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Abstract. This paper addresses a problem of constructing and analysing estimators for the

regression problem in supervised learning. Recently, there was a big interest in studying univer-
sal estimators. Universal means that the estimator does not depend on an a priori assumption

that the regression function fρ belongs to some class F from a collection of classes F and

provides the estimation error for the fρ close to the optimal error for the class F . This paper is
an illustration of how the general technique of construction of universal estimators, developed

in the previous author’s paper, can be applied in concrete situations. A setting of the problem
studied in the paper has been motivated by a very recent paper by Smale and Zhou. The start-

ing point for us is a given kernel K(x, u) defined on X ×Ω. On the base of this kernel we build

an estimator that is universal for classes defined in terms of nonlinear approximations with
regard to the system {K(·, u)}u∈Ω. We apply the Relaxed Greedy Algorithm in construction

of an estimator that is universal and easily implementable.

1. Introduction. Setting. Known results

This paper addresses a problem of constructing and analysing estimators for the regression
problem in supervised learning. Recently, there was a big interest in studying universal
estimators (see, for instance, [GKKW], [DKPT1,2], [KT], [BCDDT], [T1,2], [SZ], [KP],
[CDD]). Universal means that the estimator does not depend on an a priori assumption that
the regression function fρ belongs to some class F from a collection of classes F and provides
the estimation error for the fρ close to the optimal error for the class F . The reader can
find the rigorous definition of universally optimal estimators in [T2]. Two different general
approaches to solving this problem (construction of a universal estimator) have emerged in
recent works. In the first approach we begin with a collection F := {F} of classes of our
interest and build a universal estimator for the collection F . In the second approach we
begin with a sequence {Hn} of hypothesis spaces where our estimators are supposed to come
from. Then, we describe a collection F for which our estimators are universal. Clearly, these
two approaches are closely related. In this paper we follow the lines of the second approach.
A setting of the problem studied in the paper has been motivated by a very recent paper
by Smale and Zhou [SZ]. They considered the following problem. Let a Mercer kernel K
be given. This kernel generates the Reproducing Kernel Hilbert Space HK with the norm
‖ · ‖K . Next, they consider the regularized least square estimator: take a parameter λ > 0
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and define for a given data z := (z1, . . . , zm), zi = (xi, yi),

(1.1) fλ,z := arg min
f∈HK

(

m−1
m

∑

i=1

(yi − f(xi))
2 + λ‖f‖2

K

)

.

It is known (see [CS,p.42]) that fλ,z has the form

(1.2) fλ,z(x) =

m
∑

i=1

aiK(x, xi).

The representation (1.2) is a starting point for us. We will be looking for estimators of the
form

(1.3)
m

∑

i=1

aiK(x, ui).

It is clear that an estimator of the form (1.3) can approximate a function fρ with accuracy
δ with positive probability only in the case when the best approximation of fρ by functions
of the form (1.3) is less than or equal to δ. We use this observation in forming a collection F
of classes F that are well approximated by functions of the form (1.3). Namely, we consider
the following classes. Let K(x, u) be a continuous onX×Ω function, where X ⊂ R

d, Ω ⊂ R
k

are compact subsets. Define a system K := {K(·, u)}u∈Ω and consider the restricted best
m-term approximation of f ∈ L2(X, µ), µ is a Borel measure on X , as

σm,b(f,K)L2(X,µ) := inf
ui∈Ω,ci:|c1|+···+|cm|≤b

‖f(x)−
m

∑

i=1

ciK(x, ui)‖L2(X,µ).

Then for positive r, D we define

Ar(K, D, b, µ) := {f ∈ L2(X, µ) : σm,b(f,K)L2(X,µ) ≤ Dm−r}.

We point out that it is important that we define these classes using the restricted best m-
term approximations σm,b(f,K)L2(X,µ). This allows us (under minor conditions on K) to
apply the general technique of construction of universal estimators developed in [T2].

We now introduce the notations and formulate some theorems that we use in proofs of our
results. Let X ⊂ R

d, Y ⊂ R be Borel sets, ρ be a Borel probability measure on Z = X ×Y .
For f : X → Y define the error

E(f) :=

∫

Z

(f(x)− y)2dρ.

Consider ρ(y|x) - conditional (with respect to x) probability measure on Y and ρX - the
marginal probability measure on X (for S ⊂ X , ρX(S) = ρ(S× Y )). Define the conditional
expectation

fρ(x) :=

∫

Y

ydρ(y|x).
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The function fρ is known in statistics as the regression function of ρ. It is clear that if
fρ ∈ L2(ρX) := L2(X, ρX) then it minimizes the error E(f) over all f ∈ L2(ρX): E(fρ) ≤
E(f), f ∈ L2(ρX). Thus, in the sense of error E(·) the regression function fρ is the best to
describe the relation between inputs x ∈ X and outputs y ∈ Y . Now, our goal is to find
an estimator fz, on the base of given data z = ((x1, y1), . . . , (xm, ym)) that approximates
fρ well with high probability. We assume that (xi, yi), i = 1, . . . , m are independent and
distributed accoding to ρ.

For a compact subset Θ of a Banach space B we define two variants of the entropy
numbers as follows

ea(Θ, B) := inf{ε : ∃f1, . . . , f[a] ∈ Θ : Θ ⊂ ∪
[a]
j=1(fj + εU(B))}, a ≥ 1,

εn(Θ, B) := e2n(Θ, B), n ∈ N,

where U(B) is the closed unit ball of a Banach space B. We denote N(Θ, ε, B) the covering
number that is the minimal number of balls of radius ε with centers in Θ needed for covering
Θ. We note that N(Θ, εn(Θ, B), B) ≤ 2n.

