

Industrial Mathematics

 Institute
2006:05

Function spaces associated with Schrodinger operators: the PoschlTeller potential
G. Olafsson and S.J. Zheng

Preprint Series
Department of Mathematics University of South Carolina

FUNCTION SPACES ASSOCIATED WITH SCHRÖDINGER OPERATORS: THE PÖSCHL-TELLER POTENTIAL

GESTUR ÓLAFSSON AND SHIJUN ZHENG

Abstract

We address the function space theory associated with the Schrödinger operator $H=-d^{2} / d x^{2}+V$. The discussion is featured with potential $V(x)=-n(n+1) \operatorname{sech}^{2} x$, which is called in quantum physics Pöschl-Teller potential. Using a dyadic system, we introduce Triebel-Lizorkin spaces and Besov spaces associated with H. We then use interpolation method to identify these spaces with the classical ones for a certain range of $p, q>1$. A physical implication is that the corresponding wave function $\psi(t, x)=e^{-i t H} f(x)$ admits appropriate time decay in the Besov space scale.

1. Introduction

Let $H=-d^{2} / d x^{2}+V$ be a Schrödinger operator on \mathbb{R} with real-valued potential function V. In quantum physics, H is the energy operator of a particle having one degree of freedom with potential V. If the potential has certain decay at ∞, then one may expect that asymptotically, as time tends to infinity, the motion of the associated perturbed quantum system resembles the free evolution. Indeed, it is well-known that if $\int_{\mathbb{R}}(1+|x|)|V(x)| d x<\infty$, then the absolute continuous spectrum of H is $[0, \infty)$, the singular continuous spectrum is empty, and there is only finitely many negative eigenvalues. Moreover, the wave operators $W_{ \pm}=s-\lim _{t \rightarrow \pm \infty} e^{i t H} e^{-i t H_{0}}$ exists and are complete [C01, DT79, Z04a].

Recently, several authors have studied function spaces associated with Schrödinger operators [JN94, E95, E96, DZ98, DZ02, BZ05]. One of the goals has been to develop the associated Littlewood-Paley theory, in order to give a unified approach. Motivated by the treatment in [BZ05, E95] for the barrier and Hermite cases, we consider H with the negative potential

$$
\begin{equation*}
V_{n}(x)=-n(n+1) \operatorname{sech}^{2} x, \quad n \in \mathbb{N}, \tag{1.1}
\end{equation*}
$$

which is called the Pöschl-Teller potential [B99, G89]. The study of H with this potential is related to linearization of nonlinear wave and Schrödinger equations. In this paper,

Date: January 30, 2006.
2000 Mathematics Subject Classification. Primary: 42B25; Secondary: 35P25, 35J10.
Key words and phrases. spectral calculus, Schrödinger operator, Littlewood-Paley theory.
G. Ólafsson was supported by NSF grants DMS-0139473 and DMS-0402068. S. Zheng was partially supported by DARPA grant MDA 972-01-1-0033. He also gratefully thanks NSF for support during his visit at Louisiana State University in 2003.
we are mainly concerned with characterization and identification of the Triebel-Lizorkin spaces and Besov spaces associated with H. Notice that in contrast to the potentials studied in [BZ05, E95, DZ98, DZ02], $H=H_{0}+V_{n}$ is not a positive operator and it has a resonance at zero.

Suppose $\left\{\varphi_{j}\right\}_{0}^{\infty} \subset C_{0}^{\infty}(\mathbb{R})$ satisfy: (i) $\operatorname{supp} \varphi_{0} \subset\{|x| \leq 1\}$, supp $\varphi_{j} \subset\left\{2^{j-2} \leq|x| \leq 2^{j}\right\}$, $j \geq 1$; (ii) $\left|\varphi_{j}^{(m)}(x)\right| \leq c_{m} 2^{-m j}, \quad \forall j, m \in \mathbb{N}_{0}$; and (iii)

$$
\begin{equation*}
\sum_{j=0}^{\infty} \varphi_{j}(x)=1, \quad \forall x \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

Let $\alpha \in \mathbb{R}, 0<p<\infty$ and $0<q \leq \infty$. The Triebel-Lizorkin space associated with H, denoted by $F_{p}^{\alpha, q}(H)$, is defined to be the completion of the subspace $L_{0}^{2}:=\left\{f \in L^{2}(\mathbb{R})\right.$: $\left.\|f\|_{F_{p}^{\alpha, q}(H)}<\infty\right\}$, where the quasi-norm $\|\cdot\|_{F_{p}^{\alpha, q}(H)}$ is initially defined for $f \in L^{2}(\mathbb{R})$ as

$$
\begin{equation*}
\|f\|_{F_{p}^{\alpha, q}(H)}=\left\|\left(\sum_{j=0}^{\infty} 2^{j \alpha q}\left|\varphi_{j}(H) f\right|^{q}\right)^{1 / q}\right\|_{L^{p}} \tag{1.3}
\end{equation*}
$$

(with usual modification if $q=\infty$).
Similarly, the Besov space associated with H, denoted by $B_{p}^{\alpha, q}(H)$, is defined by the quasi-norm

$$
\begin{equation*}
\|f\|_{B_{p}^{\alpha, q}(H)}=\left(\sum_{j=0}^{\infty} 2^{j \alpha q}\left\|\varphi_{j}(H) f\right\|_{L^{p}}^{q}\right)^{1 / q} \tag{1.4}
\end{equation*}
$$

In Section 3 we give a maximal function characterization of $F_{p}^{\alpha, q}(H)$. We show in Theorem 3.5 that

$$
\begin{equation*}
\|f\|_{F_{p}^{\alpha, q}(H)} \approx\left\|\left(\sum_{j=0}^{\infty}\left(2^{j \alpha} \varphi_{j, s}^{*} f\right)^{q}\right)^{1 / q}\right\|_{p} \tag{1.5}
\end{equation*}
$$

where $\varphi_{j, s}^{*} f$ is the Peetre type maximal function with $s>1 / \min (p, q)$. Therefore the definition of the $F_{p}^{\alpha, q}(H)$-norm is independent of the choice of $\{\varphi\}_{j \geq 0}$.

The proof of (1.5) essentially depends on the decay estimates in Lemma 3.1 for the kernel of $\varphi_{j}(H)$, which can be expressed in terms of continuum and discrete eigenfunctions of H. In Section 2 we solve the eigenfunction equation (2.1) for $k \in \mathbb{R} \cup\{i, \ldots, n i\}(i=\sqrt{-1})$, based on a method suggested in [Lam80]. In Section 4, using the explicit kernel of $\varphi_{j}(H)$ we give a proof of Lemma 3.1 for high and local energies. It turns out that for the absolute continuous part of H, the high and local energy analysis is simpler than the barrier potential, although H has a nonempty pure point spectrum.

A natural question arises: What is the relation between the perturbed function spaces and the ordinary ones, namely, $F_{p}^{\alpha, q}(\mathbb{R})$ and $B_{p}^{\alpha, q}(\mathbb{R})$? In this regard, we show in Section 5 that $F_{p}^{0,2}(H)$ is identically the L^{p} space, $1<p<\infty$. Futhermore, in Section 6 we obtain the following result (Theorem 6.1) by means of complex interpolation: If $\alpha>0,1<p<\infty$
and $2 p /(p+1)<q<2 p$, then

$$
\begin{equation*}
F_{p}^{\alpha, q}(H)=F_{p}^{2 \alpha, q}(\mathbb{R}) \tag{1.6}
\end{equation*}
$$

and if $\alpha>0,1 \leq p<\infty, 1 \leq q \leq \infty$, then

$$
B_{p}^{\alpha, q}(H)=B_{p}^{2 \alpha, q}(\mathbb{R})
$$

The method in proving $F_{p}^{0,2}(H)=L^{p}$ is similar to the Hermite case [E95]. However, the identification (1.6) seems new for $\alpha>0$. It is not difficult to see that the analogue of (1.6) does not hold for the Hermite case, where the potential is x^{2}.

As an application of the function space method we obtain a global time decay result (Theorem 6.3) for the solution to the Schrödinger equation (6.1), namely,

$$
\left\|e^{-i t H} f\right\|_{L^{p^{\prime}}} \lesssim\langle t\rangle^{-\left(\frac{1}{p}-\frac{1}{2}\right)}\|f\|_{B_{p}^{4 \beta, 2}(\mathbb{R})}
$$

for $1<p \leq 2$ and $\beta=\left|\frac{1}{p}-\frac{1}{2}\right|$ being the critical exponent, which is a consequence of the local and long time decay estimates from [JN94] and [GSch04]. Here the perturbed function spaces play an important role in the interpretation of the mapping properties of operators between the abstract and classical spaces. It provides a necessary tool in realizing the above inequality by means of embedding and interpolation.

Finally, we mention that the homogeneous F and B spaces seem to deserve special attention. The crucial reason is that, to our surprise somehow, the decay estimates for the low energy $(-\infty<j<0)$ that are required for the derivative of $\varphi_{j}(H) E_{a c}(x, y)$ does not hold, which leaves open the question on obtaining the homogeneous version of Theorem 3.5. In a sequal to this paper we will consider the homogeneous case and study the spectral multiplier problem on the F and B spaces.

