Wµ;x, y) have an explicit representation [15] in terms of Gegenbauer polynomi-
als (see (4.1)-(4.2) below). Now, (1.1) can be rewritten in the form

f =
∞∑
n=0

Projn f, f ∈ L2(Bd,Wµ).

Denote by Sn the orthogonal projector of L2(Bd,Wµ) onto
∑n
ν=0

⊕Vdν , i.e. Snf :=∑n
ν=0 Projn f . Evidently,

(1.2) (Snf)(x) = bµd

∫

Bd
f(y)Kn(Wµ;x, y)Wµ(y)dy

with kernel

(1.3) Kn(Wµ;x, y) :=
n∑
ν=0

Pν(Wµ;x, y).

Consider now the kernel

(1.4) Lµn(x, y) =
∞∑

j=0

â
( j
n

)
Pj(Wµ;x, y),

obtained by smoothing out the coefficients in the definition of the kernelKn(Wµ;x, y)
in (1.3) by sampling a smooth function â. One of our main results in this article
essentially states that if â ∈ C∞[0,∞) is compactly supported, then Lµn(x, y) has
almost exponential (faster than any polynomial) rate of decay away from the main
diagonal y = x in Bd×Bd. To state this result more precisely, let us introduce the
distance (see (4.6))

(1.5) d(x, y) := arccos
{
〈x, y〉+

√
1− |x|2

√
1− |y|2

}
on Bd

and set
Wµ(n;x) :=

(√
1− |x|2 + n−1

)2µ

, x ∈ Bd.
Then (see §4) for any k > 0 there exists a constant ck > 0 depending only on k, d,
µ, and â such that

(1.6) |Lµn(x, y)| ≤ ck nd√Wµ(n;x)
√Wµ(n; y)(1 + nd(x, y))k

.

The localized kernels Lµn provide a powerful tool for constructing cubature for-
mulae on Bd with weights Wµ(x), µ ≥ 0, that are exact for all polynomials of
degree n, i.e. in Πd

n, and have positive coefficients of the right size. It is an im-
portant feature of our cubature formulae (see §5) that for all µ ≥ 0 the knots are
obtained by projecting onto Bd sets of “almost equally” distributed points on the
upper hemisphere Sd+ in Rd+1; the knots are in fact almost equally distributed on
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Bd with respect to the distance d(·, ·) defined in (1.5). Currently very few families
of cubature formulae with positive weights are known on Bd, among them is the
family of the product type formulae [12, 9]. However, the knots in these formulae
are not almost equally distributed.

Most importantly, the kernels Lµn enable us to construct localized polynomial
frames in L2(Bd,Wµ) which is our primary goal in this article. Our construction is
based on a semi-discrete Calderón type decomposition combined with our cubature
formulae on the ball from §5. If we denote by Ψ = {ψξ}ξ∈X our frame on Bd, where
X = ∪∞j=0Xj is an index set consisting of the localization points (poles) of the frame
elements, then we have the following representation of each f ∈ L2(Bd,Wµ):

f =
∑

ξ∈X
〈f, ψξ〉ψξ and ‖f‖L2(Bd,Wµ) =

(∑

ξ∈X
|〈f, ψξ〉|2

)1/2

.

The above clearly indicates that Ψ is a tight frame for L2(Bd,Wµ). The most
important feature of the frame elements ψξ is their almost exponential localization:
For ξ ∈ Xj (the jth level in X )

(1.7) |ψξ(x)| ≤ ck 2jd/2√Wµ(2j ;x)(1 + 2jd(x, y))k
, ∀k > 0.

Here the presence of the factor
√Wµ(2j ;x) is critical; it reflects the expected

influence of the boundary of Bd and the weight Wµ(x) on the localization of the
frame elements. Notice that the distance d(·, ·) is also affected by the boundary
of Bd. This localization of the ψξ’s is the reason for calling them needlets. The
superb localization of the needlets along with their semi-orthogonal structure and
increasing (with the levels) number of vanishing moments enables one to utilize
them for decomposition of spaces of functions or distributions on Bd other than
L2(Bd,Wµ). We will report on results of this nature in a follow-up paper.

These ideas were first used in [10] for the construction of frames on the unit sphere
Sd in Rd+1. Further, this scheme has been utilized in [11] for the development of
frames on [−1, 1] with Jacobi weights.

This article is organized as follows. In §2 we outline the general principles which
guide us in constructing localized kernels and frames on domains other than Rd. In
§3 we present some results on localized polynomial kernels on [−1, 1] with Jacobi
weights. In §4 we prove our main results on localized polynomial kernels on Bd with
weights Wµ(x), µ ≥ 0. In §5 we construct cubature formulae on Bd with weights
Wµ(x). In §6 we construct our needlet system and give some of its properties.
Section 7 is an appendix, where we give the proofs of some results from the previous
sections.

Throughout this paper positive constants are denoted by c, c1, . . . and they may
vary at every occurrence. As usual the constants may depend on some parameters,
which are indicated explicitly in some important cases. The notation A ∼ B means
c1A ≤ B ≤ c2A.
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2. General principles for constructing localized kernels and frames

Let (E, µ) is a measure space with E a metric space and suppose that there is
an orthogonal decomposition of L2(E,µ):

(2.1) L2(E,µ) =
∞∑
n=0

⊕
Vn,

where Vn is a subspace of dimension dimVn ∼ nγ , γ > 0. Let Pn be the kernel of
the orthogonal projector Projn : L2(E, µ)→ Vn, i.e.

(Projn f)(x) =
∫

E

Pn(x, y)f(y)dµ, f ∈ L2(E, µ).

Notice that Pn can be written in the form Pn(x, y) =
∑dimVn
j=1 pj(x)pj(y), where

{pj} is an orthonormal basis in Vn. Then Kn :=
∑n
j=0 Pν is the kernel of the or-

thogonal projector onto
∑n
ν=0

⊕Vν . In most cases of interest the kernel Kn(x, y)
has poor localization, examples include the trigonometric system, orthogonal poly-
nomials in one or several variables on various domains.

The localization conjecture. Our general conjecture is that for all “natural”
orthogonal systems, if the coefficients of the kernel Kn are smoothed out as in (1.4)
by sampling a C∞ function, then the resulting kernel has “excellent” localization
around the main diagonal y = x in E×E. To be more specific, suppose â ∈ C∞(R),
â is even, and â is compactly supported or â ∈ S (the Schwartz class of rapidly
decreasing C∞ functions on R). Define

(2.2) Ln(x, y) :=
∞∑

j=0

â
( j
n

)
Pj(x, y).

Then we conjecture that for all ”natural” orthogonal systems, the kernel Ln(x, y)
decays away from the main diagonal y = x at nearly exponential (faster than any
polynomial) rate with respect to the distance in E.

In support of our localization conjecture we begin with the well-known case of
the trigonometric system. It is a fundamental fact in Harmonic Analysis that the
Fourier transform (or inverse Fourier transform) of every function f in the Schwartz
space S = S(Rd) of infinitely differentiable and rapidly decreasing functions belongs
to the same space. This can be viewed as a continuous version of the general
localization principle conjectured above.

A consequence of this is the well known fact that any trigonometric polynomial
Ln(t) :=

∑n
ν=−n aνe

iνt with coefficients {aν} coming from sampling of a compactly
supported C∞ function has faster than any polynomial rate of decay away from
zero, which confirms the localization principle in this case. To make this more
precise, let

Ln(t) :=
∑

ν∈Z
â
(ν
n

)
eiνt,

where â is compactly supported and â ∈ C∞(R). Then Ln is a trigonometric
polynomial of degree cn.
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Proposition 2.1. For any k > 0 and r ≥ 0 there exists a constant ck > 0 depending
on k, r, and â such that

(2.3) |L(r)
n (t)| ≤ ck nr+1

(1 + n|t|)k , t ∈ [−π, π].

Here the dependence of ck on â is of the form ck = c(k, r) max0≤ν≤k ‖â(ν)‖L1 .

This estimate will serve as a prototype for our further localization results. Since
we do not have a convenient reference for this proposition, we give its simple proof
in the appendix.

For our purposes in this article we restrict ourselves to “smoothing functions” â
satisfying:

Definition 2.2. A function â is said to be admissible if â ∈ C∞[0,∞), â(t) ≥ 0,
and â satisfies one of the following two conditions:

(a) supp â ⊂ [0, 2], â(t) = 1 on [0, 1], and 0 ≤ â(t) ≤ 1 on [1, 2]; or
(b) supp â ⊂ [1/2, 2].

There are two important applications of the localized kernels Ln(x, y) defined
in (2.2):

(i) If â is admissible of type (a), then the operator

(Lnf)(x) :=
∫

E

Ln(x, y)f(y)dµ(y)

apparently satisfies: Lnf = f for all f ∈ ∑n
ν=0

⊕Vν and Lnf ∈
∑2n
ν=0

⊕Vν .
These along with the superb localization of Ln (to be established) makes Ln a useful
tool. We will see this operator at work in the construction of cubature formulae on
the ball in §5.

(ii) Kernels Ln(x, y) with â admissible of type (b) are a valuable tool for con-
structing localized frames. Let, in addition, â satisfy the conditions: â(t) ≥ 0
and

(2.4) â2(t) + â2(2t) = 1, t ∈ [1/2, 1].