We proposed (see [DKPT2], [T2]) to study the following function that we call the accuracy
confidence function. Let a set M of admissible measures ρ, and a sequence E := {E(m)}∞m=1

of allowed classes E(m) of estimators be given. For m ∈ N, η > 0 we define

ACm(M,E, η) := inf
Em∈E(m)

sup
ρ∈M

ρm{z : ‖fρ − fz‖L2(ρX) ≥ η}

where Em is an estimator that maps z → fz. For example, E(m) could be a class of all
estimators, a class of linear estimators of the form

fz =

m
∑

i=1

wi(x1, . . . , xm, x)yi,

or a specific estimator. In this paper we consider the case when E(m) is the set of all
estimators, m = 1, 2, . . . . We drop E from the notation and write ACm(M, η).

By C and c we denote absolute positive constants and by C(·), c(·), and A0(·) we denote
constants that are determined by their arguments. For two nonnegative sequences a =
{an}

∞
n=1 and b = {bn}

∞
n=1 the relation (order inequality) an � bn means that there is a

number C(a, b) such that for all n we have an ≤ C(a, b) bn; and the relation an � bn means
that an � bn and bn � an.

We let µ be any Borel probability measure defined on X and let M(Θ, µ) denote the set
of all ρ such that ρX = µ, |y| ≤ 1, fρ ∈ Θ. Denote by C(X) the space of continuous on X
functions. The following theorem has been proved in [T2].

Theorem 1.1. Let µ be a Borel probability measure on X. Assume r > 0 and Θ is a
compact subset of L2(X, µ) such that Θ ⊂ 1

4U(C(X)) and

(1.4) εn(Θ, L2(X, µ)) � n−r.
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Then there exist δ0 > 0 and η−m ≤ η+
m, η−m � η+

m � m− r
1+2r such that

ACm(M(Θ, µ), η) ≥ δ0 for η ≤ η−m

and
C1e

−c1(r)mη2

≤ ACm(M(Θ, µ), η) ≤ e−c2mη2

for η ≥ η+
m.

Theorem 1.1 gives a very accurate description of the AC-function for classes Θ satisfying
(1.4). This indicates that the behavior of the sequence {εn(Θ, L2(X, µ))} determines the
behavior of the sequence {ACm(M(Θ, µ), η)}. Theorem 1.1 contains two components: the
upper bounds and the lower bounds. In particular, the lower bounds show that the best
accuracy we can achieve for classes satisfying (1.4) is not better than η−m � m−r/(1+2r). We
note that the lower bounds in Theorem 1.1 is a corollary (see [T1]) of the corresponding
lower bounds from [DKPT2]. In Section 2 we prove some upper bounds by analysing the
entropy numbers of a class of our interest. The lower bounds from Theorem 1.1 will serve
as a benchmark for our method of proving the upper bounds.

We now proceed to results from [T2] on construction of universal (adaptive) estimators.
We will use these results in Sections 3 and 4. Let a, β, be two positive numbers. Consider
a collection J (a, β) of compacts Jn in C(X) satisfying

(1.5) N(Jn, ε, C(X)) ≤ (a(1 + 1/ε))nnβn, n = 1, 2, . . . .

Let us formulate a condition on measure ρ and a class H that we will often use:

(1.6) for all f ∈ H, we have |f(x) − y| ≤M a.e. with respect to ρ.

Clearly, (1.6) is satisfied if |y| ≤M/2 and |f(x)| ≤M/2, f ∈ H.
The following two theorems from [T2] form a basis for construction of universal estima-

tors. We use these theorems in Sections 3 and 4. Other examples of their use can be found
in [T2]. We begin with the definition of our estimator. Let as above J := J (a, β) be a
collection of compacts Jn in C(X) satisfying (1.5).

We define
fz,H = arg min

f∈H
Ez(f),

where

Ez(f) :=
1

m

m
∑

i=1

(f(xi) − yi)
2

is the empirical error (risk) of f . This fz,H is called the empirical optimum or the least
squares estimator. We take a parameter A ≥ 1 and consider the following estimator

fA
z

:= fA
z

(J ) := fz,Jn(z)

with

n(z) := arg min
1≤j≤m

(

Ez(fz,Jj
) +

Aj lnm

m

)

.

Denote for a set L of a Banach space B

d(Θ, L)B := sup
f∈Θ

inf
g∈L

‖f − g‖B.
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Theorem 1.2. For J := {Jn}
∞
n=1 satisfying (1.5) and M > 0 there exists A0 := A0(a, β,M)

such that for any A ≥ A0 and any ρ such that ρ, Jn, n = 1, 2, . . . satisfy (1.6) we have

‖fA
z
− fρ‖

2
L2(ρX ) ≤ min

1≤j≤m
(3d(fρ, Jj)

2
L2(ρX ) +

4Aj lnm

m
)

with probability ≥ 1 −m−c(M)A.

Theorem 1.3. Let compacts {Jn} satisfy (1.5) and M > 0 be given. There exists A0 :=
A0(a, β,M) ≥ 1 such that for any A ≥ A0 and any ρ satisfying

d(fρ, Jn)L2(ρX ) ≤ A1/2n−r, n = 1, 2, . . . ,

and such that ρ, Jn, n = 1, 2, . . . , satisfy (1.6) we have for η ≥ A1/2
(

ln m
m

)
r

1+2r

ρm{z : ‖fA
z
− fρ‖L2(ρX ) ≥ 4A1/2η} ≤ Ce−c(M)mη2

.