2. The eigenfunctions of H

Let $V_{n}=-n(n+1) \operatorname{sech}^{2} x$ and $H_{0}=-d^{2} / d x^{2}$. In this section we derive a simple expression for the continuum eigenfunctions of $H=H_{0}+V_{n}$, which are the scattering solutions to the Lippman-Schwinger equation (2.3). We also show that the bound state eigenfunctions are rapid decaying functions.
2.1. Scattering equation. Consider the eigenvalue problem for $(1+|x|) V \in L^{1}$,

$$
\begin{equation*}
H e(x, k)=k^{2} e(x, k), \quad k \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

with asymptotics

$$
e_{ \pm}(x, k) \sim \begin{cases}T_{ \pm}(k) e^{i k x} & \text { if } \quad x \rightarrow \pm \infty \tag{2.2}\\ e^{i k x}+R_{ \pm}(k) e^{-i k x} & \text { if } \quad x \rightarrow \mp \infty\end{cases}
$$

where \pm indicate the sign of k. We will use the notation

$$
e(x, k)=\left\{\begin{array}{lll}
e_{+}(x, k) & \text { if } & k>0 \\
e_{-}(x, k) & \text { if } & k<0
\end{array}\right.
$$

The coefficients $T_{ \pm}(k)$ and $R_{ \pm}(k)$ in (2.2) are called the transmission coefficients and reflection coefficients, resp. They satisfy the conservation law $\left|T_{ \pm}(k)\right|^{2}+\left|R_{ \pm}(k)\right|^{2}=1$. It is easy to see that (2.1) together with (2.2) is equivalent to the Lippman-Schwinger equation

$$
\begin{equation*}
e_{ \pm}(x, k)=e^{i k x}+\frac{1}{2 i|k|} \int e^{i|k||x-y|} V(y) e_{ \pm}(y, k) d y \tag{2.3}
\end{equation*}
$$

2.2. Inductive construction of the solution. Let y_{n} be the general solution of

$$
y_{n}^{\prime \prime}+n(n+1) \operatorname{sech}^{2} x y_{n}=-k^{2} y_{n} .
$$

If $n=0, y_{0}=A e^{i k x}+B e^{-i k x}$. If $n \geq 1$, according to [Lam80, Section 2.6] we have by induction

$$
y_{n}(x)=A(k) D_{n} \cdots D_{1}\left(e^{i k x}\right)+B(k) D_{n} \cdots D_{1}\left(e^{-i k x}\right)
$$

where D_{n} denotes the differential operator

$$
\begin{equation*}
D_{n}=\frac{d}{d x}-n \tanh x, \quad n \in \mathbb{N} \tag{2.4}
\end{equation*}
$$

Here we observe that since $\frac{d}{d x}(\tanh x)=1-\tanh ^{2} x$,

$$
\begin{align*}
D_{n} \cdots D_{1}\left(e^{i k x}\right) & =p_{n}(\tanh x, i k) e^{i k x} \tag{2.5}\\
D_{n} \cdots D_{1}\left(e^{-i k x}\right) & =q_{n}(\tanh x, i k) e^{-i k x}
\end{align*}
$$

where $p_{n}(x, k)$ and $q_{n}(x, k)$ are polynomials of degree n in x, k and have real coefficients.
Let $e_{n}(x, k)$ denote the particular solution of (2.3) with $V=V_{n}$. Using the asymptotics (2.2) we solve $e_{n}(x, k)$ as in the following lemma.

Lemma 2.3. Let $n \in \mathbb{N}$. There exists a polynomial $p_{n}(x, k)$ of degree n in x, k such that

$$
e_{n, \pm}(x, k)=A_{n}^{ \pm}(k) p_{n}(\tanh x, i k) e^{i k x}
$$

Furthermore the following hold.
(a) The constants $A_{n}^{ \pm}(k)$ are given by

$$
A_{n}^{+}(k)=\prod_{j=1}^{n} \frac{1}{j+i k} \quad \text { and } \quad A_{n}^{-}(k)=(-1)^{n} \prod_{j=1}^{n} \frac{1}{j-i k} .
$$

(b) The transmission coefficients $T_{n, \pm}(k)$ are

$$
T_{n,+}(k)=(-1)^{n} \prod_{j=1}^{n} \frac{j-i k}{j+i k} \quad \text { and } \quad T_{n,-}(k)=(-1)^{n} \prod_{j=1}^{n} \frac{j+i k}{j-i k}
$$

(c) The reflection coefficients $R_{n, \pm}(k)$ are all zero.

Proof. In light of the above discussion we write

$$
\begin{equation*}
e_{n, \pm}(x, k)=A_{n}^{ \pm}(k) p_{n}(\tanh x, i k) e^{i k x}+B_{n}^{ \pm}(k) q_{n}(\tanh x, i k) e^{-i k x} \tag{2.6}
\end{equation*}
$$

First we assume $k>0$. Substituting (2.6) into the (2.2), we obtain that $B_{n}^{+}(k)=0=$ $R_{n,+}(k)$,

$$
\begin{equation*}
A_{n}^{+}(k) p_{n}(-1, i k)=1 \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{n,+}(k)=A_{n}^{+}(k) p_{n}(1, i k)=\frac{p_{n}(1, i k)}{p_{n}(-1, i k)} . \tag{2.8}
\end{equation*}
$$

Thus (2.6) becomes

$$
e_{n,+}(x, k)=A_{n}^{+}(k) p_{n}(\tanh x, i k) e^{i k x}
$$

From (2.5) we easily derive the recurrence formula

$$
\begin{equation*}
p_{n}(\tanh x, i k)=\operatorname{sech}^{2} x p_{n-1}^{\prime}(\tanh x, i k)+(i k-n \tanh x) p_{n-1}(\tanh x, i k) \tag{2.9}
\end{equation*}
$$

Since $p_{n-1}^{\prime}(x, k)$ is a polynomial in x, it follows that

$$
\lim _{x \rightarrow \pm \infty} p_{n-1}^{\prime}(\tanh x, i k)=p_{n-1}^{\prime}(\pm 1, i k)
$$

is bounded. Taking the limit in (2.9) as $x \rightarrow \pm \infty$ we find

$$
p_{n}(\pm 1, i k)=(i k \mp n) p_{n-1}(\pm 1, i k) .
$$

Since $e_{0}(x, k)=e^{i k x}$, i.e., $p_{0}=1, A_{0}^{+}=1$, we obtain

$$
p_{n}(1, i k)=(-1)^{n} \prod_{j=1}^{n}(j-i k)
$$

and

$$
p_{n}(-1, i k)=\prod_{j=1}^{n}(j+i k)=(-1)^{n} \overline{p_{n}(1, k)}
$$

Now for $k>0$, (a), (b) in the lemma follow from (2.7), (2.8).
For k negative, similarly it holds that $B_{n}^{-}(k)=0=R_{n,-}(k)$ and instead of (2.7), (2.8), we have

$$
A_{n}^{-}(k) p_{n}(1, i k)=1
$$

and

$$
T_{n,-}(k)=A_{n}^{-}(k) p_{n}(-1, i k) .
$$

Then the results for $A_{n}^{-}, T_{n,-}$ and $e_{n,-}(x, k)$ follow.
From (2.5) we can also see

$$
\begin{equation*}
p_{n}(\tanh x,-i k)=(-1)^{n} p_{n}(-\tanh x, i k) \tag{2.10}
\end{equation*}
$$

by simple induction. Thus we obtain the following formula for the continuum eigenfunctions.

Theorem 2.4. Assume $k \in \mathbb{R} \backslash\{0\}$. Then

$$
e_{n}(x, k)=(\operatorname{sign}(k))^{n}\left(\prod_{j=1}^{n} \frac{1}{j+i|k|}\right) P_{n}(x, k) e^{i k x}
$$

where $P_{n}(x, k)=p_{n}(\tanh x, i k)$ is defined by the recursion formula

$$
p_{n}(\tanh x, i k)=\frac{d}{d x}\left(p_{n-1}(\tanh x, i k)\right)+(i k-n \tanh x) p_{n-1}(\tanh x, i k) .
$$

In particular, the function

$$
\mathbb{R} \times(\mathbb{R} \backslash\{0\}) \ni(x, k) \mapsto e_{n}(x, k) \in \mathbb{C}
$$

is analytic with $e_{n}(x,-k)=e_{n}(-x, k)$. Moreover, the function

$$
(x, y, k) \mapsto e_{n}(x, k) \overline{e_{n}(y, k)}=\left(\prod_{j=1}^{n} \frac{1}{j^{2}+k^{2}}\right) P_{n}(x, k) P_{n}(y,-k) e^{i k(x-y)}
$$

is real analytic on \mathbb{R}^{3}.
2.5. The point spectrum. For $(1+|x|) V \in L^{1}$, we know that the point spectrum of $H_{0}+V$ is given by the simple eigenvalues $-\mu^{2}$ such that $T_{+}(k)$ has a (simple) pole at $i \mu$; see e.g., [DT79, p.146]. Therefore we have

Lemma 2.6. The point spectrum of $H=H_{0}+V_{n}$ consists of

$$
\sigma_{p p}=\left\{-1,-4, \ldots,-n^{2}\right\}
$$

The corresponding eigenfunctions are Schwartz functions that are linear combinations of $\operatorname{sech}^{m} x \tanh ^{k} x, m \in \mathbb{N}, k \in \mathbb{N}_{0}$.

Proof. The statement about $\sigma_{p p}$ follows from the fact that $k=i j, j=1, \ldots, n$, are the poles of $T_{n,+}(k)=(-1)^{n} \prod_{j=1}^{n}(j-i k)(j+i k)^{-1}$. For $k^{2}=-j^{2}$, let $y_{n, j}$ be the corresponding eigenfunction. By induction we find that

$$
\begin{aligned}
y_{j, j} & =\operatorname{sech}^{j} x \\
y_{j+1, j} & =D_{j+1} \operatorname{sech}^{j} x \\
y_{j+m, j} & =D_{j+m} y_{j+m-1, j}, \quad m \in \mathbb{N} .
\end{aligned}
$$

Hence the bound states are given by

$$
y_{n, j}(x)=D_{n} \cdots D_{j+1} \operatorname{sech}^{j} x, \quad j=1, \ldots, n-1,
$$

and

$$
y_{n, n}(x)=\operatorname{sech}^{n} x
$$

Remark 2.7. There is a continuous extension of V_{n} when n is replaced by a continuous parameter in \mathbb{R}. We can find the scattering solutions of (2.3) by using the two real fundamental solutions given in [Flu74]. However we do not intend to include them here since the expression (which involves hypergeometric functions) seems quite complicated.
2.8. Projection of the spectral operator $\phi(H)$. Given $V \in L^{1} \cap L^{2}$, it is known that $H=H_{0}+V$ is selfadjoint on the domain $D(H)=D\left(H_{0}\right)=W_{2}^{2}(\mathbb{R})$, the usual Sobolev space of order 2 in L^{2}. We decompose $L^{2}=\mathcal{H}_{a c} \oplus \mathcal{H}_{p p}$, where $\mathcal{H}_{a c}$ denotes the absolute continuous subspace and $\mathcal{H}_{p p}$ the pure point subspace. Let $E_{a c}, E_{p p}$ be the corresponding orthogonal projections, respectively. For a measurable function ϕ we define $\phi(H)$ by functional calculus as usual. Then it follows that

$$
\phi(H) f=\phi(H) E_{a c} f+\phi(H) E_{p p} f=\left.\phi(H)\right|_{\mathcal{H}_{a c}} f+\left.\phi(H)\right|_{\mathcal{H}_{p p}} f
$$

Let $e(x, k)$ be the scattering solution of (2.3) and $e_{j}(x)$ the eigenfunction of H with (negative) eigenvalue λ_{j}. If ϕ is continuous and compactly supported, we have the following expression [Z04a]

$$
\begin{equation*}
\phi(H) f(x)=\int K_{a c}(x, y) f(y) d y+\sum_{\lambda_{j} \in \sigma_{p p}} \phi\left(\lambda_{j}\right)\left(f, e_{j}\right) e_{j}, \quad f \in L^{1} \cap L^{2} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{a c}(x, y)=(2 \pi)^{-1} \int \phi\left(k^{2}\right) e(x, k) \bar{e}(y, k) d k \tag{2.12}
\end{equation*}
$$

is the kernel of $\phi(H) E_{a c}$. Note that if $e(x, k)$ is smooth in x, then $K_{a c}(x, y)$ is smooth in x, y.