Then

(2.5)
∞∑
ν=0

â2(2−νt) = 1, t ∈ [1,∞).

It is easy to construct such functions (see §6). Define

(2.6) L0(x, y) := P0(x, y) and Lj(x, y) :=
∞∑
ν=0

â
( ν

2j−1

)
Pν(x, y), j = 1, 2, . . . ,

and denote briefly

(Lj ∗ f)(x) :=
∫

E

Lj(x, y)f(y)dµ(y),

which can be viewed as a nonstandard convolution that is apparently associative
but not commutative. One easily obtains the following semi-discrete Calderón type
decomposition (see the appendix)

(2.7) f =
∞∑

j=0

Lj ∗ Lj ∗ f for f ∈ L2(E, µ).
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To get a completely discretized decomposition of L2(E, µ) one can use quadrature
(cubature) formulae, if available. Assume that there is a quadrature formula

(2.8)
∫

E

fdµ ∼
∑

ξ∈Xj
λξf(ξ)

with Xj ⊂ E and λξ > 0, which is exact for all functions f of the form f = gh with

g, h ∈∑22j

ν=0

⊕Vν .
After these preparations we now define the frame elements by

(2.9) ψξ(x) :=
√
λξ · Lj(x, ξ) for ξ ∈ Xj , j = 0, 1, . . . .

The ψ’s inherit the localization of the kernels Lj , which is almost exponential in
all cases of interest. This is the reason for calling them needlets.

We write X := ∪∞j=0Xj , where any two points ξ, ω ∈ X (from levels Xj 6= Xk)
are considered to be different elements of X even if they coincide. We use X as an
index set in the definition of the needlet system

Ψ := {ψξ}ξ∈X .
Our next statement shows that Ψ is a tight frame in L2(E,µ).

Proposition 2.3. If f ∈ L2(E, µ), then

(2.10) f =
∞∑

j=0

∑

ξ∈Xj
〈f, ψξ〉ψξ =

∑

ξ∈X
〈f, ψξ〉ψξ in L2(E, µ)

and

(2.11) ‖f‖L2(E,µ) =
(∑

ξ∈X
|〈f, ψξ〉|2

)1/2

.

We give the proof of this proposition in the appendix.

3. Localized polynomial kernels on [−1, 1]

The Jacobi polynomials {P (α,β)
n }∞n=0 constitute an orthogonal basis for the weighted

space L2([−1, 1], wα,β) with wα,β(t) := (1 − t)α(1 + t)β , α, β > −1. We let cα,β
denote the normalization constant of wα,β , i.e. c−1

α,β :=
∫ 1

−1
wα,β(t)dt. It is well

known that [13]

cα,β

∫ 1

−1

P (α,β)
n (t)P (α,β)

m (t)wα,β(t)dt = δn,mh
(α,β)
n ,

where

h(α,β)
n =

Γ(α+ β + 2)
Γ(α+ 1)Γ(β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1)
(2n+ α+ β + 1)Γ(n+ 1)Γ(n+ α+ β + 1)

.

For f ∈ L2([−1, 1], wα,β) the Fourier expansion of f in Jacobi polynomials is

f(t) =
∞∑
n=0

dn(f)(h(α,β)
n )−1P (α,β)

n (t), dn(f) = cα,β

∫ 1

−1

f(t)P (α,β)
n (t)wα,β(t)dt.

The nth partial sum of this expansion can be written as

(Snf)(x) =
n∑

j=0

dj(f)(h(α,β)
j )−1P

(α,β)
j (x) = cα,β

∫ 1

−1

f(t)K(α,β)
n (x, t)wα,β(t)dt,
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where the kernel is given by

(3.1) K(α,β)
n (x, t) =

n∑

j=0

(
h

(α,β)
j

)−1

P
(α,β)
j (x)P (α,β)

j (y).

The grand question here is: What is the localization around the main diagonal
y = x in [−1, 1]2 of a polynomial kernel of the form

(3.2) Lα,βn (x, y) =
∞∑

j=0

â
( j
n

)(
h

(α,β)
j

)−1

P
(α,β)
j (x)P (α,β)

j (y),

where â ∈ C∞?
To address this question, denote

wα,β(n;x) := (1− x+ n−2)α+1/2(1 + x+ n−2)β+1/2.

Theorem 3.1. [11] Let α, β > −1/2 and let â be admissible according to Defini-
tion 2.2. Then for every k > 0 there is a constant ck > 0 depending only on k, α,
β, and â such that for 0 ≤ θ, φ ≤ π

(3.3) |Lα,βn (cos θ, cosφ)| ≤ ck n√
wα,β(n; cos θ)

√
wα,β(n; cosφ)(1 + n|θ − φ|)k .

Here the dependence of ck on â is of the form ck = c(α, β, k) max0≤ν≤k ‖â(ν)‖L∞ .

For the proof of this theorem it is important to establish estimate (3.3) first in
the particular case when φ = 0 (the localization of Lα,βn (x, 1)). Set

(3.4) Lα,βn (x) := Lα,βn (x, 1) =
∞∑

j=0

â
( j
n

)(
h

(α,β)
j

)−1

P
(α,β)
j (1)P (α,β)

j (x).

Since [13, (4.1.1), p. 58]

P (α,β)
n (1) =

(
n+ α

n

)
=

Γ(n+ α+ 1)
Γ(α+ 1)Γ(n+ 1)

,

it is easy to verify that

(3.5) Lα,βn (x) = c�
∞∑

j=0

â
( j
n

) (2j + α+ β + 1)Γ(j + α+ β + 1)
Γ(j + β + 1)

P
(α,β)
j (x),

where c� := Γ(β + 1)/Γ(α+ β + 2).
Now the key role is played by the following theorem, which will also be critical

for the proof of our main localization result (Theorem 4.2).

Theorem 3.2. [3, 11] Let â be admissible and assume that α ≥ β > −1/2. Then
for every k > 0 and r ≥ 0 there exists a constant ck > 0 depending only on k, r, α,
β, and â such that

(3.6)
∣∣∣ d

r

dxr
Lα,βn (cos θ)

∣∣∣ ≤ ck n
2α+2r+2

(1 + nθ)k
, 0 ≤ θ ≤ π.

The dependence of ck on â is of the form ck = c(α, β, k, r) max0≤ν≤k ‖â(ν)‖L∞ .



8 PENCHO PETRUSHEV AND YUAN XU

This theorem is proved in [3] with â admissible of type (a) and in [11] with
â admissible of type (b). The proof in [11] rests on the localization properties of
trigonometric polynomials given in Proposition 2.1, while the proof in [3] is based on
a property of Jacobi polynomials; it can be carried out with â admissible of type (b)
as well. Estimate (3.6) was proved earlier in [10] in the case α = β = λ− 1/2 (with
λ a half integer) and utilized for the construction of frames on the n dimensional
sphere. For the reader’s convenience we give the proof of Theorem 3.2 (following
the idea from [3]) in the appendix.

Theorem 3.1 is established in [11]. Its proof rests on Theorem 3.2.

4. Localized polynomial kernels on the unit ball

It is known (see [15]) that the orthogonal projector Projn : L2(Bd,Wµ) 7→ Vdn
can be written as

(Projn f)(x) = bµd

∫

Bd
f(y)Pn(Wµ;x, y)Wµ(y)dy,

where if µ > 0 the kernel Pn(Wµ;x, y) has the following explicit representation:

Pn(Wµ;x, y) = b
µ− 1

2
1

λ+ n

λ
(4.1)

×
∫ 1

−1

Cλn

(
〈x, y〉+ u

√
1− |x|2

√
1− |y|2

)
(1− u2)µ−1du,

where 〈x, y〉 is the usual Euclidean inner product, Cλn is the nth degree Gegenbauer
polynomial, and

λ = µ+
d− 1

2
.

The case µ = 0 is a limit case and we have

Pn(W0;x, y) =
λ+ n

2λ

[
Cλn

(
〈x, y〉+

√
1− |x|2

√
1− |y|2

)
(4.2)

+Cλn
(
〈x, y〉 −

√
1− |x|2

√
1− |y|2

)]
.

For an admissible â (according to Definition 2.2) we define

Lµn(x, y) =
∞∑

j=0

â
( j
n

)
Pj(Wµ;x, y), x, y ∈ Bd.

The explicit representation (4.1) gives

(4.3) Lµn(x, y) = b
µ− 1

2
1

∫ 1

−1

Lλn(〈x, y〉+ u
√

1− |x|2
√

1− |y|2)(1− u2)µ−1du,

where Lλn is defined by

Lλn(x) =
∞∑

j=0

â
( j
n

)j + λ

λ
Cλj (x).

Since

Cλn(x) =
Γ(λ+ 1/2)

Γ(2λ)
Γ(n+ 2λ)

Γ(n+ λ+ 1/2)
P (λ−1/2,λ−1/2)
n (x),
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it readily follows from (3.5) that Lλ−1/2,λ−1/2
n (x) = Lλn(x). Then by Theorem 3.2

we get the following estimate: For all k, λ > 0 and r ≥ 0 there exists a constant
ck > 0 depending only on k, r, λ, and â, such that

(4.4)
∣∣∣ d

r

dxr
Lλn(cos θ)

∣∣∣ ≤ ck n
2λ+2r+1

(1 + nθ)k
, 0 ≤ θ ≤ π.