This paper is an illustration of how the general technique developed in [T2] can be applied
in concrete situations. A discussion in Section 5 demonstrates that the above mentioned
technique (based on Theorems 1.2 and 1.3) provides a powerful method of building esti-
mators with good properties. We place the discussion section at the end of the paper for
the reader’s convenience. We present new results in Sections 2–4. In Section 4 we apply
the Relaxed Greedy Algorithm in construction of an estimator that is universal and easily
implementable.

2. Classes defined by integral operators

Let Ω ⊂ R
k andX ⊂ R

d be compact subsets. Assume that the Borel probability measures
ν and µ are defined on the sets Ω and X respectively. Suppose that K(x, u) is a continuous
function on X × Ω. We define the following integral operator

LK(ϕ) := LK,ν(ϕ) :=

∫

Ω

K(x, u)ϕ(u)dν.

This operator is a compact operator that maps a Hilbert space L2(Ω, ν) into L2(X, µ). For
a positive number D we define a function class

W (K,D, ν) := {f : f = LK,ν(ϕ), ‖ϕ‖L2(Ω,ν) ≤ D}.

In this section we discuss the behavior of the ACm(W (K,D, ν), µ). We will apply the
general Theorem 1.1 for that purpose. Therefore, we need bounds of the sequence
{εn(W (K,D, ν), L2(X, µ))}. There are known general results that give such bounds in terms
of singular numbers of the operator LK . E. Schmidt [S] gave an expansion (known as the
Schmidt expansion)

K(x, u) =
∞
∑

j=1

sj(LK)φj(x)ψj(u)
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where {sj(LK)} is a nonincreasing sequence of singular numbers of LK , i.e. sj(LK) :=

λj(L
∗
KLK)1/2, {λj(A)} is a sequence of eigenvalues of an operator A, L∗

K is the adjoint
operator to LK . The two sequences {φj(x)} and {ψj(u)} form orthonormal sequences of
eigenfunctions of the operators LKL

∗
K and L∗

KLK respectively.
Next, it is known that

dn(W (K,D, ν), L2(X, µ)) = sn+1(LK)D,

where dn(F,B) is the Kolmogorov width of an F in a Banach space B:

dn(F,B) = inf
{hj}n

j=1

sup
f∈F

inf
{cj}n

j=1

‖f −

n
∑

j=1

cjhj‖B.

Finally, we use the following inequality due to Carl ([C]): for any a > 0, we have

max
1≤k≤n

kaεk(F,B) ≤ C(a) max
1≤m≤n

madm−1(F,B).

In particular, the above argument implies that if

(2.0) sn(LK) ≤ Cn−α

with some α > 0, then

(2.1) εn(W (K,D, ν), L2(X, µ)) ≤ C(α)n−α.

With (2.1) in hands we can apply the following general result from [T2].

Theorem 2.1. Suppose ρX is fixed. Let fρ ∈ Θ and let ρ, Θ satisfy (1.6). Assume

εn(Θ, L2(ρX)) ≤ Dn−r, n = 1, 2, . . . , Θ ⊂ DU(L2(ρX)).

Then there exists an estimator fz such that for η ≥ ε0, ε0 := C(M,D, r)m− r
1+2r , m ≥

60(M/D)2, we have

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ exp
(

−
mη2

140M2

)

.

Theorem 2.1 and (2.1) imply the following result.

Theorem 2.2. Suppose ρ is such that |y| ≤ M1. Assume that for a continuous kernel K
we have

sn(LK,ν) ≤ D1n
−r.

We set M := M1 + ‖K‖C(X×Ω). Then there exists an estimator fz such that for η ≥ ε0,

ε0 := C1(M,D,D1, r)m
− r

1+2r , m ≥ C2(M,D,D1, r), we have for fρ ∈W (K,D, ν), ρX = µ

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ exp
(

−
mη2

140M2

)

.

Theorem 1.1 indicates that we cannot improve Theorem 2.2 if we use only (2.1). Also,
in general, we cannot derive a better than (2.1) estimate from (2.0).

We now discuss some examples. Let Ω = X and K(x, u) be a Mercer kernel (i.e. a
function which is continuous, symmetric and for all finite sets {x1, . . . , xl} ⊂ X the l × l
matrix ‖K(xi, xj)‖

l
i,j=1 is positive definite). Assume µ = ν and use the following variant

(see [CS,p.34]) of the classical Mercer’s theorem.
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Theorem 2.3. For a Mercer kernel K(x, u) we have

(2.2) K(x, u) =

∞
∑

l=1

λl(LK)φl(x)φl(u),

where λl(LK) is the lth eigenvalue of LK and φl is the corresponding eigenfunction. The
convergence in (2.2) is absolute and

(2.3)
∞
∑

l=1

λl(LK) =

∫

X

K(x, x)dν ≤ C(K).

We note that in this case (LK is self adjoint) we have sl(LK) = λl(LK). The bound (2.3)
implies immediately that

(2.4) λn(LK) ≤ C(K)/n.

Let us consider a more general operator Lr
K := Lr

K,ν , r > 0, than the operator LK . We

define for any ϕ ∈ L2(X, ν)

(2.6) Lr
K(ϕ) :=

∞
∑

l=1

λl(LK)r〈ϕ, φl〉φl.