If letting $K_{p p}(x, y)=\sum_{j} \phi\left(\lambda_{j}\right) e_{j}(x) e_{j}(y)$, we can write (2.11) in a more compact form

$$
\begin{equation*}
\phi(H) f(x)=\int K(x, y) f(y) d y \tag{2.13}
\end{equation*}
$$

where $K=K_{a c}+K_{p p}$. We mention that in the case $(1+|x|) V \in L^{1}$ the kernel formula (2.12) agrees with the usual one using the Jost functions [GSch04, DT79].

3. Maximal function characterization

Let $H=H_{0}+V_{n}$. This section is mainly to give a quasi-norm characterization of $F_{p}^{\alpha, q}(H)$ and $B_{p}^{\alpha, q}(H)$ using Peetre type maximal function. Consequently, the $F(H)$ and $B(H)$ spaces are well-defined in the sense that different dyadic systems give rise to equivalent quasi-norms.

Let $\left\{\varphi_{j}\right\}_{0}^{\infty}$ be a system satisfying conditions (i), (ii) as in Section 1, i.e.,
(i) supp $\varphi_{0} \subset[-1,1]$, $\operatorname{supp} \varphi_{j} \subset\left[-2^{j},-2^{j-2}\right] \cup\left[2^{j-2}, 2^{j}\right], j \geq 1$;
(ii) $\left|\varphi_{j}^{(m)}(x)\right| \leq c_{m} 2^{-m j}, \quad \forall j, m \in \mathbb{N}_{0}$.

Denote $K_{j}(x, y)=\varphi_{j}(H)(x, y)$ the kernel of $\varphi_{j}(H)$ as given by the formula (2.13). To simplify notation we let

$$
\begin{equation*}
w_{j}(x):=1+2^{j / 2}|x| \tag{3.1}
\end{equation*}
$$

Lemma 3.1. Let $j \geq 0$. Then for each $m \in \mathbb{N}_{0}$ there exist constants $C_{m}, C_{m}^{\prime}>0$ such that
(a) $\quad\left|K_{j}(x, y)\right| \leq C_{m} 2^{j / 2} w_{j}(x-y)^{-m}$
(b) $\quad\left|\frac{\partial}{\partial x} K_{j}(x, y)\right| \leq C_{m}^{\prime} 2^{j} w_{j}(x-y)^{-m}$.

We postpone the proof till Section 4.
For $s>0$ define the analogue of Peetre maximal function:

$$
\begin{equation*}
\varphi_{j, s}^{*} f(x)=\sup _{t \in \mathbb{R}} \frac{\left|\varphi_{j}(H) f(t)\right|}{w_{j}(x-t)^{s}} \tag{3.2}
\end{equation*}
$$

and

$$
\varphi_{j, s}^{* *} f(x)=\sup _{t \in \mathbb{R}} \frac{\left|\left(\varphi_{j}(H) f\right)^{\prime}(t)\right|}{w_{j}(x-t)^{s}} .
$$

Lemma 3.2. Let $s>0$ and $j \in \mathbb{N}_{0}$. Then there exists a constant $C=C_{s}>0$ such that

$$
\varphi_{j, s}^{* *} f(x) \leq C 2^{j / 2} \varphi_{j, s}^{*} f(x)
$$

Before the proof we note the following identity that will be used often later on. Suppose $\left\{\psi_{j}\right\}$ be a dyadic system as in Section 1. Then

$$
\begin{equation*}
\varphi_{j}(H) f=\sum_{\nu=-1}^{1} \psi_{j+\nu}(H) \varphi_{j}(H) f, \quad f \in L^{2} \tag{3.3}
\end{equation*}
$$

with the convention $\psi_{-1} \equiv 0$, which follows from the equality $\varphi_{j}(x)=\sum_{\nu=-1}^{1} \psi_{j+\nu}(x) \varphi_{j}(x)$ for all x.

Proof. By (3.3) we have

$$
\frac{d}{d t}\left(\varphi_{j}(H) f\right)(t)=\sum_{\nu=-1}^{1} \int_{\mathbb{R}} \frac{\partial}{\partial t}\left(\psi_{j+\nu}(H)(t, y)\right) \varphi_{j}(H) f(y) d y
$$

Apply Lemma 3.1 to obtain

$$
\frac{\left|\frac{d}{d t}\left(\varphi_{j}(H) f\right)(t)\right|}{w_{j}(x-t)^{s}} \leq C_{m} \sum_{\nu=-1}^{1} 2^{j+\nu} \int_{\mathbb{R}} \frac{\left|\varphi_{j}(H) f(y)\right|}{w_{j+\nu}(t-y)^{m} w_{j}(x-t)^{s}} d y
$$

It follows from the definition of $\varphi_{j, s}^{*} f$ that

$$
\begin{aligned}
\frac{\left|\frac{d}{d t}\left(\varphi_{j}(H) f\right)(t)\right|}{w_{j}(x-t)^{s}} & \leq C_{m} \sum_{\nu=-1}^{1} 2^{j+\nu} \varphi_{j, s}^{*} f(x) \int_{\mathbb{R}} \frac{w_{j}(t-y)^{s}}{w_{j+\nu}(t-y)^{m}} d y \\
& \leq C_{s} 2^{j / 2} \varphi_{j, s}^{*} f(x),
\end{aligned}
$$

provided $m-s>1$. This proves Lemma 3.2.
The next lemma (Peetre maximal inequality) follows from Lemma 3.2 by a standard argument; see [Tr83, p.16] or [BZ05]. Let M be the Hardy-Littlewood maximal function

$$
M f(x):=\sup _{I} \frac{1}{|I|} \int_{I}|f(x+y)| d y
$$

where the supremum runs over all intervals in $(-\infty, \infty)$.
Lemma 3.3. Let $s>0$ and $j \in \mathbb{N}_{0}$. There exists a constant $C_{s}>0$ such that

$$
\varphi_{j, s}^{*} f(x) \leq C_{s}\left[M\left(\left|\varphi_{j}(H) f\right|^{1 / s}\right)\right]^{s}(x)
$$

Remark 3.4. It is well known that M is bounded on $L^{p}, 1<p<\infty$, i.e.,

$$
\begin{equation*}
\|M f\|_{p} \leq C\|f\|_{p} \tag{3.4}
\end{equation*}
$$

Moreover, if $1<p<\infty, 1<q \leq \infty$ and $\left\{f_{j}\right\}$ is a sequence of functions, then

$$
\begin{equation*}
\left\|\left(\sum_{j}\left|M f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{p}} \leq C_{p, q}\left\|\left(\sum_{j}\left|f_{j}\right|^{q}\right)^{1 / q}\right\|_{L^{p}} \tag{3.5}
\end{equation*}
$$

(usual modification if $q=\infty$) by the Fefferman-Stein vector-valued maximal inequality.
We now state the following theorem on maximal function characterization of $F_{p}^{\alpha, q}(H)$.
Theorem 3.5. Let $\alpha \in \mathbb{R}, 0<p<\infty$ and $0<q \leq \infty$. Let $\left\{\varphi_{j}\right\}_{j \geq 0}$ be a system satisfying (i), (ii) and (iii) as given in Section 1. If $s>1 / \min (p, q)$, then we have for $f \in L^{2}$

$$
\begin{equation*}
\|f\|_{F_{p}^{\alpha, q}(H)} \approx\left\|\left(\sum_{j=0}^{\infty}\left(2^{j \alpha} \varphi_{j, s}^{*} f\right)^{q}\right)^{1 / q}\right\|_{p} \tag{3.6}
\end{equation*}
$$

Furthermore, $F_{p}^{\alpha, q}(H)$ is a quasi-Banach space (Banach space if $p \geq 1, q \geq 1$) and it is independent of the choice of $\left\{\varphi_{j}\right\}_{j \geq 0}$.

Proof. Because $\varphi_{j, s}^{*} f(x) \geq\left|\varphi_{j}(H) f(x)\right|$, we only need to show

$$
\begin{equation*}
\left\|\left(\sum_{j=0}^{\infty}\left(2^{j \alpha} \varphi_{j, s}^{*} f\right)^{q}\right)^{1 / q}\right\|_{p} \leq C\|f\|_{F_{p}^{\alpha, q}(H)} \tag{3.7}
\end{equation*}
$$

but this follows from Lemma 3.3 and (3.5). Indeed, choosing $0<r=1 / s<\min (p, q)$, we have

$$
\begin{aligned}
\left\|\left\{2^{j \alpha} \varphi_{j, s}^{*} f\right\}\right\|_{L^{p}\left(\ell^{q}\right)} & \leq C_{s}\left\|\left\{2^{j \alpha}\left[M\left(\left|\varphi_{j}(H) f\right|^{r}\right)\right]^{1 / r}\right\}\right\|_{L^{p}\left(\ell^{q}\right)} \\
& =C_{s}\left\|\left(\sum_{0}^{\infty}\left[M\left(2^{j \alpha r}\left|\varphi_{j}(H) f\right|^{r}\right)\right]^{q / r}\right)^{r / q}\right\|_{L^{p / r}}^{1 / r} \\
& \leq C_{s, p, q}\left\|\left\{2^{j \alpha} \varphi_{j}(H) f\right\}\right\|_{L^{p}\left(\ell^{q}\right)} \\
& =C_{s, p, q}\|f\|_{F_{p}^{\alpha, q}(H)},
\end{aligned}
$$

which proves (3.7).
To show the second statement let $\psi=\left\{\psi_{j}\right\}$ be another system satisfying the same condtions as $\varphi=\left\{\varphi_{j}\right\}$. We use (3.3) and Lemma 3.1 (a) to estimate

$$
\begin{aligned}
\left|\varphi_{j}(H) f(x)\right| & \leq C 2^{j / 2} \sum_{\nu=-1}^{1} \int_{\mathbb{R}} \frac{\left|\psi_{j+\nu}(H) f(y)\right|}{w_{j}(x-y)^{m}} d y \\
& \leq C \sum_{\nu=-1}^{1} 2^{j / 2} \psi_{j+\nu, s}^{*} f(x) \int_{\mathbb{R}} \frac{w_{j+\nu}(x-y)^{s}}{w_{j}(x-y)^{m}} d y \\
& \leq C \sum_{\nu=-1}^{1} \psi_{j+\nu, s}^{*} f(x)
\end{aligned}
$$

provided $m-s>1$. Thus, for $f \in L^{2}$

$$
\begin{equation*}
\|f\|_{F_{p}^{\alpha, q}(H)}^{\varphi} \leq C_{s, p, q}\left\|\left\{2^{j \alpha} \psi_{j, s}^{*} f\right\}\right\|_{L^{p}\left(\ell^{q}\right)} \approx\|f\|_{F_{p}^{\alpha, q}(H)}^{\psi} . \tag{3.8}
\end{equation*}
$$