Distance on Bd. In order to show that Lµn is a well localized kernel and for
our further development, we need to introduce an appropriate distance in Bd that
takes into account the fact that Bd has a boundary. In [14] it is shown that the
orthogonal polynomials on the unit ball and those on the unit sphere are closely
related by the simple map

(4.5) x ∈ Bd 7→ x′ := (x,
√

1− |x|2) ∈ Sd,
which “lifts” the points from Bd to the upper hemisphere Sd+ in Rd+1, that is,
Sd+ := {x ∈ Sd : xd+1 ≥ 0}. This relation leads us to the following distance on Bd,
which will play a vital role in the following:

(4.6) d(x, y) := arccos
{
〈x, y〉+

√
1− |x|2

√
1− |y|2

}
.

In fact this is the geodesic distance between x′ := (x,
√

1− |x|2) and y′ := (y,
√

1− |y|2)
on Sd+ ⊂ Rd+1 and, consequently, it is a true distance on Bd. This distance has
been used to prove various polynomial inequalities, see the discussions in [2] and
the references therein.

The map (4.5) also leads to a close relation between the spaces Lp(Bd,W0) and
Lp(Sd, dω), where dω is the surface measure on Sd. This allows us to derive results
on Lp(Bd,W0) from those on Lp(Sd, dω), which are also easier to prove. For these
reasons we will prove our results only in the case µ > 0.

The following lemma provides an important relation between d(·, ·) and the Eu-
clidean norm | · | in Bd.

Lemma 4.1. For x, y ∈ Bd, we have

(4.7)
∣∣|x| − |y|∣∣ ≤ 1√

2
d(x, y)

(√
1− |x|2 +

√
1− |y|2

)

and hence

(4.8)
∣∣∣
√

1− |x|2 −
√

1− |y|2
∣∣∣ ≤
√

2 d(x, y).

Proof. Let 0 ≤ α, β ≤ π/2 be defined from |x| = cosα and |y| = cosβ. Using
spherical-polar coordinates x = |x|ξ and y = |y|ζ, where ξ, ζ ∈ Sd−1, we see that

d(x, y) = arccos (cosα cosβ〈ξ, ζ〉+ sinα sinβ) ≥ arccos(cos(α− β))

which yields d(x, y) ≥ |α − β|. On the other hand, since 0 ≤ α, β ≤ π/2, we have
cos α−β2 ≥ cos(π/4) =

√
2/2 and, consequently,

sinα+ sinβ = 2 sin
α+ β

2
cos

α− β
2
≥
√

2 sin
α+ β

2
.

Using the above we obtain
∣∣|x| − |y|

∣∣ = | cosα− cosβ| = 2 sin
|α− β|

2
sin

α+ β

2

≤ 1√
2
|α− β|(sinα+ sinβ) ≤ 1√

2
d(x, y)(

√
1− |x|2 +

√
1− |y|2).
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Thus (4.7) is established. Estimate (4.8) follows immediately from (4.7). �

Let us define

(4.9) Wµ(n;x) :=
(√

1− |x|2 + n−1
)2µ

, x ∈ Bd.

Our next theorem shows that the kernels Lµn are almost exponentially localized
around the main diagonal y = x in Bd ×Bd.
Theorem 4.2. Let â be admissible. Then for any k > 0 there exists a constant
ck > 0 depending only on k, d, µ, and â such that

(4.10) |Lµn(x, y)| ≤ ck nd√Wµ(n;x)
√Wµ(n; y)(1 + nd(x, y))k

, x, y ∈ Bd.

Remark 4.3. Theorem 4.2 as well as Theorems 3.1-3.2 can obviously be modified
for the case when â ∈ Ck (k sufficiently large) in place of â ∈ C∞.

We will derive Theorem 4.2 when µ > 0 from estimate (4.4) and the following
lemma, using representation (4.3) of Lµn. The proof in the case µ = 0 is easier and
will be omitted; it utilizes (4.2).

Let us denote briefly

(4.11) t(x, y;u) := 〈x, y〉+ u
√

1− |x|2
√

1− |y|2.
Lemma 4.4. Let γ > −1, k > 3γ + 4, and n ≥ 1. Then for x, y ∈ Bd

∫ 1

−1

(1− u2)γdu
(1 + n

√
1− t(x, y;u))k

(4.12)

≤ cn−2γ−2

(
√

1− |x|2 + n−1)γ+1(
√

1− |y|2 + n−1)γ+1(1 + nd(x, y))k−3γ−4
,

where c > 0 depends only on γ, k, and d.

Proof. Denote briefly t := t(x, y;u). Then we can write

1− t = 1− 〈x, y〉 −
√

1− |x|2
√

1− |y|2 + (1− u)
√

1− |x|2
√

1− |y|2,
which implies

1− t ≥ 1− 〈x, y〉 −
√

1− |x|2
√

1− |y|2(4.13)

= 1− cos d(x, y) = 2 sin2 d(x, y)
2

≥ 2
π2
d(x, y)2

and

1− t ≥ 2
π2
d(x, y)2 + (1− u)

√
1− |x|2

√
1− |y|2(4.14)

≥ (1− u)
√

1− |x|2
√

1− |y|2.
By (4.13), we have

∫ 1

−1

(1− u2)γdu
(1 + n

√
1− t)k ≤

c

(1 + nd(x, y))k
.(4.15)
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Inequality (4.12) will follow from this and the estimate:
∫ 1

−1

(1− u2)γdu
(1 + n

√
1− t)k(4.16)

≤ cn−2γ−2

(
√

1− |x|2)γ+1(
√

1− |y|2)γ+1(1 + nd(x, y))k−2γ−3
.

To establish this last estimate, we split the integral over [−1, 1] into two integrals:
one over [−1, 0] and the other over [0, 1]. For the integral over [−1, 0] we write the
factor (1+n

√
1− t)k as the product of (1+n

√
1− t)k−2γ−2 and (1+n

√
1− t)2γ+2.

Then we apply inequalities (4.13) and (4.14) to the first and the second terms,
respectively. This gives

∫ 0

−1

≤ c

(1 + nd(x, y))k−2γ−2

∫ 0

−1

(1− u2)γ

[n2
√

1− |x|2
√

1− |y|2(1− u)]γ+1
du

≤ cn−2γ−2

(
√

1− |x|2)γ+1(
√

1− |y|2)γ+1(1 + nd(x, y))k−2γ−2
.

We now estimate the integral over [0, 1]. Denote briefly A :=
√

1− |x|2
√

1− |y|2.
Using (4.14) and applying the substitution s = An2(1− u), we get

∫ 1

0

≤ c
∫ 1

0

(1− u2)γ

(1 + n
√
d(x, y)2 +A(1− u))k

du

≤ c

(An2)γ+1

∫ An2

0

sγ

(1 +
√
n2d(x, y)2 + s)k

ds

≤ cn−2γ−2

Aγ+1(1 + nd(x, y))k−2γ−3

∫ ∞
0

sγds

(1 +
√
n2d(x, y)2 + s)2γ+3

≤ cn−2γ−2

Aγ+1(1 + nd(x, y))k−2γ−3
.

Putting these estimates together gives (4.16).
To complete the proof of (4.12) we need the following simple inequality (see

inequality (2.21) in [11]):

(4.17) (a+ n−1)(b+ n−1) ≤ 3(ab+ n−2)(1 + n|a− b|), a, b ≥ 0, n ≥ 1.

Inequalities (4.8) and (4.17) yield

(
√

1− |x|2 + n−1)(
√

1− |y|2 + n−1)

≤ 3(
√

1− |x|2
√

1− |y|2 + n−2)(1 + nd(x, y)).

This along with (4.15) and (4.16) implies (4.12). �

Proof of Theorem 4.2. For t = cos θ, 0 ≤ θ ≤ π, we have θ/2 ∼ sin θ/2 ∼ √1− t.
Therefore, estimate (4.4) with r = 0 is equivalent to

∣∣Lλn(t)
∣∣ ≤ ck n2λ+1

(1 + n
√

1− t)k , −1 ≤ t ≤ 1.

Now, (4.10) follows readily by Lemma 4.4. �

The estimate of |Lµn(x, y)| from Theorem 4.8 allows us to control its Lp-norm.
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Proposition 4.5. For 0 < p ≤ ∞, we have

(4.18)
(∫

Bd
|Lµn(x, y)|pWµ(y)dy

)1/p

≤ c
( nd

Wµ(n;x)

)1−1/p

, x ∈ Bd.

Proof. If 0 < p <∞ this proposition is an immediate consequence of Theorem 4.2
and Lemma 4.6 below, taking into account that estimate (4.10) holds for an arbi-
trary k. In the case p = ∞ estimate (4.18) follows by (4.10) and (4.8) (see also
estimate (4.22) below). �

Lemma 4.6. If σ > d/p+ 2µ|1/p− 1/2|, µ ≥ 0, 0 < p <∞, then

(4.19) Jp :=
∫

Bd

Wµ(y)dy
Wµ(n; y)p/2(1 + nd(x, y))σp

≤ c n−dWµ(n;x)1−p/2,

where c > 0 depends only on p, µ, and d.