We note that L1
K = LK . We associate the following class with the operator Lr

K

W r(K,D, ν) := {f : f = Lr
K(ϕ), ‖ϕ‖L2(X,ν) ≤ D}.

Then it is known and easy to check that

dn(W r(K,D, ν), L2(X, ν)) = λn+1(LK)r.

Therefore, by (2.1) and (2.4) we get

(2.7) εn(W r(K,D, ν), L2(X, ν)) ≤ C(r)Dn−r.

Applying Theorem 2.1 we obtain the following result.

Theorem 2.4. Suppose ρ is such that |y| ≤M1. Assume that K is the Mercer kernel. We
set M := M1 + ‖K‖C(X×Ω). Let r > 0 and the Borel measure ν be fixed. Then there exists

an estimator fz such that for η ≥ ε0, ε0 := C1(M,D,K, r)m− r
1+2r , m ≥ C2(M,D,K, r), we

have for fρ ∈W r(K,D, ν), ρX = ν

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ exp
(

−
mη2

140M2

)

.
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3. A universal estimator

Let X be a compact subset of R
d and let B(X) be a Banach space of functions defined

on X with the norm ‖f‖B(X) := supx∈X |f(x)|. Consider a system S = {g} of functions
from B(X). We assume that the system S satisfies the following two conditions.

(3.1) S ⊂ C1U(B(X)) that is ∀g ∈ S, |g(x)| ≤ C1.

There exists a γ > 0 such that

(3.2) en(S, B(X)) ≤ C2n
−γ , n = 1, 2, . . . .

We note that condition (3.2) implies (3.1).
We now describe a family of estimators based on the system S. These estimators are

defined depending on three parameters q ≥ 1, b > 0, and A > 0. Let a set {gn
l }

nq

l=1 form an
enq (S, B(X))-net of S. We define the following compacts

Fn(q, b) := Fn(S, q, b) := {f : ∃G ⊂ [1, nq] ∩ N, |G| = n : f =
∑

l∈G

clg
n
l ,

∑

l∈G

|cl| ≤ b}.

For a parameter A > 0 we define

(3.3) fA
z

:= fA
z

(S) := fA,q,b
z

(S) := f
z,Fn(z)(q,b),

n(z) := arg min
1≤j≤m

(Ez(fz,Fj(q,b) +
Aj lnm

m
).

We will prove in this section that estimators fA
z

perform well for the following classes

Ar(S, D, b, µ) := {f ∈ L2(X, µ) : σm,b(f,S)L2(X,µ) ≤ Dm−r},

where µ is a Borel probability measure on X and

σm,b(f,S)L2(X,µ) := inf
gi∈S,ci:|c1|+···+|cm|≤b

‖f −
m

∑

i=1

cigi‖L2(X,µ)

is a restricted best m-term approximation of f with regard to the system S.

Theorem 3.1. Let positive numbers M1, D, b, R be given. We set M := M1 + bC1. There
exists an A0 := A0(M,D, b, R, γ, C2) ≥ 1 such that for the estimator fA

z
:= fA,q,b

z
(S) with

q := R/γ and A ≥ A0 we have the following error bounds. For any ρ satisfying |y| ≤ M1,
fρ ∈ Ar(S, D, b, µ), ρX = µ, with some 0 < r ≤ R, µ - Borel probability measure, we have

for η ≥ A1/2
(

ln m
m

)
r

1+2r

ρm{z : ‖fA
z
− fρ‖L2(X,ρX ) ≥ 4A1/2η} ≤ Ce−c(M)mη2

.
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Proof. Our proof is based on Theorem 1.3. We will check that the conditions of Theorem
1.3 are satisfied. We specify the compacts {Jn} from Theorem 1.3 in the following way
Jn := Fn(q, b). Then the estimator defined by (3.3) is exactly the estimator from Theorem
1.3. Thus, we need to check that the compacts {Jn} satisfy the condition (1.5) with some
a, β and check that the assumption fρ ∈ Ar(S, D, b, µ), ρX = µ, implies that

(3.4) d(fρ, Jn)L2(X,µ) ≤ A1/2n−r, n = 1, 2, . . . .

Also, we need to check that ρ, Jn satisfy (1.6). We begin with the latter property. By
our assumption on ρ we have |y| ≤ M1 and by our assumption (3.1) on S we get from the
definition of Fn(q, b) that for f ∈ Fn(q, b) |f(x)| ≤ bC1. Therefore, the condition (1.6) is
satisfied with M = M1 + bC1.

We now proceed to the condition (1.5). For G ⊂ [1, nq] ∩ N with cardinality |G| = n we
define

F (G) := F (G, q, b) := {f : f =
∑

l∈G

clg
n
l ,

∑

l∈G

|cl| ≤ b}.

Then

(3.5) Fn(q, b) = ∪G:G⊂[1,nq]∩N,|G|=nF (G).

Using F (G) ⊂ bC1U(B(X)) we obtain

(3.6) N(F (G), ε, B(X)) ≤ (1 + 2bC1/ε)
n.

Then (3.5) and (3.6) imply

N(Fn(q, b), ε, B(X)) ≤ (1 + 2bC1/ε)
n

(

[nq]

n

)

≤ nqn(1 + 2bC1/ε)
n.