This concludes the proof.
Remark 3.6. Note that the statement in Theorem 3.5 is true for the more general system $\rho=\left\{\rho_{j}\right\}_{0}^{\infty}$ satisfying conditions (i), (ii) and (iii')

$$
\sum_{j} \rho_{j}(x) \approx c>0
$$

In fact, let us fix a system $\left\{\varphi_{j}\right\}_{0}^{\infty}$ as given in Theorem 3.5. Then the same argument in the proof of (3.8) shows

$$
\|f\|_{F_{p}^{\alpha, q}(H)}^{\rho} \leq C\|f\|_{F_{p}^{\alpha, q}(H)}^{\varphi} .
$$

To show the other direction, we define

$$
\tilde{\varphi}_{j}(x)=\varphi_{j}(x) /\left(\sum_{j} \rho_{j}(x)\right) .
$$

Then it is easy to verify that $\left\{\tilde{\varphi}_{j}\right\}$ satisfies (i), (ii), and so, $\tilde{\varphi}_{j}(H)(x, y)$ satisfies the nice decay in Lemma 3.1. Now the identity

$$
\varphi_{j}(x)=\sum_{\nu=-1}^{1} \tilde{\varphi}_{j}(x) \rho_{j+\nu}(x)
$$

and the proof of (3.8) yield

$$
\|f\|_{F_{p}^{\alpha, q}(H)}^{\varphi} \leq C\|f\|_{F_{p}^{\alpha, q}(H)}^{\rho} .
$$

3.7. Besov spaces for H. Let $\alpha \in \mathbb{R}, 0<p<\infty, 0<q \leq \infty$. We define $B_{p}^{\alpha, q}(H)$, the Besov space associated with H to be the completion of the subspace $\left\{f \in L^{2}\right.$: $\left.\|f\|_{B_{p}^{\alpha, q}(H)}<\infty\right\}$ with respect to the norm $\|\cdot\|_{B_{p}^{\alpha, q}(H)}$, which is given by (1.4). Then $B_{p}^{\alpha, q}(H)$ is a quasi-Banach space (Banach space if $p, q \geq 1$).
Theorem 3.8. Let $\alpha \in \mathbb{R}, 0<p<\infty, 0<q \leq \infty$. If $s>1 / p$, then for $f \in L^{2}$

$$
\|f\|_{B_{p}^{\alpha, q}(H)} \approx\left(\sum_{j=0}^{\infty} 2^{j \alpha q}\left\|\varphi_{j, s}^{*} f\right\|_{L^{p}}^{q}\right)^{1 / q} .
$$

Furthermore, $B_{p}^{\alpha, q}(H)$ is well defined and independent of the choice of $\left\{\varphi_{j}\right\}_{j \geq 0}$.
The proof of Theorem 3.8 is analogous to that of Theorem 3.5 but we use (3.4) instead of (3.5).

There is an embedding relation between the $F(H)$ and $B(H)$ spaces that can be shown directly from the definitions, namely,

$$
\begin{equation*}
B_{p}^{s, \min (p, q)}(H) \hookrightarrow F_{p}^{s, q}(H) \hookrightarrow B_{p}^{s, \max (p, q)}(H) \tag{3.9}
\end{equation*}
$$

$0<p<\infty, 0<q \leq \infty$, where $X \hookrightarrow Y$ means, as usual, continuous embedding in the sense that $X \subset Y$ and $\|f\|_{Y} \leq C\|f\|_{X}, \forall f \in X$. The proof of (3.9) is the same as in the Fourier case; see [Tr78, 2.3.2].
3.9. Lifting properties of $F(H)$ and $B(H)$ spaces. Let $c_{n}>-\inf \sigma(H)=-\inf \sigma_{p p}(H)=$ n^{2}. We need the following lemma in Section 6.

Lemma 3.10. Let $s \in \mathbb{R}, 0<p<\infty$ and $0<q \leq \infty$. Then $\left(H+c_{n}\right)^{s}$ maps $F_{p}^{\alpha, q}(H)$ isomorphically and continuously onto $F_{p}^{\alpha-s, q}(H)$. Moreover, $\left\|\left(H+c_{n}\right)^{s} f\right\|_{F_{p}^{\alpha-s, q}(H)} \approx$ $\|f\|_{F_{p}^{\alpha, q}(H)}$. The analogous statement holds for $B_{p}^{\alpha, q}(H)$.

Proof. We only give the proof for $F(H)$. The proof for $B(H)$ is similar.

$$
\left\|\left(H+c_{n}\right)^{s} f\right\|_{F_{p}^{\alpha-s, q}(H)}=\left\|2^{(\alpha-s) j}\left(H+c_{n}\right)^{s} \varphi_{j}(H) f\right\|_{L^{p}\left(\ell^{q}\right)}=\left\|2^{j \alpha} \psi_{j}(H) f\right\|_{L^{p}\left(\ell^{q}\right)},
$$

where $\psi_{j}(x)=2^{-s j}\left(x+c_{n}\right)^{s} \varphi_{j}(x)$. Since ψ_{j} satisfies condition (i), (ii) and (iii'), according to Remark 3.6 we have

$$
\left\|\left(H+c_{n}\right)^{s} f\right\|_{F_{p}^{\alpha-s, q}(H)} \approx\|f\|_{F_{p}^{\alpha, q}(H)} .
$$

Also, it is easy to see that the inverse of $\left(H+c_{n}\right)^{s}$ is $\left(H+c_{n}\right)^{-s}$. This proves that the mapping $\left(H+c_{n}\right)^{s}: F_{p}^{\alpha, q}(H) \rightarrow F_{p}^{\alpha-s, q}(H)$ is surjective.

4. Proof of Lemma 3.1

From Section 2 we know $K_{j}=K_{j, a c}+K_{j, p p}$. We need to show that $K_{j, a c}, K_{j, p p}$ both satisfy the decay estimates (a), (b) in the lemma. For the pure point kernel, since $\sigma_{p p}=$ $\left\{-1,-4, \ldots,-n^{2}\right\}$ is finite, it amounts to showing for $0 \leq j \leq 2+2 \log _{2} n$

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} K_{j, p p}(x, y)\right| \leq C_{m, \alpha}(1+|x-y|)^{-m}, \quad \forall m \in \mathbb{N}_{0}, \alpha=0,1 \tag{4.1}
\end{equation*}
$$

For other $j^{\prime} s$, the p.p. kernel vanish because $\operatorname{supp} \varphi_{j}$ are disjoint from the set $\sigma_{p p}$. But (4.1) follows from the fact that the eigenfunctions $e_{j}(x)$ are all Schwartz functions according to Lemma 2.6. So the nontrivial part will be to prove the decay for the a.c. kernel.

4.1. The kernel of $\varphi_{j}(H) E_{a c}$. Recall from Theorem 2.4 that

$$
e_{n}(x, k)=A_{n}(k) P_{n}(x, k) e^{i k x}
$$

where $A_{n}(k)=(\operatorname{sign}(k))^{n} \prod_{j=1}^{n}(j+i|k|)^{-1}$ and $P_{n}(x, k)=p_{n}(\tanh x, i k)$ is a polynomial of real coefficients and of oder n in $\tanh x$ and $i k$.
4.1.1. High energy estimates $(j>0)$. Let $\varphi_{j} \in C_{0}^{\infty}(\mathbb{R})$ be given as in the beginning of Section 3. By (2.12) the kernel of $\varphi_{j}(H) E_{a c}$ is given by

$$
\begin{aligned}
K_{j, a c}(x, y) & =\frac{1}{2 \pi} \int \varphi_{j}\left(k^{2}\right) e_{n}(x, k) \overline{e_{n}(y, k)} d k \\
& =\int_{0}^{\infty}+\int_{-\infty}^{0} \varphi_{j}\left(k^{2}\right) R(x, y, k) e^{i k(x-y)} d k:=K^{+}(x, y)+K^{-}(x, y)
\end{aligned}
$$

where

$$
\begin{equation*}
R(x, y, k)=P(x, k) P(y,-k) / \prod_{j=1}^{n}\left(j^{2}+k^{2}\right) \tag{4.2}
\end{equation*}
$$

We only need to deal with $K^{+}(x, y)$ because $K^{-}(x, y)=K^{+}(-x,-y)$ in light of the relation $e_{n}(x,-k)=e_{n}(-x, k)$. Let $\lambda=2^{-j / 2}$ throughout this section. We have by integration by parts

$$
\begin{aligned}
2 \pi\left|K^{+}(x, y)\right| & =\left|\frac{(-1)^{m}}{i^{m}(x-y)^{m}} \int_{2^{j / 2-1}}^{2^{j / 2}} \frac{d^{m}}{d k^{m}}\left[\varphi_{j}\left(k^{2}\right) R(x, y, k)\right] e^{i k(x-y)} d k\right| \\
& \leq C_{m} \lambda^{m-1} /|x-y|^{m}, \quad m \geq 0
\end{aligned}
$$

where we used for $k \sim \lambda^{-1} \rightarrow \infty$ as $j \rightarrow \infty$,

$$
\begin{cases}\frac{d^{i}}{d k^{i}}\left[\varphi_{j}\left(k^{2}\right)\right] & =O\left(\lambda^{i}\right) \tag{4.3}\\ \frac{\partial^{j}}{\partial k^{j}} R(x, y, k) & =O\left(\lambda^{j}\right) \quad \text { uniformly in } x, y\end{cases}
$$

The same estimate also holds for $K^{-}(x, y)$. Hence we obtain

$$
\begin{equation*}
\left|K_{j, a c}(x, y)\right| \leq C_{m} \lambda^{-1} /\left(1+\lambda^{-1}|x-y|\right)^{m} \tag{4.4}
\end{equation*}
$$