Proof. Let µ > 0 (the case µ = 0 is easier). Three cases present themselves here.
Case 1. p = 2. Using spherical-polar coordinates and the fact that

∫

Sd−1
g(〈x, y〉)dω(y) = σd−2

∫ 1

−1

g(|x|t)(1− t2)(d−3)/2dt,

where σd−2 is the surface area of Sd−2, it follows that

J2 = c

∫ 1

0

rd−1(1− r2)µ−1/2

(n−1 +
√

1− r2)2µ

∫ 1

−1

(1− s2)(d−3)/2ds

(1 + n arccos(rs|x|+
√

1− |x|2√1− r2 ))2σ
dr.

Write briefly F (r, t) := 1/[1 + n arccos(t|x|+
√

1− |x|2√1− r2)]2σ. Then

(4.20) J2 = c

∫ 1

0

rd−1(1− r2)µ−1/2

(n−1 +
√

1− r2)2µ

∫ 1

−1

F (r, rs)(1− s2)(d−3)/2dsdr.

Next, we apply the substitution u = rs, then switch the order of integration, and
finally substitute t =

√
1− r2. This gives

J2 = c

∫ 1

0

r(1− r2)µ−1/2

(n−1 +
√

1− r2)2µ

∫ r

−r
F (r, u)(r2 − u2)(d−3)/2dudr

= c

∫ 1

−1

∫ 1

|u|
F (r, u)

r(1− r2)µ−1/2

(n−1 +
√

1− r2)2µ
(r2 − u2)(d−3)/2drdu

= c

∫ 1

−1

∫ √1−u2

0

F (
√

1− t2, u)
t2µ(1− t2 − u2)(d−3)/2

(n−1 + t)2µ
dtdu.

Using the trivial inequality t/(t+ n−1) ≤ 1 we conclude that

J2 ≤ c
∫ 1

−1

∫ √1−u2

0

F (
√

1− t2, u)(1− t2 − u2)(d−3)/2dudt.

Since θ ∼ sin θ/2 ∼ √1− cos θ for 0 ≤ θ ≤ π, we have

F (
√

1− t2, u) ∼
(

1 + n

√
1− u|x| − t

√
1− |x|2

)−2σ

, 0 ≤ t ≤
√

1− u2.
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But 1− u|x| − t
√

1− |x|2 ≥ 0 if −√1− u2 ≤ t ≤ 0. Therefore, we can enlarge the
domain of integration to obtain

J2 ≤ c
∫

B2

(1− t2 − u2)(d−3)/2dudt(
1 + n

√
1− u|x| − t

√
1− |x|2

)2σ .

Here B2 is the unit disk in R2. We now change the variables (u, t) 7→ (a, b), where

a =
√

1− |x|2 t+ |x|u, b = −|x|t+
√

1− |x|2 u.
It is easy to see that this is an orthogonal transformation so that da db = du dt.
Hence

J2 ≤ c
∫

B2

(1− a2 − b2)(d−3)/2

(1 + n
√

1− a)2σ
dadb

= c

∫ 1

−1

1
1 + n

√
1− a)2σ

∫ √1−a2

−√1−a2
(1− a2 − b2)(d−3)/2dbda

≤ c
∫ 1

−1

(1− a2)(d−2)/2

(1 + n
√

1− a)2σ
da

≤ c

n2σ
+ c

∫ 1

0

(1− a)(d−2)/2

(1 + n
√

1− a)2σ
da

≤ c

n2σ
+

c

nd

∫ n

0

sd−1

(1 + s)2σ
ds ≤ c

nd
,

since 2σ > d. Thus (4.19) is established when p = 2.
To prove (4.19) when p 6= 2 we will need the inequalities

√
1− |x|2 + n−1

√
2(1 + nd(x, y))

≤
√

1− |y|2 + n−1

≤
√

2(
√

1− |x|2 + n−1)(1 + nd(x, y)), x, y ∈ Bd,(4.21)

which follow readily from (4.8). From this and the definition of Wµ(x;n) in (4.9)
we get

(4.22) cWµ(n;x)(1 + nd(x, y))−2µ ≤ Wµ(n; y) ≤ cWµ(n;x)(1 + nd(x, y))2µ.

Case 2. 0 < p < 2. Using (4.22) we obtain

Wµ(n; y)p/2 =Wµ(n; y)Wµ(n; y)p/2−1 ≥ cWµ(n; y)
Wµ(n;x)1−p/2(1 + nd(x, y))2µ(1−p/2)

and hence∫

Bd

Wµ(y)dy
Wµ(n; y)p/2(1 + nd(x, y))σp

≤ cWµ(n;x)1−p/2
∫

Bd

Wµ(y)dy
Wµ(n; y)(1 + nd(x, y))τ

,

where τ := (σ− 2µ(1/p− 1/2))p. By the hypothesis of the lemma τ > d. Then the
above inequality and (4.19) with p = 2 imply (4.19) in this case.

Case 3. 2 < p <∞. Similarly as above by (4.22)

Wµ(n; y)p/2 =Wµ(n; y)Wµ(n; y)p/2−1 ≥ cWµ(n; y)Wµ(n;x)p/2−1

(1 + nd(x, y))2µ(p/2−1)
.
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Consequently,
∫

Bd

Wµ(y)dy
Wµ(n; y)p/2(1 + nd(x, y))σp

≤ cWµ(n;x)1−p/2
∫

Bd

Wµ(y)dy
Wµ(n; y)(1 + nd(x, y))τ

,

where this time τ := (σ − 2µ(1/2− 1/p))p. Since τ > d, the above inequality and
(4.19) with p = 2 imply (4.19) in the case 2 < p <∞. �

It will be vital for our further development that Lµn(x, y) is a Lip 1 function in
x (or y) with respect to the distance d(·, ·). Throughout the rest of the paper, we
denote by Bξ(r) the closed ball centered at ξ of radius r > 0 with respect to the
distance d(·, ·) on Bd, i.e.

Bξ(r) := {x ∈ Bd : d(x, ξ) ≤ r}, ξ ∈ Bd, r > 0.

Proposition 4.7. Let ξ, y ∈ Bd. Then for all x, z ∈ Bξ(c∗n−1) (c∗ > 0, n ≥ 1)
and an arbitrary k, we have

(4.23) |Lµn(x, y)− Lµn(ξ, y)| ≤ ck nd+1d(x, ξ)√Wµ(n; y)
√Wµ(n; z)(1 + nd(y, z))k

,

where ck depends only on k, µ, d, â, and c∗.

Proof. Let µ > 0. We will use the notation t(x, y;u) := 〈x, y〉+u
√

1− |x|2
√

1− |y|2,
introduced in (4.11). By (4.3) it follows that

|Lµn(x, y)− Lµn(ξ, y)|

≤ c
∫ 1

−1

∣∣∣Lλn(t(x, y;u))− Lλn(t(ξ, y;u))
∣∣∣(1− u2)µ−1du(4.24)

≤ c
∫ 1

−1

∥∥∥∂Lλn(·)
∥∥∥
L∞(Iu)

|t(x, y;u)− t(ξ, y;u)|(1− u2)µ−1du,

where ∂f = f ′ and Iu is the interval with end points t(x, y;u) and t(ξ, y;u).
As in the proof of Theorem 4.2, by estimate (4.4) with r = 1 it follows that

∥∥∥∂Lλn(·)
∥∥∥
L∞(Iu)

≤ ckn2λ+3 max
τ∈Iu

(
1 + n

√
1− τ)−k

≤ ckn2λ+3

((
1 + n

√
1− t(x, y;u)

)−k
+
(

1 + n
√

1− t(ξ, y;u)
)−k)

,(4.25)

using the fact that (1 + n
√

1− τ)−k is an increasing function of τ .
By the definition of t(x, y;u) it follows that (recall x′ := (x,

√
1− |x|2)),

|t(x, y;u)− t(ξ, y;u)|
≤ |〈x′, y′〉 − 〈ξ′, y′〉|+ |1− u|

√
1− |y|2

∣∣∣
√

1− |x|2 −
√

1− |ξ|2
∣∣∣

≤ | cos d(x, y)− cos d(ξ, y)|+
√

2 |1− u|
√

1− |y|2d(x, ξ),
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where we used inequality (4.8) from Lemma 4.1. Denote briefly α := d(x, y) and
β := d(ξ, y). Then

| cos d(x, y)− cos d(ξ, y)| = 2 sin
|α− β|

2
sin

α+ β

2
≤ 1

2
|α− β|(α+ β)

≤ 1
2
|d(x, y)− d(ξ, y)|(d(x, y) + d(ξ, y))

≤ 1
2
d(x, ξ)(d(x, y) + d(ξ, y))

≤ d(x, ξ)(d(y, z) + c∗n−1)

for z ∈ Bξ(c∗n−1). Hence

|t(x, y;u)− t(ξ, y;u)| ≤ d(x, ξ)(d(y, z) + c∗n−1) +
√

2 |1− u|
√

1− |y|2d(x, ξ).

We use this and (4.25) in (4.24) to obtain

|Lµn(x, y)− Lµn(ξ, y)| ≤ cn2λ+3d(x, ξ)(d(y, z) + c∗n−1)

×
(∫ 1

−1

(1− u2)µ−1du

(1 + n
√

1− t(x, y;u)k
+
∫ 1

−1

(1− u2)µ−1du

(1 + n
√

1− t(ξ, y;u)k

)

+ cn2λ+3
√

1− |y|2d(x, ξ)

×
(∫ 1

−1

(1− u)(1− u2)µ−1du

(1 + n
√

1− t(x, y;u)k
+
∫ 1

−1

(1− u)(1− u2)µ−1du

(1 + n
√

1− t(ξ, y;u)k

)

=: A1 +A2 +A3 +A4.