Therefore, condition (1.5) is satisfied with a = max(1, 2bC1) and β = q.
It remains to check (3.4). Let fρ ∈ Ar(S, D, b, µ), δ > 0 and {ci}, {gi} ⊂ S be such that

‖fρ −

n
∑

i=1

cigi‖L2(X,µ) ≤ Dn−r + δ,

n
∑

i=1

|ci| ≤ b.

For each i ∈ [1, n] we find gn
j(i), j(i) ∈ [1, nq], such that

‖gi − gn
j(i)‖B(X) ≤ C2[n

q]−γ ≤ C(γ, C2)n
−qγ.

Therefore,

(3.7) d(fρ, Fn(q, b))L2(X,µ) ≤ ‖fρ −
n

∑

i=1

cig
n
j(i)‖L2(X,µ) ≤ Dn−r + δ + bC(γ, C2)n

−qγ.
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Using r ≤ R and q = R/γ and taking into account that δ > 0 is arbitrary, we obtain from
(3.7) that

d(fρ, Fn(q, b))L2(X,µ) ≤ (D + bC(γ, C2))n
−r.

In order to satisfy (3.4) we choose A0 such that A0 ≥ (D + bC(γ, C2))
2.

To complete the proof it remains to apply Theorem 1.3.

Let us now discuss a particular example of a system S that satisfies (3.1) and (3.2).
Consider a kernel K(x, u) defined in the same way as in Section 2. In addition to our
assumption that K(x, u) is continuous on X × Ω we assume that for some α > 0 we have
for any u1, u2 ∈ Ω

(3.8) ‖K(·, u1) −K(·, u2)‖C(X) ≤ C3‖u1 − u2‖
α,

where ‖u‖ is the eucledian norm of u ∈ R
k. It is clear that continuity of K(x, u) on the

compact X × Ω implies that

(3.9) ‖K‖C(X×Ω) ≤ C4.

Consider a system S := K := {K(·, u)}u∈Ω. Let us check that the K satisfies (3.1) and
(3.2). Obviously, (3.9) implies (3.1). We now show that (3.8) implies (3.2). The set Ω is a
compact subset of R

k and, therefore, for any n ∈ N there exists a net un
1 , . . . , u

n
n such that

for any u ∈ Ω
d(u, {un

1 , . . . , u
n
n}) ≤ C(k)n−1/k.

Then, using (3.8) we obtain

en(K, B(X)) ≤ d(K, {K(·, un
1 ), . . . , K(·, un

n)})C(X) ≤ C(k, C3)n
−α/k.

Therefore, (3.2) follows with γ = α/k.
In this case (S = K), the class Ar(K, D, b, µ) is the class of functions from L2(X, µ) that

can be approximated within an error Dn−r by functions of the form

(3.10)
n

∑

i=1

ciK(·, ui),
n

∑

i=1

|ci| ≤ b.

Also, in this case, the estimator fA
z

takes the form (3.10) with n ≤ m. We formulate
Theorem 3.1 in the case S = K.

Theorem 3.2. Assume that the kernel K(x, u) satisfies (3.8) and (3.9). Let positive num-
bers M1, D, b, R be given. We set M := M1 + bC3. There exists an
A0 := A0(M,D, b, R, α, C3, C4, k) ≥ 1 such that for the estimator fA

z
:= fA,q,b

z
(K) with

q := Rk/α and A ≥ A0 we have the following error bounds. For any ρ satisfying |y| ≤M1,
fρ ∈ Ar(K, D, b, µ), ρX = µ, with some 0 < r ≤ R, µ - Borel probability measure, we have

for η ≥ A1/2
(

ln m
m

)
r

1+2r

ρm{z : ‖fA
z
− fρ‖L2(X,ρX ) ≥ 4A1/2η} ≤ Ce−c(M)mη2

.
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4. Application of a greedy algorithm

It is well known (see, for instance, [H], [J], [LBW1,2], [CDD]) that greedy algorithms
are useful in nonparametric statistics and learning theory. In this section we discuss an
application of the Relaxed Greedy Algorithm (RGA) in finding an approximant for the
estimator fA

z
considered in Section 3. There are different variants of the RGA (see [T3]).

Here, we will discuss a variant of the RGA that is a generalization of the version of the RGA
suggested by A. Barron ([B]). Let H be a real Hilbert space and let G := {g} be a system of
elements g ∈ H such that ‖g‖ ≤ C0. Usually, in the theory of greedy algorithms we consider
approximation with regard to a dictionary D. One of the properties of a dictionary D is
that spanD = H. In this section we do not assume that the system G is a dictionary. In
particular, we do not assume that spanG = H. Denote G± := {±g, g ∈ G} the symmetrized
system G. Let θ > 0.

RGA(θ) with regard to G. For f ∈ H we define f0 := f , G0 := G0(f) := 0. Then for
each n ≥ 1 we inductively define

1) ϕn ∈ G± is an element satisfying (we assume existence)

〈fn−1, ϕn〉 = max
g∈G±

〈fn−1, g〉.

2)

Gn := Gn(f) := (1 −
θ

n+ θ
)Gn−1 +

θ

n+ θ
ϕn, fn := f −Gn.

Denote by A1(G) the closure in H of the convex hull of G±. Then for f ∈ H there exists
a unique element f ′ ∈ A1(G) such that

(4.1) d(f, A1(G))H = ‖f − f ′‖ ≤ ‖f − φ‖, φ ∈ A1(G).

In analysis of the RGA(θ) we will use the following simple lemma (see [DT] for a variant
of this lemma). Our analysis is similar to that of [DT] and [LBW1].