4.1.2. Low energy estimates $(-\infty<j<0)$. If we allow $j<0$ with φ_{j} satisfying conditions (i), (ii) in Section 3, then (4.4) also holds for $j<0$ by the same proof above, except that instead of (4.3) we use the following estimates: if $k \sim \lambda^{-1} \rightarrow 0$ as $j \rightarrow-\infty$,

$$
\begin{cases}\frac{d^{i}}{d k_{i}^{2}}\left[\varphi_{j}\left(k^{2}\right)\right] & =O\left(\lambda^{i}\right) \leq O\left(\lambda^{m}\right) \quad \text { if } 0 \leq i \leq m \\ \frac{\partial^{j}}{\partial k^{j}} R(x, y, k) & =O(1) \quad \text { uniformly in } x, y\end{cases}
$$

However, the low energy case will be needed only in the discussion of homogeneous spaces $\dot{F}_{p}^{\alpha, q}(H), \dot{B}_{p}^{\alpha, q}(H)$.
4.1.3. Local energy estimates. Fix $\Phi:=\varphi_{0} \in C_{0}^{\infty}(\mathbb{R})$ with support $\subset[-1,1]$.

$$
2 \pi \Phi(H) E_{a c}(x, y)=\int_{-1}^{1} \Phi\left(k^{2}\right) R(x, y, k) e^{i k(x-y)} d k
$$

Using for $k \rightarrow 0$,

$$
\begin{cases}\frac{d^{i}}{d k^{i}}\left[\Phi\left(k^{2}\right)\right] & =O(1) \\ \frac{\partial j^{j}}{\partial k^{j}} R(x, y, k) & =O(1) \quad \text { uniformly in } x, y\end{cases}
$$

and integrating by parts on $[-1,1]$, where we note that $k \mapsto R(x, y, k)$ is analytic at zero, we obtain for each m

$$
\left|\Phi(H) E_{a c}(x, y)\right| \leq C_{m}(1+|x-y|)^{-m} .
$$

4.2. The derivative of the kernel. Using the notation in Subsection 4.1, we proceed

$$
\begin{aligned}
2 \pi \frac{\partial}{\partial x} K_{j, a c}(x, y) & =\frac{\partial}{\partial x} \int \varphi_{j}\left(k^{2}\right) R(x, y, k) e^{i k(x-y)} d k \\
& =\int \varphi_{j}\left(k^{2}\right) \frac{\partial}{\partial x}\left[R(x, y, k) e^{i k(x-y)}\right] d k \\
& =\int \varphi_{j}\left(k^{2}\right)|A(k)|^{2}\left[i k P(x, k)+\frac{\partial}{\partial x} P(x, k)\right] P(y,-k) e^{i k(x-y)} d k
\end{aligned}
$$

The function $\frac{\partial}{\partial x} P(x, k)$ is a polynomial of $\tanh x$ and $i k$ having degrees $n+1$ and $n-1$, resp. Note that if $|k| \sim \lambda^{-1}=2^{j / 2}, j>0$,

$$
\left|\frac{d^{i}}{d k^{i}}\left(k \varphi_{j}\left(k^{2}\right)\right)\right|=O\left(\lambda^{i-1}\right)
$$

and if $|k| \leq 1$,

$$
\left|\frac{d^{i}}{d k^{i}}\left(k \Phi\left(k^{2}\right)\right)\right|=O(1) .
$$

We obtain, by similar arguments as in Subsection 4.1, for each $m \geq 0$

$$
\left|\frac{\partial}{\partial x} K_{j, a c}(x, y)\right| \leq C_{m} \lambda^{-2}\left(1+\lambda^{-1}|x-y|\right)^{-m}, \quad j>0
$$

and

$$
\left|\frac{\partial}{\partial x} \Phi(H) E_{a c}(x, y)\right| \leq C_{m}(1+|x-y|)^{-m}
$$

This completes the proof of Lemma 3.1.
Remark 4.3. For $-\infty<j<0$, the best estimate is, for each $m \geq 0$

$$
\begin{align*}
& \left|\frac{\partial}{\partial x} K_{j, a c}(x, y)\right| \\
\lesssim & \lambda^{-1} \operatorname{sech}^{2} x \tanh y\left(1+\lambda^{-1}|x-y|\right)^{-m}+\lambda^{-2}\left(1+\lambda^{-1}|x-y|\right)^{-m} \tag{4.5}
\end{align*}
$$

We observe that the first term has only a factor of $\lambda^{-1}=O\left(2^{j / 2}\right)$ as $j \rightarrow-\infty$, which makes unavailable the Bernstein inequality and Peetre maximal inequality, namely low energy cases of Lemma 3.2 and Lemma 3.3, resp. Nevertheless, if we work a little harder, using (4.4) and (4.5) we can obtain a weaker form of Peetre maximal inequality and prove the following: if $1 \leq p<\infty, 0<q<\infty, \alpha \in \mathbb{R}$,

$$
\|f\|_{\dot{B}_{p}^{\alpha, q}(H)} \approx\left\|\left\{2^{j \alpha} \varphi_{j}^{*}(H) f\right\}_{j \in \mathbb{Z}}\right\|_{\ell q\left(L^{p}\right)}
$$

and if $1<p<\infty, 1<q<\infty, \alpha \in \mathbb{R}$,

$$
\|f\|_{\dot{F}_{p}^{\alpha, q}(H)} \approx\left\|\left\{2^{j \alpha} \varphi_{j}^{*}(H) f\right\}_{j \in \mathbb{Z}}\right\|_{L^{p}\left(\ell^{q}\right)}
$$

5. Identification of $F_{p}^{0,2}(H)=L^{p}, 1<p<\infty$

Let $\left\{\varphi_{j}\right\}_{0}^{\infty}$ be as in Section 1. Then there exists $\left\{\psi_{j}\right\}_{0}^{\infty}$ satisfying the same conditions (i), (ii) therein such that

$$
\sum_{j=0}^{\infty} \varphi_{j}(x) \psi_{j}(x)=1
$$

by taking $\psi_{j}(x)=\overline{\varphi_{j}(x)} / \sum\left|\varphi_{j}(x)\right|^{2}$. We may assume that $\left\|\varphi_{j}\right\|_{\infty},\left\|\psi_{j}\right\|_{\infty}$ are all ≤ 1. Let $Q_{j}=\varphi_{j}(H)$ and $R_{j}=\psi_{j}(H)$. Define the operators $Q: L^{2} \rightarrow L^{2}\left(\ell^{2}\right)$ and $R: L^{2}\left(\ell^{2}\right) \rightarrow L^{2}$ as follows.

$$
Q: f \mapsto\left\{Q_{j}(H) f\right\}_{0}^{\infty}
$$

and

$$
R:\left\{g_{j}\right\}_{0}^{\infty} \mapsto \sum_{j=0}^{\infty} R_{j} g_{j}
$$

It follows from the definition that

$$
\begin{equation*}
\|f\|_{F_{p}^{0,2}(H)}=\|Q f\|_{L^{p}\left(\ell^{2}\right)} \tag{5.1}
\end{equation*}
$$

and it is easy to see that $R Q=I: L^{2} \rightarrow L^{2}$ and $Q R \leq 3 I: L^{2}\left(\ell^{2}\right) \rightarrow L^{2}\left(\ell^{2}\right)$. We will use Q and R to identify $F_{p}^{0,2}(H)$ with L^{p}.

Theorem 5.1. Let $1<p<\infty$. Then $F_{p}^{0,2}(H)$ and L^{p} are isomorphic and have equivalent norms.

To prove the theorem, we will show that $Q: L^{p} \rightarrow L^{p}\left(\ell^{2}\right)$ and $R: L^{p}\left(\ell^{2}\right) \rightarrow L^{p}$, $1<p<\infty$, that is,

$$
\begin{equation*}
\|Q f\|_{L^{p}\left(\ell^{2}\right)} \lesssim\|f\|_{p} \quad \text { and } \quad\|R g\|_{p} \lesssim\|g\|_{L^{p}\left(\ell^{2}\right)} \tag{5.2}
\end{equation*}
$$

for $f \in L^{2} \cap L^{p}$ and $g \in L^{2}\left(\ell^{2}\right) \cap L^{p}\left(\ell^{2}\right)$, resp. This means that, by a density argument,

$$
\begin{equation*}
\|f\|_{F_{p}^{0,2}(H)} \lesssim\|f\|_{p} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|_{p} \lesssim\|f\|_{F_{p}^{0,2}(H)} \tag{5.4}
\end{equation*}
$$

Here in view of (5.2), (5.3) follows from (5.1) and (5.4) follows, with $g=Q f$, from the identity $R Q=I$, i.e., $\sum \varphi_{j}(H) \psi_{j}(H)=I$. Thus (5.3) and (5.4) prove Theorem 5.1.

The remaining part of this section is devoted to showing the boundedness of Q and R in (5.2). In the following, Lemma 5.2 and Lemma 5.4 imply that Q is bounded from L^{p} to $L^{p}\left(\ell^{2}\right)$, and, Lemma 5.2 and Lemma 5.5 imply that R is bounded from $L^{p}\left(\ell^{2}\right)$ to L^{p} by interpolation and duality.