By Lemma 4.4 with γ = µ− 1, we have

A1 ≤ cn2λ+3d(x, ξ)(d(y, z) + c∗n−1)
n−2µ

√Wµ(n;x)
√Wµ(n; y)(1 + nd(x, y))σ

with σ := k − 3µ − 1. Note that for y ∈ Bd and all z ∈ Bξ(c∗n−1), we have
1 + nd(z, y) ∼ 1 + nd(ξ, y) and

√
1− |z|2 + c∗n−1 ∼

√
1− |ξ|2 + n−1, using (4.8).

Consequently,

A1 ≤ cnd+1d(x, ξ)√Wµ(n;x)
√Wµ(n; z)(1 + nd(y, z))σ−1

.(4.26)

We similarly obtain the same bound for A2.
To estimate A3 we employ Lemma 4.4 with γ = µ and obtain

A3 ≤ cn2λ+3
√

1− |y|2d(x, ξ)

× n−2µ−2

(
√

1− |x|2 + n−1)µ+1(
√

1− |y|2 + n−1)µ+1(1 + nd(x, y))σ
(4.27)

with σ := k − 3µ − 4. By cancelling appropriate terms we conclude that (4.26)
holds for A3 as well. Exactly in the same way one can see that A4 also satisfies
(4.27) and hence (4.26). The proof of the proposition is complete. �

Operators. We next use the localized polynomials Lµn as kernels of linear operators
defined by

(4.28) (Lµnf)(x) := bµd

∫

Bd
f(y)Lµn(x, y)Wµ(y)dy, µ ≥ 0.
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Let EBn (f)µ,p denote the best approximation to f ∈ Lpµ, where Lpµ := Lp(Bd,Wµ),
from the space Πd

n of all polynomials of degree at most n, that is,

EBn (f)µ,p := inf
q∈Πdn

‖f − q‖Lpµ .

Theorem 4.8. Let â be admissible of type (a). Then the operator Lµn satisfies the
following properties:

(i) Lµnf is a polynomial of degree at most 2n;
(ii) Lµn p = p for any polynomial p of degree at most n;

(iii) for f ∈ Lpµ, 1 ≤ p ≤ ∞,

(4.29) ‖Lµn‖Lpµ→Lpµ ≤ c and ‖Lµnf − f‖Lpµ ≤ cEBn (f)µ,p.

Proof. The first two properties are obvious from the definition of Lµn. Since Lµn is
an integral operator, the operator norms ‖Lµn‖L1

µ→L1
µ

and ‖Lµn‖L∞→L∞ are both
bounded by

max
x∈Bd

∫

Bd
|Lµn(x, y)|Wµ(y)dy.

Estimate (4.18) from Proposition 4.5 with p = 1 shows that this quantity is bounded
by a constant independent of n. Then it follows by interpolation that Lµn is a
bounded operator from Lpµ into Lpµ for 1 ≤ p ≤ ∞, which yields (4.29). �

A result of the same nature holds true for more general weight functions of the
form h2

κ(x)(1 − |x|2)µ−1/2, where hκ(x) is some function invariant under a finite
reflection group, see [16].

5. Cubature formula on Bd

Cubature formulae on Bd with weights Wµ(x), µ ≥ 0, which are exact for all
polynomials of degree n are valuable from many prospectives. Those with positive
coefficients are preferred for numerical computation and are called positive cubature
formulae. In the literature, only a handful of positive cubature formulae are known.
For our purpose of constructing polynomial frames on Bd (see §6)) we will need
positive cubature whose knots are almost equally distributed with respect to the
distance d(·, ·) introduced in (4.6). To the best of our knowledge there are no such
cubature formulae available up to now. There is a close relation between cubature
formulae on the unit ball and those on the unit sphere Sd [14].

One of the difficulties in constructing cubature formulae on Bd is the lack of
uniformly distributed points on Bd. We shall use as a substitute sets of “almost
equally distributed points” with respect to the distance d(·, ·) in Bd which we
describe in the following.

Lemma 5.1. For any 0 < ε ≤ π there exists a partition Rε of Bd consisting of
projections of spherical simplices and a set Xε ⊂ Bd (consisting of their “centers”)
with the properties:

(i) Bd =
⋃
R∈Rε R and the sets in Rε do not overlap (R◦1∩R◦2 = ∅ if R1 6= R2).

(ii) For each R ∈ Rε there is a unique ξ ∈ Xε such that Bξ(c∗ε) ⊂ R ⊂ Bξ(ε).
(iii) #Xε = #Rε ≤ c∗∗ε−d.

Here c∗ and c∗∗ are constants depending only on d.
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Proof. As we already mentioned the distance d(x, y) (x, y ∈ Bd) is the geodesic
distance between x′, y′ ∈ Sd+. So, we need to subdivide properly Sd+. We first
divide Sd+ into 2d spherical simplices analogous to the intersections of S3 with the
octants in R3. Let O1 be the spherical simplex on which all coordinates of ξ ∈ O1

are nonnegative and let

T1 :=
{ d+1∑

j=1

tjej : tj ≥ 0,
d+1∑

j=1

tj = 1
}
,

where {ej} are the standard unit vectors in Rd+1. If v := (1, . . . , 1), then the map
x(ξ) := ξ

〈ξ,v〉 gives an one-to-one correspondence between O1 and T1. It is readily
seen that for ξ, ζ ∈ O1

(5.1)
1

2
√
d
d(ξ, ζ) ≤ |x(ξ)− x(ζ)| ≤ 2

√
d d(ξ, ζ).

Here | · | denotes the Euclidean norm in Rd+1 and d(·, ·) is the geodesic distance on
Sd ⊂ Rd+1.

We set M := d2
√
dε−1e and divide the equilateral simplex T1 into Md equal

equilateral subsimplices of side length L =
√

2/M . We denote by R̃1
ε the set of

all spherical simplices obtained by applying the inverse map x−1 to the simplices
defined above. We similarly define the set X̃ 1

ε of the “centers” of all spherical sim-
plices in R̃1

ε by applying the inverse map x−1 to the midpoints of the corresponding
Euclidean simplices. After these preparations, we defineR1

ε as the set of projections
onto Bd of all spherical simplices from R̃1

ε and we similarly define X 1
ε .

It is straightforward to show that an equilateral Euclidean simplex with each
side of length L contains the ball of radius L/

√
2d(d+ 1) centered at its midpoint

and is contained in a ball of radius < L/
√

2 with the same center. Then (5.1) yields
that the corresponding spherical simplex contains the spherical cap centered at its
center and of radius L/(2d

√
2(d+ 1)) and is contained in a spherical cap with the

same center and radius <
√

2dL ≤ 2
√
d/M ≤ ε. This establishes property (iii) of

Lemma 5.1 for the spherical simplices in R1
ε. Also, we have #X 1

ε = #R1
ε = Md ≤

(4
√
dε−1)d.

Repeating this procedure with all other initial simplices, we establish the exis-
tence of the desired partition Rε. �

Definition 5.2. A set Xε ⊂ Bd which, along with an associated partition Rε of
Bd, has the properties of the sets Xε and Rε of Lemma 5.1 will be called a set of
almost uniformly ε-distributed points on Bd.

The following lemma contains additional information about the partition Rε.
Lemma 5.3. Let Rε be as in Lemma 5.1. Then for any ξ ∈ Xε
(5.2) |Rξ| :=

∫

Rξ

1 dx ∼ εd
√

1− |ξ|2

and

(5.3) mµ(Rξ) :=
∫

Rξ

Wµ(x) dx ∼ εd(1− |ξ|2)µ = εd
Wµξ)
W0(ξ)

∼ εd(
√

1− |ξ|2 + ε)2µ.

Here the constants of equivalence depend only on d and µ.
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Proof. To prove (5.2) we use property (ii) in Lemma 5.1 which yields

(5.4) |Rξ| ∼ |Bξ(ε)| and d(ξ, ∂Bd) ≥ c∗ε.
We can assume without loss of generality that ξ lies on the positive x1-axis, i.e.
ξ = (ξ1, 0, . . . , 0) and 0 < ξ1 < 1. The boundary ∂Bξ(ε) of Bξ(ε) is given by the
equation x1ξ1 +

√
1− |x|2

√
1− ξ2

1 = cos ε. A simple manipulation of this identity
shows that ∂Bξ(ε) is the ellipsoid

(x1 − ξ1 cos ε)2

1− |ξ|2 + x2
2 + · · ·+ x2

d = sin2 ε.

From this it follows that |Bξ(ε)| ∼ εd
√

1− |ξ|2 (using that sin ε ∼ ε) and then (5.2)
follows.

We now turn to the proof of (5.3). There are two cases to be considered.
Case 1. µ ≥ 1/2. Denote R−ξ := Rξ ∩ {x ∈ Bd : |x| ≤ |ξ|}. It is easily seen that

|R−ξ | ∼ |Rξ| ∼ εd
√

1− |ξ|2. Then
∫

Rξ

Wµ(x) dx ≥
∫

R−ξ

Wµ(x) dx ≥Wµ(ξ)|R−ξ | ∼Wµ(ξ)εd
√

1− |ξ|2 = εd(1− |ξ|2)µ.