Lemma 4.1. Let a sequence {an}
∞
n=0 of nonnegative numbers satisfy the relations (with

β > 1, B > 0)

an ≤
n

n+ β
an−1 +

B

(n+ β)2
, n = 1, 2, . . . ; a0 ≤

B

(β − 1)β
.

Then for all n

an ≤
B

(β − 1)(n+ β)
.

Proof. Denoting A := B/(β − 1) we obtain by induction

an ≤
A

n− 1 + β

n

n+ β
+

B

(n+ β)2
=

A

n+ β
−

A(β − 1)

(n+ β)(n− 1 + β)
+

B

(n+ β)2
.

Taking into account the inequality

A(β − 1)

(n+ β)(n− 1 + β)
≥
A(β − 1)

(n+ β)2
=

B

(n+ β)2

we complete the proof.
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Theorem 4.1. For θ > 1 there exists a constant C(θ) such that for any f ∈ H we have

‖fn‖
2 ≤ d(f, A1(G))2H + C(θ)(‖f‖ + C0)

2n−1.

Proof. From the definition of Gn and fn we get, denoting α := θ
n+θ ,

fn = f −Gn = (1 − α)fn−1 + α(f − ϕn)

and

(4.2) ‖fn‖
2 = (1 − α)2‖fn−1‖

2 + 2α(1 − α)〈fn−1, f − ϕn〉 + α2‖f − ϕn‖
2.

It is known (see, for instance, [T4]) and easy to check that for any h ∈ H one has

(4.3) sup
g∈G±

〈h, g〉 = sup
φ∈A1(G)

〈h, φ〉.

Denote f ′ as above and set f∗ := f − f ′. Using (4.3) and the definition of ϕn we obtain
from (4.2)

‖fn‖
2 ≤ (1 − α)2‖fn−1‖

2 + 2α(1 − α)〈fn−1, f − f ′〉 + α2‖f − ϕn‖
2 =

(1 − α)(‖fn−1‖
2 − α‖fn−1‖

2 + 2α〈fn−1, f
∗〉 − α‖f∗‖2) + α(1 − α)‖f∗‖2 + α2‖f − ϕn‖

2.

This implies

‖fn‖
2 − ‖f∗‖2 ≤ (1 − α)(‖fn−1‖

2 − ‖f∗‖2) + α2(‖f‖ + C0)
2.

Setting an := ‖fn‖
2 − ‖f∗‖2, β := θ, and applying Lemma 4.1 we complete the proof.

Theorem 4.2. For θ > 1/2 there exists a constant C := C(θ, C0) such that for any f ∈ H
we have

‖f ′ −Gn(f)‖2 ≤ C/n,

Proof. If f ∈ A1(G) then the statement of Theorem 4.2 follows from known results ([B]).
Assume that d(f, A1(G)) > 0. Then the property (4.1) implies that for any φ ∈ A1(G) we
have

(4.4) 〈f∗, φ− f ′〉 ≤ 0.

It follows from the definition of fn that

fn = (1 −
θ

n+ θ
)fn−1 +

θ

n+ θ
(f − ϕn).

12



We set f ′
n := fn − f∗. Then, we get from the above representation

f ′
n = (1 −

θ

n+ θ
)f ′

n−1 +
θ

n+ θ
(f ′ − ϕn).

We note that f ′
n = f ′ −Gn(f). Let us estimate

(4.5) ‖f ′
n‖

2 − ‖f ′
n−1‖

2 = ‖f ′
n−1‖

2((1 −
θ

n+ θ
)2 − 1)+

2θ

n+ θ
(1 −

θ

n+ θ
)〈f ′

n−1, f
′ − ϕn〉 +

θ2

(n+ θ)2
‖f ′ − ϕn‖

2.

Next,

(4.6) 〈f ′
n−1, f

′−ϕn〉 = 〈f ′
n−1 +f∗, f ′−ϕn〉−〈f∗, f ′−ϕn〉 = 〈fn−1, f

′−ϕn〉+〈f∗, ϕn−f
′〉.

First, we prove that

(4.7) 〈fn−1, f
′ − ϕn〉 ≤ 0.

It easily follows from f ′ ∈ A1(G) that

(4.8) 〈fn−1, f
′〉 ≤ max

g∈G±
〈fn−1, g〉.

By the definition of ϕn we get

(4.9) max
g∈G±

〈fn−1, g〉 = 〈fn−1, ϕn〉.

Thus, (4.7) follows from (4.8) and (4.9).
Secondly, we note that (4.4) implies

(4.10) 〈f∗, ϕn − f ′〉 ≤ 0.

Therefore, by (4.6), (4.7), and (4.10) we obtain

(4.11) 〈f ′
n−1, f

′ − ϕn〉 ≤ 0.

Substitution of (4.11) in (4.5) gives

(4.12) ‖f ′
n‖

2 − ‖f ′
n−1‖

2 ≤ ‖f ′
n−1‖

2(1 −
2θ

n+ θ
) +

θ2

(n+ θ)2
(‖f ′

n−1‖
2 + ‖f ′ − ϕn‖

2).

Using bounds ‖f ′
n−1‖ ≤ C0 and ‖f ′ − ϕn‖ ≤ 2C0 we continue

≤ ‖f ′
n−1‖

2(1 −
2θ

n+ θ
) + 5C2

0θ
2/(n+ θ)2.
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We note that

1 −
2θ

n+ θ
< 1 −

2θ

n+ 2θ
.