Lemma 5.2. $Q: L^{2} \rightarrow L^{2}\left(\ell^{2}\right)$ and $R: L^{2}\left(\ell^{2}\right) \rightarrow L^{2}$ are well-defined bounded operators.
Proof. Let $\left\{g_{j}\right\} \in L^{2}\left(\ell^{2}\right)$. Note that R_{j} is bounded on $L^{2}:\left\|R_{j} g\right\|_{2} \leq\left\|\psi_{j}\right\|_{\infty}\|g\|_{2} \leq\|g\|_{2}$. Thus

$$
\begin{aligned}
\left(\sum_{j=0}^{\infty} R_{j} g_{j}, \sum_{j=0}^{\infty} R_{j} g_{j}\right) & =\sum_{\nu=-1}^{1} \sum_{j=0}^{\infty}\left(R_{j} g_{j}, R_{j+\nu} g_{j+\nu}\right) \\
& \leq \sum_{\nu=-1}^{1} \sum_{j}\left\|R_{j} g_{j}\right\|_{2}\left\|R_{j+\nu} g_{j+\nu}\right\|_{2} \\
& \leq 3 \sum_{j}\left\|g_{j}\right\|_{2}^{2}=3\left\|g_{j}\right\|_{L^{2}\left(\ell^{2}\right)}^{2}
\end{aligned}
$$

Similarly, we have $\|Q f\|_{L^{2}\left(\ell^{2}\right)} \leq \sqrt{2}\|f\|_{2}$ because $\sum_{j}\left|\varphi_{j}(x)\right|^{2} \leq 2$ for all x.
We now derive some necessary estimates for the kernel of $Q_{j}=\varphi_{j}(H)$, which is denoted by $Q_{j}(x, y)$. Define

$$
\widetilde{Q}_{j}(x, y)= \begin{cases}Q_{j}(x, y) & \text { if } 2^{j / 2}|I| \geq 1 \\ Q_{j}(x, y)-Q_{j}(x, \bar{y}) & \text { if } 2^{j / 2}|I|<1\end{cases}
$$

Lemma 5.3. Let $I=\left(\bar{y}-\frac{t}{2}, \bar{y}+\frac{t}{2}\right), t=|I|$ and $I^{*}=(\bar{y}-t, \bar{y}+t)$. Then there exists a constant C independent of I such that (a) If $2^{j / 2}|I| \geq 1$,

$$
\sup _{y \in I} \int_{\mathbb{R} \backslash I^{*}}\left|Q_{j}(x, y)\right| d x \leq C\left(2^{j / 2}|I|\right)^{-1}
$$

(b) If $2^{j / 2}|I|<1$,

$$
\sup _{y \in I} \int_{\mathbb{R} \backslash I^{*}}\left|Q_{j}(x, y)-Q_{j}(x, \bar{y})\right| d x \leq C 2^{j / 2}|I| .
$$

In particular, we have

$$
\begin{equation*}
\sum_{j} \int_{\mathbb{R} \backslash I^{*}}\left|\widetilde{Q}_{j}(x, y)\right| d x \leq(2+\sqrt{2}) C . \tag{5.5}
\end{equation*}
$$

Proof. For (a), we let $2^{j / 2}|I| \geq 1$ and $y \in I$. Then it follows from Lemma 3.1 (a) that

$$
\begin{aligned}
\int_{\mathbb{R} \backslash I^{*}}\left|Q_{j}(x, y)\right| d x & \leq C_{m} \int_{|x-y|>t / 2} \frac{2^{j / 2}}{\left(1+2^{j / 2}|x-y|\right)^{m}} d x \\
& \leq C\left(2^{j / 2}|I|\right)^{-1}, \quad(m=2) .
\end{aligned}
$$

For (b) we let $2^{j / 2}|I|<1, y \in I$ (\bar{y} being the center of I) and apply Lemma 3.1 (b) to obtain

$$
\begin{aligned}
\int_{\mathbb{R} \backslash I^{*}}\left|Q_{j}(x, y)-Q_{j}(x, \bar{y})\right| d x & =\int_{\mathbb{R} \backslash I^{*}}\left|\int_{\bar{y}}^{y} \frac{\partial}{\partial z} Q_{j}(x, z) d z\right| d x \\
& \leq C_{m}|y-\bar{y}| \int_{|x-\bar{y}|>t} \frac{2^{j}}{\left(1+2^{j / 2-1}|x-\bar{y}|\right)^{m}} d x \\
& \leq C 2^{j / 2}|I|, \quad(m=2) .
\end{aligned}
$$

Lemma 5.4. Q is bounded from L^{1} to weak- $L^{1}\left(\ell^{2}\right)$, i.e.,

$$
\left|\left\{x:\left(\sum_{0}^{\infty}\left|Q_{j} f(x)\right|^{2}\right)^{1 / 2}>\lambda\right\}\right| \leq C \lambda^{-1}\|f\|_{1}, \quad \forall \lambda>0 .
$$

Proof. Let $f \in L^{1}$. By the Calderón-Zygmund decomposition, there exists a sequence of disjoint intervals $\left\{I_{k}\right\}$ and and functions $\left\{b_{k}\right\}$ with supp $b_{k} \subset I_{k}$ such that $f=g+b$ with $g \in L^{2}$ and $b=\sum_{k} b_{k} \in L^{1}$. Furthermore, for each $\lambda>0$ the following properties hold
(i) $|g(x)| \leq C \lambda$ a.e.
(ii) $b_{k}(x)=f(x)-\left|I_{k}\right|^{-1} \int_{I_{k}} f d x, x \in I_{k}$
(iii) $\lambda \leq\left|I_{k}\right|^{-1} \int_{I_{k}}|f| d x \leq 2 \lambda$
(iv) $\sum_{k}\left|I_{k}\right| \leq \lambda^{-1}\|f\|_{1}$.

From Lemma 5.2 we know that $Q: L^{2} \rightarrow L^{2}\left(\ell^{2}\right)$ is bounded, i.e.,

$$
\int \sum_{0}^{\infty}\left|Q_{j} g(x)\right|^{2} d x \leq C\|g\|_{2}^{2}
$$

By Chebyshev inequality we have

$$
\left|\left\{x:\left(\sum_{0}^{\infty}\left|Q_{j} g(x)\right|^{2}\right)^{1 / 2}>\lambda / 2\right\}\right| \leq C \lambda^{-2}\|g\|_{2}^{2} \leq C \lambda^{-1}\|f\|_{1}
$$

Now we only need to show

$$
\left|\left\{x \notin \cup I_{k}^{*}:\left(\sum_{j}\left|Q_{j} b(x)\right|^{2}\right)^{1 / 2}>\lambda / 2\right\}\right| \leq C \lambda^{-1}\|f\|_{1}
$$

where $I_{k}^{*}=2 I_{k}$ means the interval of length $2\left|I_{k}\right|$ with the same center as I_{k}. Note that the left hand side of the above inequality is bounded by

$$
\begin{equation*}
\frac{2}{\lambda} \sum_{k} \int_{\mathbb{R} \backslash \cup I_{k}^{*}}\left(\sum_{j}\left|Q_{j} b_{k}(x)\right|^{2}\right)^{1 / 2} d x \leq \frac{2}{\lambda} \sum_{k} \int_{\mathbb{R} \backslash \cup I_{k}^{*}} \sum_{j}\left|Q_{j} b_{k}(x)\right| d x \tag{5.6}
\end{equation*}
$$

For each k, since $\int b_{k}=0$, we apply Lemma 5.3 with $I=I_{k}$ and estimate above the r.h.s. of (5.6) by

$$
\begin{aligned}
& \frac{2}{\lambda} \sum_{k} \int_{\mathbb{R} \backslash \cup I_{k}^{*}} \sum_{j} \int\left|\widetilde{Q}_{j}(x, y)\right|\left|b_{k}(y)\right| d y d x \\
\leq & \frac{2}{\lambda} \sum_{k} \int_{y \in I_{k}}\left|b_{k}(y)\right| d y \int_{\mathbb{R} \backslash I_{k}^{*}} \sum_{j}\left|\widetilde{Q}_{j}(x, y)\right| d x \\
\leq & \frac{C}{\lambda} \sum_{k} \int_{I_{k}}\left|b_{k}(y)\right| d y \leq C \lambda^{-1}\|f\|_{1} .
\end{aligned}
$$

This completes the proof.
Lemma 5.5. Let $R_{j}=\psi_{j}(H)$. Then $R=\left\{R_{j}\right\}$ is bounded from $L^{1}\left(\ell^{2}\right)$ to weak- L^{1}.
Proof. It suffices to show that there exists a constant C such that

$$
\begin{equation*}
\left|\left\{x:\left|\sum_{0}^{N} R_{j} f_{j}(x)\right|>\lambda\right\}\right| \leq C \lambda^{-1}\left\|\left\{f_{j}\right\}\right\|_{L^{1}\left(\ell^{2}\right)} \tag{5.7}
\end{equation*}
$$

for all $N \in \mathbb{N},\left\{f_{j}\right\} \in L^{1}\left(\ell^{2}\right)$ and $\lambda>0$. By passing to the limit we see that (5.7) also holds for $N=\infty$ and all $\left\{f_{j}\right\} \in L^{1}\left(\ell^{2}\right) \cap L^{2}\left(\ell^{2}\right)$. Then the lemma follows from the fact that $L^{1}\left(\ell^{2}\right) \cap L^{2}\left(\ell^{2}\right)$ is dense in $L^{1}\left(\ell^{2}\right)$.

Let $F(x)=\left(\sum_{j=0}^{\infty}\left|f_{j}(x)\right|^{2}\right)^{1 / 2} \in L^{1}$. By the Calderón-Zygmund decomposition there exists a sequence of disjoint open intervals $\left\{I_{k}\right\}$ such that
(i) $|F(x)| \leq C \lambda$, a.e. $x \in \mathbb{R} \backslash \cup_{k} I_{k}$
(ii) $\lambda \leq\left|I_{k}\right|^{-1} \int_{I_{k}}|F(x)| d x \leq 2 \lambda, \quad \forall k$.

Define

$$
g_{j}(x)=\left\{\begin{array}{ll}
\left|I_{k}\right|^{-1} \int_{I_{k}} f_{j} d y, & x \in I_{k} \\
f_{j}(x) & \text { otherwise, }
\end{array} \quad b_{j}(x)= \begin{cases}f_{j}-g_{j}, & x \in I_{k} \\
0 & \text { otherwise } .\end{cases}\right.
$$

Then, if $x \in \mathbb{R} \backslash \cup_{k} I_{k},\left(\sum_{j=0}^{\infty}\left|g_{j}(x)\right|^{2}\right)^{1 / 2}=\left(\sum_{j=0}^{\infty}\left|f_{j}(x)\right|^{2}\right)^{1 / 2}$, and, if $x \in I_{k}$

$$
\begin{aligned}
& \left(\sum_{j=0}^{\infty}\left|g_{j}(x)\right|^{2}\right)^{1 / 2}=\left(\sum_{j=0}^{\infty}\left|I_{k}\right|^{-2}\left|\int_{I_{k}} f_{j}(y) d y\right|^{2}\right)^{1 / 2} \\
\leq & \left|I_{k}\right|^{-1} \int_{I_{k}}\left(\sum_{j=0}^{\infty}\left|f_{j}(y)\right|^{2}\right)^{1 / 2} d y \leq 2 \lambda
\end{aligned}
$$

by Minkowski inequality. It follows that

$$
\begin{aligned}
\left\|\left\{g_{j}(x)\right\}\right\|_{L^{2}\left(\ell^{2}\right)}^{2} & =\sum_{k} \int_{I_{k}}\left(\sum_{j}\left|g_{j}(x)\right|^{2}\right) d x+\int_{\mathbb{R} \backslash \cup I_{k}}\left(\sum_{j}\left|g_{j}(x)\right|^{2}\right) d x \\
& \leq(2 \lambda)^{2} \sum_{k}\left|I_{k}\right|+2 \lambda \int_{\mathbb{R} \backslash \cup I_{k}}\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2} d x \\
& \leq C \lambda\|F\|_{1} .
\end{aligned}
$$