Since ξ is in the center of Rξ by construction, we have
√

1− |ξ|2 ≥ cε. Hence, for
x ∈ Rξ ⊂ Bξ(ε), inequality (4.8) shows that

Wµ(x) ≤ (
√

1− |ξ|2 + ε)2µ−1 ≤ cWµ(ξ),

which yields∫

Rξ

Wµ(x) dx ≤Wµ(ξ)|Rξ| ∼Wµ(ξ)εd
√

1− |ξ|2 = εd(1− |ξ|2)µ.

Case 2. 0 ≤ µ < 1/2. Denote R+
ξ := Rξ ∩ {x ∈ Bd : |x| ≥ |ξ|}. Proceeding as

above we again get (5.3).
Finally, using (5.4) we obtain

√
1− |ξ|2 ≥ sin c∗ε ≥ cε which implies the last

equivalence in (5.3). The proof of the lemma is complete. �
Theorem 5.4. There exists a constant c� > 0 (depending only on d) such that
for any n ≥ 1 and a set Xε of almost uniformly ε-distributed points on Bd with
ε := c�/n, there exist positive coefficients {λξ}ξ∈Xε such that the cubature formula∫

Bd
f(x) dx ∼

∑

ξ∈Xε
λξf(ξ)

is exact for all polynomials of degree ≤ n. In addition,

λξ ∼ n−dWµ(n; ξ) ∼ εd(1− |ξ|2)µ ∼ mµ(Bξ(ε))

with constants of equivalence depending only on µ and d. Here mµ(E) :=
∫
E
Wµ(x)dx.

For the proof we will utilize the idea used in [7, 8] (see also [10]) for the con-
struction of a cubature formula on Sd.

Assume that Xε (with associated partition Rε) is a set of almost uniformly ε-
distributed points on Bd (see Definition 5.2), where ε = δ/n with n ≥ 1 and δ will
be selected later on. We introduce the following weighted `1-norm for functions
defined on Bd:

(5.5) ‖f‖`1µ(Xε) :=
∑

ξ∈Xε
|f(ξ)|mµ(Rξ).
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Also, recall the notation ‖f‖L1
µ

= ‖f‖L1(Wµ,Bd) :=
∫
Bd
|f(x)|Wµ(x)dx.

We need a couple of additional results.

Lemma 5.5. If g ∈ Πd
n, then

(5.6)
∣∣∣‖g‖L1

µ
− ‖g‖`1µ(Xε)

∣∣∣ ≤
∑

ξ∈Xε

∫

Rξ

|g(x)− g(ξ)|Wµ(x)dx ≤ c?δ‖g‖L1
µ

and hence

(5.7) (1− c?δ)‖g‖L1
µ
≤ ‖g‖`1µ(Xε) ≤ (1 + c?δ)‖g‖L1

µ
,

where c? depends only on d and µ.

Proof. Let Lµn be the operator defined in (4.28). By Theorem 4.8 we have g = Lµng.
Using this and the fact that Rε is a partition of Bd (see Lemma 5.1), we obtain

∣∣∣‖g‖L1
µ
− ‖g‖`1µ(Xε)

∣∣∣ ≤
∑

ξ∈Xε

∫

Rξ

|g(x)− g(ξ)|Wµ(x)dx

≤
∑

ξ∈Xε

∫

Rξ

∫

Bd
|Lµn(x, y)− Lµn(ξ, y)||g(y)|Wµ(y)dyWµ(x)dx

≤ ‖g‖L1
µ

sup
y∈Bd

∑

ξ∈Xε

∫

Rξ

|Lµn(x, y)− Lµn(ξ, y)|Wµ(x)dx.

By Proposition 4.7 with z = x, it follows that
∫

Rξ

|Lµn(x, y)− Lµn(ξ, y)|Wµ(x)dx

≤
∫

Rξ

ckn
d+1d(x, ξ)Wµ(x)dx√Wµ(n;x)
√Wµ(n; y)(1 + nd(y, x))k

.

Choosing k sufficiently large (k > d + µ will do) we apply Lemma 4.6 with p = 1
and use that d(x, ξ) ≤ δ/n for x ∈ Rξ to obtain

sup
y∈Bd

∑

ξ∈Xε

∫

Rξ

|Lµn(x, y)− Lµn(ξ, y)|Wµ(x)dx

≤ cδnd
∫

Bd

Wµ(x)dx√Wµ(n;x)
√Wµ(n; y)(1 + nd(y, x))k

≤ cδ.

The lemma follows. �

The Farkas Lemma. A variant of the well known in Optimization Farkas lemma
will play an important role in the proof of Theorem 5.4.

Proposition 5.6. Let V be a finite dimensional real vector space and denote by
V ∗ its dual. Let u1, u2, . . . , un ∈ V ∗ and suppose u ∈ V ∗ has the property that
u(x) ≥ 0 for all x ∈ V such that uj(x) ≥ 0 for j = 1, 2, . . . , n. Then there exist
aj ≥ 0, j = 1, 2, . . . , n, such that

(5.8) u =
n∑

j=1

ajuj .
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For the proof of this proposition, see e.g. [1].

Proof of Theorem 5.4. First, we choose δ := 1
3c? , where c? is the constant from

Lemma 5.5. In applying Proposition 5.6, we take V := Πd
n and {uj} to be the set

of all point evaluation functionals {δξ}ξ∈Xε .
Let the linear functionals u and uγ be defined by

u(g) :=
∫

Bd
g(x)Wµ(x) dx and uγ(g) := u(g)− γ

∑

ξ∈Xε
g(ξ)mµ(Rξ).

Since c?δ = 1/3, the left-hand-side estimate in (5.7) yields

(5.9) ‖g‖L1
µ
≤ (3/2)‖g‖`1µ(Xε), g ∈ Πd

n.

Suppose g ∈ Πd
n and g(ξ) ≥ 0 for all ξ ∈ Xε. Then using (5.6) with c∗δ = 1/3 and

(5.9), we obtain
∣∣∣u(g)− ‖g‖`1µ(Xε)

∣∣∣ =
∑

ξ∈Xε

∫

Rξ

|g(x)− g(ξ)|Wµ(x) dx ≤ c?δ‖g‖L1
µ
≤ (1/2)‖g‖`1µ(Xε)

and hence u(g) ≥ (1/2)‖g‖`1µ(Xε). Choose γ := 1/3. Then since g(ξ) ≥ 0, ξ ∈ Xε,
we obtain

uγ(g) = u(g)− (1/3)‖g‖`1µ(Xε) ≥ (1/6)‖g‖`1µ(Xε) ≥ 0.

Applying Proposition 5.6 to uγ , there exist numbers aξ ≥ 0, ξ ∈ Xε, such that

uγ(g) =
∑

ξ∈Xε
aξg(ξ), g ∈ Πd

n,

and hence

u(g) =
∑

ξ∈Xε
(aξ + (1/3)mµ(Rξ))g(ξ) =:

∑

ξ∈Xε
λξg(ξ), g ∈ Πd

n.

Therefore, the linear functional
∑
ξ∈Xε λξg(ξ) provides a cubature formula exact

for all polynomials of degree n.
Clearly, λξ ≥ mµ(Rξ)/3 and the estimate λξ ≤ cmµ(Rξ) follows from Lemma 5.3

and Proposition 5.7 below. �
The last ingredient in bounding λξ from above is the following general result

that is of independent interest.

Proposition 5.7. If a positive cubature formula

(5.10)
∫

Bd
f(x)Wµ(x)dx ∼

∑

ξ∈Xε
λξf(ξ), λξ > 0, |ξ| < 1,

is exact for all polynomials of degree ≤ n, then

(5.11) λξ ≤ cn−dWµ(n; ξ) = cn−d(
√

1− |ξ|2 + n−1)2µ, ξ ∈ Xε,
where c > 0 depends only on µ and d.

Proof. Recall the kernel Km(Wµ;x, y) defined in (1.3). Evidently Km(Wµ; ξ, ξ) > 0
and ∫

Bd
[Km(Wµ;x, y)]2Wµ(y)dy = Km(Wµ;x, x).
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Let m = bn/2c. Then it follows that

λξ ≤
∑

η∈Xε
λη

[
Km(Wµ; ξ, η)
Km(Wµ; ξ, ξ)

]2

=
∫

Bd

[
Km(Wµ; ξ, x)
Km(Wµ; ξ, ξ)

]2

Wµ(x)dx =
1

Km(Wµ; ξ, ξ)
.

Hence, the stated result is a consequence of an upper bound for [Km(Wµ;x, x)]−1,
to be established in Proposition 5.9 below. �

In order to establish the needed upper bound for [Kn(Wµ;x, x)]−1 we now con-
struct a family of well localized polynomials.

Lemma 5.8. For any k,m ≥ 1 and ξ ∈ Bd there exist a polynomial Pξ ∈ Πd
2km

and a constant c∗ > 0 depending only on k and d such that Pξ(ξ) = 1 and for
0 ≤ γ ≤ k, x ∈ Bd,

(5.12) 0 ≤ Pξ(x) ≤ c∗

(1 +md(ξ, x))2k
≤ c(

√
1− |ξ|2 +m−1)γ

(
√

1− |x|2 +m−1)γ(1 +md(ξ, x))k
.