We now apply Lemma 4.1 with β = 2θ and get

(4.13) ‖f ′
n‖

2 ≤ C(θ, C0)/n.

This completes the proof.

We now discuss application of Theorem 4.1 in building an approximant for f
z,Fj(q,b).

Let, as in Section 3, the set {gj
l }

jq

l=1 form an ejq (S, B(X))-net of S. Let z = (z1, . . . , zm),
zi = (xi, yi), be given. Consider the following system of vectors in R

m:

vj,l := (gj
l (x1), . . . , g

j
l (xm)), l ∈ [1, jq].

We equip the R
m with the norm ‖v‖ := (m−1

∑m
i=1 v

2
i )1/2. Then

‖vj,l‖ ≤ ‖gj
l ‖B(X) ≤ C1.

Consider the following system in H = R
m with the defined above norm ‖ · ‖

G := {vj,l}jq

l=1.

Finding the estimator

f
z,Fj(S,q,b) =

∑

l∈Λ

clg
j
l ,

∑

l∈Λ

|cl| ≤ b, |Λ| = j, Λ ⊂ [1, jq] ∩ N,

is equivalent to finding best j-term approximant of y ∈ R
m from the bA1(G) in the space

H. We apply the RGA(θ) with θ = 2 with respect to G to y/b and find, after j steps, an
approximant

vj :=
∑

l∈Λ′

alv
j,l,

∑

l∈Λ′

|al| ≤ 1, |Λ′| = j, Λ′ ⊂ [1, jq] ∩ N,

such that
‖y/b− vj‖2 ≤ d(y/b, A1(G))2 + Cj−1, C = C(M1, C1).

We define an estimator
f̂z := f̂

z,Fj(q,b) := b
∑

l∈Λ′

alg
j
l .

Then f̂z ∈ Fj(q, b) and

Ez(f̂z,Fj(q,b)) ≤ Ez(fz,Fj(q,b)) + bCj−1.
14



We denote δ := {bCj−1}m
j=1 and define for A ≥ 1

fA
z,δ := fA

z,δ(S) := f̂
z,Fn(z)(q,b)

with

n(z) := arg min
1≤j≤m

(Ez(f̂z,Fj(q,b)) +
Aj lnm

m
).

By Remark 4.1 from [T2] we have for A ≥ A0(M, b, γ, C2)

(4.14) ‖fA
z,δ − fρ‖

2
L2(ρX ) ≤ min

1≤j≤m
(3d(fρ, Fj(q, b))

2 +
4Aj lnm

m
+ 2bCj−1/2)

with probability ≥ 1 −m−c(M)A.
In particular, (4.14) means that the estimator fA

z,δ is a universal estimator that provides
the error

‖fA
z,δ − fρ‖

2
L2(ρX) � (

lnm

m
)

2r
1+2r

for fρ such that σm,b(fρ,S)L2(ρX) � m−r, r ≤ 1/2. We note that the estimator fA
z,δ is based

on the greedy algorithm and it can easily be implemented.

5. Discussion

In this section we give a detailed comparison of our results with results from [SZ]. As we
already mentioned in the Introduction the paper by Smale and Zhou [SZ] has served as a
motivation for the study reported in this paper. First of all, we formulate the result from
[SZ] that provides the estimation error for classes W r(K,D, ν), defined in Section 2, in the
case of Mercer kernel K.

Theorem 5.1. Let z be randomly drawn according to ρ satisfying |y| ≤ M almost surely.
Assume that fρ ∈ W r(K,D, ν) with some r ∈ (0, 1]. We take δ ∈ (0, 1) and set the
regularization parameter

λ := log(4/δ)(12‖K(x, x)‖
1/2
C(X)M/D)2/(1+2r)m−1/(1+2r), r ∈ (1/2, 1],

λ := 8‖K(x, x)‖C(X) log(4/δ)m−1/2, r ∈ (0, 1/2].

Then, for m ≥ C(r) with confidence 1 − δ,

‖fλ,z − fρ‖L2(ρX )

(5.1) ≤ 2 log(4/δ)(12‖K(x, x)‖
1/2
C(X)M)2r/(1+2r)D1/(1+2r)m−r/(1+2r), r ∈ (1/2, 1],

(5.2) ≤ log(4/δ)
(

8M + 8r‖K(x, x)‖r
C(X)D

)

m−r/2, r ∈ (0, 1/2].
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We compare this theorem with Theorem 2.4. The estimator fλ,z in Theorem 5.1 does not
depend on measure ν and does depend on r ∈ (0, 1]. The estimator fz from Theorem 2.4
may depend on both the measure ν and r. Thus, Theorem 5.1 gives the estimator fλ,z that
is universal for a collection {W r(K,D, ν), ν - Borel measure} with fixed r ∈ (0, 1]. Theorem
2.4 is aimed at the optimal behavior of the estimator in the sense of error and confidence.
For the minimal error ε0 Theorem 2.4 gives ε0 � m−r/(1+2r). Theorem 5.1 gives a similar
bound for the error in the case r ∈ [1/2, 1] and the error of the order m−r/2 in the case
r ∈ (0, 1/2). In the range r ∈ (0, 1/2) we have r/2 < r/(1 + 2r). Thus, Theorem 5.1 does
not provide an optimal rate for the error of the estimator fλ,z in the case r ∈ (0, 1/2). It
would be interesting to understand if this effect is a result of analysis or reflects a property
of the estimator fλ,z.