Now by Lemma 5.2 we obtain

$$
\begin{aligned}
\left|\left\{x:\left|\sum_{0}^{N} R_{j} g_{j}(x)\right|>\lambda / 2\right\}\right| & \leq C \lambda^{-2}\left\|\sum_{0}^{N} R_{j} g_{j}\right\|_{2}^{2} \\
& \leq C^{\prime} \lambda^{-2}\left\|\left\{g_{j}\right\}\right\|_{L^{2}\left(\ell^{2}\right)}^{2} \leq C \lambda^{-1}\|F\|_{1}
\end{aligned}
$$

It remains to show

$$
\left|\left\{x \notin \cup I_{k}^{*}:\left|\sum_{0}^{N} R_{j} b_{j}(x)\right|>\lambda / 2\right\}\right| \leq C \lambda^{-1}\|F\|_{1}
$$

The left hand side is not exceeding $\frac{2}{\lambda} \sum_{k} \int_{\mathbb{R} \backslash \cup I_{k}^{*}}\left|\sum_{j=0}^{N} R_{j} b_{j, k}(x)\right| d x$, where $b_{j, k}=b_{j} \chi_{I_{k}}$, $\chi_{I_{k}}$ the characteristic function of I_{k}. For each k, define

$$
\widetilde{R}_{j}^{k}(x, y)= \begin{cases}R_{j}(x, y) & \text { if } 2^{j / 2}\left|I_{k}\right| \geq 1 \\ R_{j}(x, y)-R_{j}\left(x, \bar{y}_{k}\right) & \text { if } 2^{j / 2}\left|I_{k}\right|<1\end{cases}
$$

where \bar{y}_{k} is the center of I_{k}. Then it follows from Lemma 5.3 with $I=I_{k}$ and Q_{j} replaced by R_{j} that

$$
\int_{\mathbb{R} \backslash I_{k}^{*}}\left(\sum_{j=0}^{N}\left|\widetilde{R}_{j}^{k}(x, y)\right|^{2}\right)^{1 / 2} d x \leq \int_{\mathbb{R} \backslash I_{k}^{*}} \sum_{j=0}^{N}\left|\widetilde{R}_{j}^{k}(x, y)\right| d x \leq C, \quad \forall y \in I_{k}, N .
$$

Thus we obtain, using $\int b_{j, k}=0$,

$$
\begin{aligned}
\int_{\mathbb{R} \backslash I_{k}^{*}}\left|\sum_{j=0}^{N} R_{j} b_{j, k}(x)\right| d x & =\int_{\mathbb{R} \backslash I_{k}^{*}}\left|\sum_{j=0}^{N} \int_{I_{k}} \widetilde{R}_{j}^{k}(x, y) b_{j, k}(y) d y\right| d x \\
& \leq \int_{I_{k}}\left(\sum_{j=0}^{N}\left|b_{j, k}\right|^{2}(y)\right)^{1 / 2} d y \int_{\mathbb{R} \backslash I_{k}^{*}}\left(\sum_{j=0}^{N}\left|\widetilde{R}_{j}^{k}(x, y)\right|^{2}\right)^{1 / 2} d x \\
& \leq C \int_{I_{k}}\left(\sum_{j=0}^{N}\left|b_{j, k}\right|^{2}\right)^{1 / 2} d y \\
& \leq 2 C \int_{I_{k}}\left(\sum_{j=0}^{\infty}\left|f_{j}\right|^{2}\right)^{1 / 2} d y
\end{aligned}
$$

Hence

$$
\left|\left\{x \notin \cup I_{k}^{*}:\left|\sum_{0}^{N} R_{j} b_{j}(x)\right|>\lambda / 2\right\}\right| \leq \frac{4 C}{\lambda} \sum_{k} \int_{I_{k}}\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2} d y \leq \frac{4 C}{\lambda}\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{1}
$$

as desired. This completes the proof.

6. Remarks on boundedness of the wave function

We conclude the paper with a boundedness result on the wave function $\psi(t, x)=e^{-i t H} f$ which is the solution to the Schrödinger equation

$$
\begin{equation*}
i \partial_{t} \psi=H \psi, \quad \psi(0, x)=f(x) \tag{6.1}
\end{equation*}
$$

We will see that using the $B(H)$ and $F(H)$ space one can obtain a global time decay for $\psi(t, x)$ (Theorem 6.3). The perturbed Besov space method has been considered in [JN94, Y95, Cu00, CuS01] and more recently, [BZ05, DP05, DF05] involving Schrödinger and wave equations.

By [BZ05, Theorem 7.1] or [JN94, Theorem 5.1] we know that if V is in the Kato class \mathcal{K}_{d} and if $\mathcal{D}\left(H^{m}\right)=W_{p}^{2 m}\left(\mathbb{R}^{d}\right)$ for some $m \in \mathbb{N}, 1 \leq p<\infty$, then for $1 \leq q \leq \infty, 0<\alpha<$ $m, B_{p}^{\alpha, q}(H)=B_{p}^{2 \alpha, q}\left(\mathbb{R}^{d}\right)$. It is easy to see that if V is C^{∞} with all derivatives bounded, then the domain condition on H is verified for all $m \in \mathbb{N}$.

In the following we assume $H=-d^{2} / d x^{2}+V_{n}$ and restrict our discussion to the P-T potential, although results here have extensions to general potentials on \mathbb{R}^{d}.

Since $V_{n} \sim \operatorname{sech}^{2} x$ is in the Schwartz class, we have

$$
B_{p}^{\alpha, q}(H)=B_{p}^{2 \alpha, q}(\mathbb{R})
$$

for all $\alpha>0$. In particular, $F_{p}^{\alpha, p}(H)=F_{p}^{2 \alpha, p}(\mathbb{R})$ since it always holds that $F_{p}^{\alpha, p}=B_{p}^{\alpha, p}$ by the definitions (see (1.3), (1.4)). On the other hand, by Theorem 5.1, $F_{p}^{0,2}(H)=L^{p}=$
$F_{p}^{0,2}(\mathbb{R})$. Thus we obtain the following theorem using complex interpolation method; consult [Tr78, Tr83] or [BL76] for details.

Theorem 6.1. If $\alpha>0,1<p<\infty$ and $2 p /(p+1)<q<2 p$, then

$$
F_{p}^{\alpha, q}(H)=F_{p}^{2 \alpha, q}(\mathbb{R})
$$

If $\alpha>0,1 \leq p<\infty$ and $1 \leq q \leq \infty$, then

$$
B_{p}^{\alpha, q}(H)=B_{p}^{2 \alpha, q}(\mathbb{R})
$$

From Theorem 6.1 and [JN94, Theorem 4.6, Remark 4.7] we obtain the boundedness of $\psi(t, x)$ on ordinary Besov spaces. Let $\langle t\rangle=\left(1+t^{2}\right)^{1 / 2}$ and let $\beta=\beta(p)=\left|\frac{1}{2}-\frac{1}{p}\right|$ be the critical exponent.

Proposition 6.2. Let $\alpha>0,1 \leq p<\infty, 1 \leq q \leq \infty$. Then

$$
\begin{equation*}
\left\|e^{-i t H} f\right\|_{B_{p}^{\alpha, q}(\mathbb{R})} \lesssim\langle t\rangle^{\left|\frac{1}{p}-\frac{1}{2}\right|}\|f\|_{B_{p}^{\alpha+2 \beta, q}(\mathbb{R})} \tag{6.2}
\end{equation*}
$$

Moreover, if $2 \leq p<\infty$,

$$
\left\|e^{-i t H} f\right\|_{L^{p}} \lesssim\langle t\rangle^{\left|\frac{1}{p}-\frac{1}{2}\right|}\|f\|_{B_{p}^{2 \beta, 2}(\mathbb{R})}
$$

and if $1 \leq p<2$,

$$
\begin{equation*}
\left\|e^{-i t H} f\right\|_{L^{p}} \lesssim\langle t\rangle^{\left|\frac{1}{p}-\frac{1}{2}\right|}\|f\|_{B_{p}^{2 \beta, 1}(\mathbb{R})} \tag{6.3}
\end{equation*}
$$

Proof. Let $\left\{\varphi_{j}\right\}_{0}^{\infty}$ be a smooth dyadic system. From the proof of [JN94, Theorem 4.6] we see that

$$
\left\|e^{-i t H} \varphi_{j}(H) f\right\|_{p} \lesssim 2^{j \beta}\langle t\rangle^{\left|\frac{1}{2}-\frac{1}{p}\right|}\left\|\varphi_{j}(H) f\right\|_{p}, \quad j \geq 0 .
$$

This implies (6.2) by Theorem 6.1 and

$$
\begin{equation*}
\left\|e^{-i t H} f\right\|_{B_{p}^{0, q}(H)} \lesssim\langle t\rangle^{\left|\frac{1}{2}-\frac{1}{p}\right|}\|f\|_{B_{p}^{\beta, q}(H)} \tag{6.4}
\end{equation*}
$$

Now if $p \geq 2$, then $B_{p}^{0,2}(H) \hookrightarrow F_{p}^{0,2}(H)$ according to (3.9). We have

$$
\left\|e^{-i t H} f\right\|_{L^{p}} \approx\left\|e^{-i t H} f\right\|_{F_{p}^{0,2}(H)} \lesssim\langle t\rangle^{\frac{1}{2}-\frac{1}{p}}\|f\|_{B_{p}^{\beta, 2}(H)}
$$

For $1 \leq p<2$, because

$$
\|f\|_{p} \leq \sum_{j=0}^{\infty}\left\|\varphi_{j}(H) f\right\|_{p}=\|f\|_{B_{p}^{0,1}(H)}
$$

we see $B_{p}^{0,1}(H) \hookrightarrow L^{p}$, which implies (6.3) in light of (6.4).
One is also interested in understanding the long time behavior of $\psi(t, x)$. From [GSch04] and [DF05] we know that if $\left(1+x^{2}\right) V \in L^{1}(\mathbb{R})$, then

$$
\begin{equation*}
\left\|e^{-i t H} E_{a c} f\right\|_{L^{p^{\prime}}} \lesssim t^{-\left(\frac{1}{p}-\frac{1}{2}\right)}\|f\|_{L^{p}}, \quad \forall t>0,1 \leq p \leq 2 \tag{6.5}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. So Proposition 6.2 and (6.5) yield

$$
\begin{equation*}
\left\|e^{-i t H} E_{a c} f\right\|_{L^{p^{\prime}}} \lesssim\langle t\rangle^{-\left(\frac{1}{p}-\frac{1}{2}\right)}\|f\|_{B_{p^{\prime}}^{2 \beta, 2}(\mathbb{R}) \cap L^{p}}, \quad 1<p \leq 2 \tag{6.6}
\end{equation*}
$$

where we note that $E_{a c}$ is bounded on L^{p} because $E_{p p}$, which has the kernel $\sum_{j=1}^{n} e_{j}(x) e_{j}(y)$, is bounded on L^{p} (see the discussion at the beginning of Section 4).