Proof. Let q(θ) :=
(

sin(mθ/2)
m sin(θ/2)

)2k

. Evidently, q is a trigonometric polynomial of
degree less than km, q(0) = 1, and

(5.13) 0 ≤ q(θ) ≤ c

(1 +m|θ|)2k
, |θ| ≤ π.

For 0 ≤ α ≤ π, we define the algebraic polynomial Qα(t) by

Qα(cos θ) :=
q(θ − α) + q(θ + α)

1 + q(2α)
.

It is readily seen that degQα < km, Qα(cosα) = 1, and

(5.14) 0 ≤ Qα(cos θ) ≤ c

(1 +m|θ − α|)2k
, 0 ≤ θ ≤ π.

Also, Qπ/2 is even and

(5.15) 0 ≤ Qπ/2(t) ≤ c

(1 +m| arccos t− π/2|)2k
≤ c

(1 +m|t|)2k
, |t| ≤ 1.

Without loss of generality we may assume that ξ = (ξ1, 0, . . . , 0) with 0 < ξ1 < 1.
We choose α ∈ (0, π/2) so that ξ1 = cosα. Then (5.14) gives

(5.16) 0 ≤ Qα(t) ≤ c

(1 +md1(ξ1, t))2k
, |t| ≤ 1,

where d1(ξ1, t) := arccos (ξ1t +
√

1− ξ2
1

√
1− t2) is the univariate version of the

distance d(·, ·) (see (4.6)). We define

Pξ(x) := Qα(x1)Qπ/2
(√

x2 + · · ·+ x2
d

)
.

Clearly, Pξ ∈ Πd
2km, Pξ(ξ) = 1, and by (5.15)-(5.16)

(5.17) 0 ≤ Pξ(x) ≤ c

[(1 +m|x∗|)(1 +md1(ξ1, x1))]2k
, x ∈ Bd,

where x∗ := (x2, . . . , xd) and |x∗| := (x2
2 + · · ·+ x2

d)
1/2.

It remains to show that Pξ obeys (5.12). To this end we fist show that

(5.18) d(ξ, x) ≤ 2(|x∗|+ d1(ξ1, x1)).
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Denote briefly x� := (x1, 0, . . . , 0). We have

d(ξ, x) ≤ d(ξ, x�) + d(x�, x) = d1(ξ1, x1) + d(x�, x).

Our next step is to prove the inequality

(5.19) d(x�, x) ≤ 2|x∗|.
Evidently,

d(x�, x) = arccos(〈x′�, x′〉) = arccos
(
x2

1 +
√

1− x2
1

√
1− x2

1 − x2
2 − · · · − x2

d

)
.

One easily verifies the inequality arccos t ≤ 2
√

1− t, 0 ≤ t ≤ 1, and hence (5.19)
will be established if we show that

(
1− x2

1 −
√

1− x2
1

√
1− x2

1 − |x∗|2
)1/2

≤ |x∗|.

Denote briefly a :=
√

1− x2
1 and b := |x∗|. Then the above inequality is equivalent

to a2 − a√a2 − b2 ≤ b2 or a
√
a2 − b2 − (a2 − b2) ≥ 0. But the latter inequality is

apparently valid since

a
√
a2 − b2 − (a2 − b2) =

b2
√
a2 − b2

a+
√
a2 − b2 ≥ 0.

Thus (5.19) is established and hence (5.18) holds. Combining (5.17) with (5.18)
gives

(5.20) 0 ≤ Pξ(x) ≤ c

(1 +md(ξ, x))2k
, x ∈ Bd,

which is the first estimate of Pξ(x) in (5.12).
To prove the second estimate in (5.12) we need the estimate

(5.21)
1

1 +md(ξ, x)
≤ c

√
1− |ξ|2 +m−1

√
1− |x|2 +m−1

, x ∈ Bd,

which apparently follows by inequality (4.8) in Lemma 4.1 (see also (4.21)).
Finally, applying (5.21) in (5.20) we get the second estimate in (5.12), which

completes the proof. �

The function Λn(x) := [Kn(Wµ;x, x)]−1 is the so called Christoffel function,
which has the following characteristic property [4, p. 109]:

(5.22) Λn(x) = min
P (x)=1,P∈Πdn

∫

Bd
[P (y)]2Wµ(y)dy, x ∈ Bd.

The localized polynomials in Lemma 5.8 give an upper bound for the Christoffel
function, used in the proof of Proposition 5.7.

Proposition 5.9. For any µ ≥ 0 and d > 1 there exists a constant c > 0 such that

(5.23) Λn(x) ≤ cn−dWµ(n;x), x ∈ Bd, n ≥ 1.

Proof. Write k := [max{d/2, µ}] + 1 and let n ≥ 4k (the case 1 ≤ n < 4k is trivial).
Set m := [n/2k]. By Lemma 5.8 there exists a polynomial Px(y) ∈ Πd

n such that
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Px(x) = 1 and (5.12) holds with γ = µ and ξ, x replaced by x, y. Then by (5.22),
(5.12), and Lemma 4.6 with p = 2, we infer

Λn(x) ≤
∫

Bd
[Px(y)]2Wµ(y) dy ≤ c

∫

Bd

Wµ(m;x)Wµ(y)dy
Wµ(m; y)(1 +md(x, y))2k

≤ cm−dWµ(m;x) ≤ cn−dWµ(n;x).

�
For the construction of our frames, we will need the following result which is an

immediate consequence of Lemma 5.1 and Theorem 5.4.

Corollary 5.10. There exists a sequence {Xj}∞j=0 of sets of almost uniformly εj-
distributed points on Bd (Xj := Xεj ) with εj := c�2−j−2 and there exist positive
coefficients {λξ}ξ∈Xj such that the cubature

(5.24)
∫

Bd
f(x)Wµ(x) dx ∼

∑

ξ∈Xj
λξf(ξ)

is exact for all polynomials of degree ≤ 2j+2. Moreover, λξ ∼ mµ(Bξ(2−j)) and
#Xj ∼ 2jd with constants of equivalence depending only on d and µ.

6. Tight polynomial frames (needlets) in L2(Bd,Wµ)

We will utilize the localized polynomials from Theorem 4.2 and the cubature
formula from Theorem 5.4 (see Corollary 5.10) to construct polynomial frames in
L2
µ := L2(Bd,Wµ).
Let â satisfy the conditions:

(6.1) â ∈ C∞[0,∞), â ≥ 0, supp â ⊂ [1/2, 2],

(6.2) â(t) > c > 0, if t ∈ [3/5, 5/3],

(6.3) â2(t) + â2(2t) = 1, if t ∈ [1/2, 1].

It is easy to construct functions that satisfy properties (6.1)-(6.3). Indeed, by a
standard construction there exists a function g satisfying the following properties:
g ∈ C∞(R), supp g = [−1, 1], g(t) > 0 on (−1, 1), g(−t) = g(t), g(0) = 1 and
|g(t)|2 + |g(t+1)|2 = 1 on [−1, 0]. Then â(t) := g(log2 t) has the desired properties.

Assuming that â satisfies conditions (6.1)-(6.3), we introduce a sequence of poly-
nomial “kernels” (see §4) by L0(x, y) := 1 and

Lj(x, y) :=
∞∑
ν=0

â
( ν

2j−1

)
Pν(Wµ;x, y), j = 1, 2, . . . .

We now define the needlets (frame elements) by

ψξ(x) :=
√
λξ · Lj(x, ξ) for ξ ∈ Xj , j = 0, 1, . . . ,

where Xj is the set of the knots and the λξ’s are the coefficients of the cubature
formula (5.24) from Corollary 5.10. We write X := ∪∞j=0Xj (see §2) and define the
needlet system Ψ by

Ψ := {ψξ}ξ∈X .
Denoting

(Lj ∗ f)(x) :=
∫

Bd
Lj(x, y)f(y)Wµ(y)dy,
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we get as in (2.7) the semi-discrete needlet decomposition of L2
µ:

f =
∞∑

j=0

Lj ∗ Lj ∗ f for f ∈ L2
µ.

Our next theorem shows that the needlet system Ψ is a tight frame in L2
µ.

Theorem 6.1. If f ∈ L2
µ, then

f =
∞∑

j=0

∑

ξ∈Xj
〈f, ψξ〉ψξ =

∑

ξ∈X
〈f, ψξ〉ψξ in L2

µ

and

‖f‖L2
µ

=
(∑

ξ∈X
|〈f, ψξ〉|2

)1/2

.

Proof. This theorem follows at once from Proposition 2.3 and Theorem 5.4 (see
Corollary 5.10). �

We finally show that each needlet ψξ has faster than any polynomial rate of
decay away from its center (pole) ξ with respect to the distance d(·, ·) on Bd, which
prompted us to coin their name. This property of the needlets is critical for using
them for decomposition of spaces other than L2

µ.

Theorem 6.2. For any k > 0 there exists a constant ck > 0 depending only on k,
µ, d, and â such that for ξ ∈ Xj, j = 0, 1, . . . ,

(6.4) |ψξ(x)| ≤ ck 2jd/2√Wµ(2j ;x)(1 + 2jd(x, ξ))k
, x ∈ Bd.