Theorem 6.3. Let $1<p \leq 2$. Then

$$
\begin{align*}
& \left\|e^{-i t H} E_{a c} f\right\|_{L^{p^{\prime}}} \lesssim\langle t\rangle^{-\left(\frac{1}{p}-\frac{1}{2}\right)}\|f\|_{B_{p}^{4 \beta, 2}(\mathbb{R})} . \tag{6.7}\\
& \left\|e^{-i t H} E_{a c} f\right\|_{L^{p^{\prime}}} \lesssim\langle t\rangle^{-\left(\frac{1}{p}-\frac{1}{2}\right)}\|f\|_{F_{p}^{4 \beta, 2}(\mathbb{R})} . \tag{6.8}
\end{align*}
$$

Proof. Since $B_{p}^{4 \beta, 2}(\mathbb{R}) \hookrightarrow B_{p^{\prime}}^{2 \beta, 2}(\mathbb{R})$ (Besov embedding; see e.g. [Tr83, 2.7.1]) and $B_{p}^{\epsilon, 2}(\mathbb{R}) \hookrightarrow$ L^{p} if $\epsilon>0$, it follows from (6.6) that

$$
\left\|e^{-i t H} E_{a c} f\right\|_{L^{p^{\prime}}} \lesssim\langle t\rangle^{-\left(\frac{1}{p}-\frac{1}{2}\right)}\|f\|_{B_{p}^{4 \beta, 2}(\mathbb{R})}
$$

provided $1<p \leq 2$. The second inequality follows from (6.7) and the embedding $F_{p}^{s, 2}(\mathbb{R}) \hookrightarrow B_{p}^{s, 2}(\mathbb{R})$ in light of (3.9).
Remark 6.4. For (6.8), if alternatively starting with (6.6) (rather than (6.7)) and using an embedding of Jawerth [Tr83; 2.7.1], we can obtain an improved result: if $1<p<2$, $0<q \leq \infty$, then

$$
\left\|e^{-i t H} E_{a c} f\right\|_{L^{p^{\prime}}} \lesssim\langle t\rangle^{-\left(\frac{1}{p}-\frac{1}{2}\right)}\|f\|_{F_{p}^{4 \beta, q}(\mathbb{R})} .
$$

As a consequence we also obtain the following regularity result by the identification in Theorem 6.1.

Corollary 6.5. Let $\alpha>0$. If $1<p \leq 2,1 \leq q \leq \infty$, then

$$
\begin{equation*}
\left\|e^{-i t H} E_{a c} f\right\|_{B_{p^{\prime}}^{\alpha, q}(\mathbb{R})} \lesssim\langle t\rangle^{-\left(\frac{1}{p}-\frac{1}{2}\right)}\|f\|_{B_{p}^{\alpha+4 \beta, q}(\mathbb{R})} . \tag{6.9}
\end{equation*}
$$

If $1<p \leq 2, p \leq q \leq 2$, then

$$
\begin{equation*}
\left\|e^{-i t H} E_{a c} f\right\|_{F_{p^{\prime}}^{\alpha, q}(\mathbb{R})} \lesssim\langle t\rangle^{-\left(\frac{1}{p}-\frac{1}{2}\right)}\|f\|_{F_{p}^{\alpha+4 \beta, q}(\mathbb{R})} \tag{6.10}
\end{equation*}
$$

Proof. Since $B_{p}^{2 \beta, 2}(H)=B_{p}^{4 \beta, 2}(\mathbb{R})$ by Theorem 6.1, we can write (6.7) as

$$
\begin{equation*}
\left\|e^{-i t H} E_{a c} f\right\|_{L^{p^{\prime}}} \lesssim\langle t\rangle^{-\left(\frac{1}{p}-\frac{1}{2}\right)}\|f\|_{B_{p}^{2 \beta, 2}(H)} . \tag{6.11}
\end{equation*}
$$

Replace f with $\varphi_{j}(H) f$ in (6.11). Then the B-inequality (6.9) follows from the simple observation that

$$
\left(\sum_{j} 2^{j \alpha q}\left\|\varphi_{j}(H) f\right\|_{B_{p}^{\gamma, 2}(H)}^{q}\right)^{1 / q} \approx\|f\|_{B_{p}^{\alpha+\gamma, q}(H)}
$$

To show the F-inequality, substitute $f=\left(H+c_{n}\right)^{-\alpha} f$ into (6.8) but use the $F_{p}^{2 \beta, 2}(H)$ norm instead. Then by the lifting property in Lemma 3.10 and Theorem 6.1, we have

$$
\begin{equation*}
\left\|e^{-i t H} E_{a c} f\right\|_{F_{p^{\prime}}^{\alpha, 2}(\mathbb{R})} \lesssim\langle t\rangle^{-\left(\frac{1}{p}-\frac{1}{2}\right)}\|f\|_{F_{p}^{\alpha+4 \beta, 2}(\mathbb{R})} \tag{6.12}
\end{equation*}
$$

Now (6.10) follows from the interpolation between (6.12) and (6.9) with $p=q$, where we note that $B_{p}^{\alpha, p}(\mathbb{R})=F_{p}^{\alpha, p}(\mathbb{R})$.

Acknowledgment. The second author would like to thank A. Seeger for a helpful suggestion on the use of interpolation that has led to Theorem 6.1.

References

[AGHH] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, 1988.
[BZ05] J. Benedetto, S. Zheng, Besov spaces for the Schrödinger operator with barrier potential (submitted). http://lanl.arXiv.org/math.CA/0411348.
[BL76] J. Bergh, J. Löfström, Interpolation Spaces, Springer-Verlag, 1976.
[B99] H. Beyer, On the completeness of the quasinormal modes of the Pöschl-Teller potential, Comm. Math. Phys. 204 (1999), no. 2, 397-423.
[C01] M. Christ, One-dimensional Schrödinger operators with slowly decaying potentials: spectra and asymptotics, Workshop on Oscillatory Integrals and Dispersive Equations, IPAM, 2001.
[Cu00] S. Cuccagna, On the wave equation with a potential, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1549-1565.
[CuS01] S. Cuccagna, P. Schirmer, On the wave equation with a magnetic potential, Comm. Pure Appl. Math. 54 (2001), no. 2, 135-152.
[DF05] P. D'Ancona, L. Fanelli, L^{p} boundedness of the wave operator for the one dimensional Schrödinger operator. http://arXiv.org/math-ph/0509059.
[DP05] P. D'Ancona, V. Pierfelice, On the wave equation with a large rough potential, J. Funct. Anal 227 (2005), no. 1, 30-77.
[DT79] P. Deift, E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. XXXII (1979), 121-251.
[DZ98] J. Dziubański, Atomic decomposition of H^{p} spaces associated with some Schrödinger operators, Indiana Univ. Math. J. 47 (1998), 75-98.
[DZ02] J. Dziubański and J. Zienkiewicz, H^{p} spaces for Schrödinger operators, in: Fourier Analysis and Related Topics, Banach Center Publ. 56 (2002), 45-53.
[E95] J. Epperson, Triebel-Lizorkin Spaces for Hermite expansions, Studia Math. 114 (1995), no.1, 87103.
[E96] , Hermite multipliers and pseudo-multipliers, Proc. Amer. Math. Soc. 124 (1996), no.7, 2061-2068.
[Flu74] S. Flügge, Practical Quantum Mechanics, Springer-Verlag, 1974.
[FJW] M. Frazier, B. Jawerth, G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, Conference Board of the Math. Sci. 79, 1991.
[GSch04] M. Goldberg, W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three, Comm. Math. Phys. 251 (2004), no. 1, 157-178.
[G89] C. Grosche, Path integral solution of a class of potentials related to the Pöschl-Teller potential, J. Phys. A: Math. Gen. 22 (1989), 5073-5087.
[JN94] A. Jensen, S. Nakamura, Mapping properties of functions of Schrödinger operators between L^{p} spaces and Besov spaces, in Spectral and Scattering Theory and Applications, Advanced Studies in Pure Math. 23 (1994), 187-209.
[Lam80] G. Lamb, Elements of Soliton Theory, Pure \& Applied Mathematics, Wiley-Interscience, 1980.
[Tr83] H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, 1983.
[Tr92] \qquad , Theory of Function Spaces II, Monographs Math. 84, Birkhäuser, Basel, 1992.
[Tr78] , Interpolation Theory, Function Spaces, Differential Operators, Amsterdam, NorthHolland, 1978.
[Y95] K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan 47 (1995), no. 3, 551-581.
[Zh01] Q. Zhang, Global bounds of Schrödinger heat kernels with negative potentials, J. Funct. Anal. 182 (2001), no.2, 344-370.
[Z04a] S. Zheng, A representation formula related to Schrödinger operators, Anal. Theo. Appl. 20 (2004), no.3., 294-296. http://lanl.arXiv.org/math.SP/0412314.
[Z04b] , Perturbed Fourier transform associated to Schrödinger operators, Preprint (2004).
[Z03] \quad, Besov Spaces for Schrödinger Operators, Dissertation, University of Maryland, College Park, 2003.
[Z05] , Littlewood-Paley theory, atomic decomposition and Schrödinger equation on \mathbb{R}^{d}, Presented at the $111^{\text {th }}$ AMS Conference, Atlanta, 2005.

(Gestur Ólafsson) Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803
E-mail address: olafsson@math.lsu.edu
URL: http://www.math.lsu.edu/~olafsson

(Shijun Zheng) Department of Mathematics, Industrial Mathematics Institute, University of South Carolina, Columbia, SC 29208

AND
Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803
E-mail address: shijun@math.sc.edu
URL: http://www.math.sc.edu/~shijun