Proof. Estimates (6.4) follows readily from (4.10) (see Theorem 4.2), taking into
account that λξ ≤ c2−jdWµ(2j ; ξ) for ξ ∈ Xj . �
Remark 6.3. Estimate (6.4) and Lemma 4.6 with p = 2 yield ‖ψξ‖L2

µ
≤ c for all

ξ ∈ X , which shows that estimate (6.4) is sharp (in a sense).

7. Appendix

Proof of Proposition 2.1. We will derive estimate (2.3) from the well-known fact
that the Fourier transform of a compactly supported C∞ function (band-limited
function) belongs to the Schwartz space S and by using the Poisson summation
formula: ∑

µ∈Z
f(2πµ) = (2π)−1

∑

ν∈Z
f̂(ν), f̂(ξ) :=

∫

R

f(t)e−iξtdt,

which holds for sufficiently “nice” functions f . Let f̂(ξ) := â(ξ/n)eiξt. Then
f(y) = na (n(y + t)) and the Poisson summation formula gives

(7.1) Ln(t) :=
∑

ν∈Z
â
(ν
n

)
eiνt = 2πn

∑

µ∈Z
a (n(t+ 2πµ)) .

The function Ln(t) is a 2π-periodic trigonometric polynomial of degree cn with c
depending on the support of â. Note that

t`a(t) =
(−i)`

2π

∫

R

d`â(ξ)
dξ`

eiξtdξ,
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so |t|`|a(t)| ≤ ‖â(`)‖L1 . Using this for ` = 0 and ` = k, we get

(7.2) |a(t)| ≤ 2k
‖â(k)‖L1 + ‖â‖L1

(1 + |t|)k =
ck

(1 + |t|)k , t ∈ R.

Now, we use (7.1)-(7.2) to obtain

|Ln(t)| ≤
∑

µ∈Z

cn

(1 + n|t/π + 2µ|)k , t ∈ [−π, π].

Splitting up this sum, we get

|Ln(t)| ≤ cn

(1 + n|t|)k +
cn

(1 + n)k

∞∑
µ=1

µ−k ≤ cn

(1 + n|t|)k .

To obtain the stated bound for |L(r)
n (t)| one either differentiates both sides in

(7.1) and then proceeds similarly as above or uses appropriately the Bernstein
inequality for trigonometric polynomials. �
Proof of Theorem 3.2. We will need the following well known estimate for Jacobi
polynomials [13, (7.32.6), p. 167]: For α, β > −1/2 and n ≥ 1,

(7.3) |P (α,β)
n (cos θ)| ≤ c(α, β)

{
min{nα, n−1/2θ−α−1/2} if 0 ≤ θ ≤ π/2,

min{nβ , n−1/2(π − θ)−β−1/2} if π/2 ≤ θ ≤ π.

We first prove (3.6) for r = 0. We may assume that n > 2k and k ≥ 2, since
(3.6) is trivial when n ≤ 2k (ck may depend on k).

Case 1. 0 ≤ θ ≤ π/n. Since Γ(j + a)/Γ(j + 1) ∼ ja−1 and α ≥ β > −1/2, it
follows by (7.3) that

|Lα,βn (cos θ)| ≤ c
2n∑

j=0

j2α+1 ≤ cn2α+2,

which yields (3.6) for 0 ≤ θ ≤ π/n.
Case 2. π/n ≤ θ ≤ π. A key role here will be played by the identity [13, (4.5.3),

p.71]:
n∑
ν=0

(2ν + α+ k + β + 1)Γ(ν + α+ k + β + 1)
Γ(ν + β + 1)

P (α+k,β)
ν (x)(7.4)

=
Γ(n+ α+ k + 1 + β + 1)

Γ(n+ β + 1)
P (α+k+1,β)
n (x).

Applying summation by parts to the sum in (3.5) (using (7.4) with k = 0), we get

(7.5) Lα,βn (x) = c�
∞∑

j=0

[
â
( j
n

)
− â
(j + 1

n

)]Γ(j + α+ 1 + β + 1)
Γ(j + β + 1)

P
(α+1,β)
j (x).

We now define the sequence of functions (Ak(t))∞k=0 by

A0(t) := (2t+ α+ β + 1)â
( t
n

)

and inductively

(7.6) Ak+1(t) :=
Ak(t)

2t+ α+ k + β + 1
− Ak(t+ 1)

2t+ α+ k + β + 3
, k ≥ 0.
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It is readily seen that

(7.7) A1(t) := â
( t
n

)
− â
( t+ 1

n

)

and hence suppAk ⊂ [n− k, 2n] ⊂ [n/2, 2n], 1 ≤ k ≤ n/2.
Applying summation by parts k times starting from (3.5) (using every time

(7.4)), we arrive at the identity:

(7.8) Lα,βn (x) = c�
∞∑

j=0

Ak(j)
Γ(j + α+ k + β + 1)

Γ(j + β + 1)
P

(α+k,β)
j (x).

By (7.7) it readily follows that

(7.9) ‖A(m)
1 ‖∞ ≤ n−m−1‖â(m+1)‖∞, m ≥ 0,

and inductively, using (7.6), it follows that

(7.10) ‖A(m)
k ‖∞ ≤ cn−m−2k+1 max

0≤ν≤m+k
‖â(ν)‖∞, m ≥ 0, k ≥ 2,

where c = c(k,m, α, β).
Now, from (7.3) and (7.10) with m = 0, we obtain for π/n ≤ θ ≤ π/2

|Lα,βn (cos θ)| ≤ c
2n∑

j=n−k
n−2k+1jα+k−1/2θ−α−k−1/2

≤ cn2α+2(nθ)−α−k−1/2 ≤ c n2α+2

(1 + nθ)k
,

and for π/2 ≤ θ ≤ π

|Lα,βn (cos θ)| ≤ c
2n∑

j=n−k
n−2k+1jα+kjβ ≤ cn−k+2α+2 ≤ c n2α+2

(1 + nθ)k
.

Thus (3.6) is established when r = 0.
The case when r ≥ 1 is an easy consequence of Markov’s inequality: If Q ∈ Πm,

then ‖Q′‖L∞[a,b] ≤ 2m2(b− a)−1‖Q‖L∞[a,b].
We give the proof for r = 1 only; in general it follows inductively. Clearly, (3.6)

with r = 0 is equivalent to

(7.11) |Lα,βn (x)| ≤ c n2α+2

(1 + n
√

1− x)k
, x ∈ [−1, 1].

If x ∈ [0, 1], then by (7.11) and Markov’s inequality
∣∣∣ d
dx
Lα,βn (x)

∣∣∣ ≤
∥∥∥ d
dx
Lα,βn

∥∥∥
L∞[−1,x]

≤ 8n2(1 + x)−1‖Lα,βn ‖L∞[−1,x]

≤ c n2α+4

(1 + n
√

1− x)k
,

which is (3.6) with r = 1. For x ∈ [−1, 0) we apply Markov’s inequality on [−1, 0]
which leads readily to the same result. The proof of Theorem 3.2 is complete. �
Proof of Proposition 2.3. We first show that (2.7) holds true. Let f ∈ L2(E, µ).
Then by (2.1)

f =
∞∑
ν=0

Projν f.
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Here and elsewhere in the following the convergence is in L2(E, µ). We use the fact
that Projν is the orthogonal projector of L2(E,µ) onto Vdn to obtain

Lj ∗ f =
2j∑
ν=1

â
( ν

2j−1

)
Projν f, j ≥ 1,

and then

Lj ∗ Lj ∗ f =
2j∑
ν=1

∣∣∣â
( ν

2j−1

)∣∣∣
2

Projν f.

Consequently,

∞∑

j=0

Lj ∗ Lj ∗ f = Proj0 f +
∞∑

j=1

2j∑
ν=1

∣∣∣â
( ν

2j−1

)∣∣∣
2

Projν f

= Proj0 f +
∞∑
ν=1

∞∑

j=1

∣∣∣â
( ν

2j−1

)∣∣∣
2

Projν f

=
∞∑
ν=0

Projν f = f,

where we used (2.5). Thus (2.7) is established.
As was already mentioned Lj ∗Lj ∗ f = (Lj ∗Lj) ∗ f . Since Lj(x, z)Lj(z, y) is of

the form g · h with g, h ∈∑22j

ν=0

⊕Vν as a function of z and the cubature formula
(5.24) is exact for such functions, we have

(Lj ∗ Lj)(x, y) =
∫

E

Lj(x, z)Lj(z, y)dµ(z)

=
∑

ξ∈Xj

√
λξ · Lj(x, ξ)

√
λξ · Lj(ξ, y)

=
∑

ξ∈Xj
ψξ(x)ψξ(y),

where we also used the symmetry of Lj(x, y): Lj(y, x) = Lj(x, y). Therefore,

Lj ∗ Lj ∗ f =
∑

ξ∈Xj
〈f, ψξ〉ψξ,

which coupled with (2.7) yields (2.10).
For the proof of (2.11) we denote SJf :=

∑J
j=0

∑
ξ∈Xj 〈f, ψξ〉ψξ. Evidently,

〈f, SJf〉 =
J∑

j=0

∑

ξ∈Xj
|〈f, ψξ〉|2

and passing to the limit as J →∞ we obtain (2.11). �
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