We now turn to the confidence bounds. Theorem 2.4 says that we have for fρ ∈
W r(K,D, ν), ρX = ν

(5.3) ρm{z : ‖fz − fρ‖L2(ρX ) ≥ η} ≤ exp
(

−
mη2

140M2

)

for η ≥ ε0, ε0 := C1(M,D,K, r)m− r
1+2r , m ≥ C2(M,D,K, r).

Let us compare the inequality (5.3) with the corresponding one from Theorem 5.1 in the
case r ∈ (1/2, 1] when fλ,z provides an optimal error rate. Rewriting the estimate (5.1) in
the form of (5.3) gives

(5.4) ρm{z : ‖fλ,z − fρ‖L2(ρX ) ≥ η} ≤ 4 exp
(

−C(K,M,D, r)mr/(1+2r)η
)

.

The estimate (5.4) is not as good as the estimate (5.3). For instance, for η � m−r/(1+2r) of
a critical order, (5.3) gives exp(−c(M)m−1/(1+2r)) which is exponentially small and (5.4)
gives 4 exp(−C(K,M,D, r)) which does not approach 0 with m → ∞. Also, we make the
following important point. The estimator fz does not depend on the target accuracy η and
the estimator fλ,z depends on it (λ depends on δ). It would be interesting to understand if
the bounds like (5.4) is a price for universality with respect to measure ρX of the fλ,z or is
a result of analysis (or a specific feature of the estimator fλ,z).

As a conclusion of the above discussion we state that good features of the fλ,z are its
universality with respect to measure ρX and optimal error rate for r ∈ [1/2, 1]. The draw-
backs are: fλ,z does not provide optimal error rate in the case r ∈ (0, 1/2) and it does not
give good (optimal) bounds for the confidence.

We now proceed to a discussion of Theorem 3.2. This theorem gives the following bound

for the estimator fA
z

for η ≥ A1/2
(

ln m
m

)
r

1+2r

(5.5) ρm{z : ‖fA
z
− fρ‖L2(X,ρX ) ≥ 4A1/2η} ≤ Ce−c(M)mη2

for fρ ∈ Ar(K, D, b, µ), r ∈ (0, R], µ - Borel probability measure.
The estimator fA

z
does not depend on both r and µ. Therefore, the estimator fA

z
is

universal for classes with different µ and with different smoothness r ∈ (0, R]. In this sense
16



fA
z

is better than the fλ,z. Next, for the minimal error of fA
z

we have �
(

ln m
m

)r/(1+2r)
which

is very close to the optimal order of m−r/(1+2r). The estimator fA
z

provides this minimal
error for all r ∈ (0, R]. Finally, (5.5) gives optimal bounds for the confidence. Therefore,
the estimator fA

z
is very good with respect to the theoretical criteria: universality, minimal

error bounds, confidence bounds. As we showed in Section 4, a variant of fA
z

can be easily
implemented in practice using the Relaxed Greedy Algorithm. However, our analysis in
this case works only for r ≤ 1/2. It would be very interesting to find a way of practical
implementation of the fA

z
or its variant in the case r ≤ R with big R.

We now proceed to a comparison of settings in [SZ] and in our paper. First, we study
different function classes: the classes W r(K,D, ν), defined in a standard for linear approx-
imation theory way, are studied in [SZ]; The classes Ar(K, D, b, µ), defined in a nonlinear
approximation way, are studied in this paper. Second, we impose different assumptions on
the kernel K: K is the Mercer kernel in [SZ]; K is any Hölder smooth in one variable kernel
in this paper. Third, we use different general methods for construction of estimators: [SZ]
builds fλ,z as the regularized least squares estimator; we build fA

z
as the penalized least

squares estimator. Clearly, it would be very interesting to make a bridge between methods
from [SZ] and our methods. In particular, it is very interesting to understand a relation
between classes W r(K,D, ν) and Ar(K, D, b, ν). Usually, nonlinear classes are bigger than
their linear counterparts. We give here an example where one can see the above mentioned
phenomenon.

Example. Let X = Ω = [0, 1] and let K(x, u) = χ(x − u) where χ(x) = 1 if x ≥ 0,
χ(x) = 0 if x < 0. Then the operator LK acts as follows

(5.6) f(x) = LK(ϕ)(x) =

∫ 1

0

χ(x− u)ϕ(u)dν =

∫ x

0

ϕ(u)dν, x ∈ [0, 1].

We begin with a simple observation about the variation V (f) of function f(x):

V (f) ≤

∫ 1

0

|ϕ(u)|dν = ‖ϕ‖L1(ν) ≤ ‖ϕ‖L2(ν).

Therefore, for any Borel probability measure ν we haveW (K,D, ν) ⊆ BV (D), where BV (D)
is the class of functions of bounded variation with the bound D.

Consider now the class A1(K, D, b, µ). Denoting

f+(x) :=

∫ x

0

|ϕ(u)|dν, f−(x) :=

∫ x

0

(|ϕ(u)| − ϕ(u))dν,

we obtain the classical representation f = f+ − f− of the function f of bounded variation
as a difference of two monotone functions. Clearly, f+(0) = f−(0) = 0 and f+(1) ≤ D,
f−(1) ≤ 2D. It is easy to see that for b ≥ 2D we have

σn,b(f+,K)B([0,1]) ≤ D/n.
17



Therefore, for b ≥ 6D we have

σ2n,b(f,K)B([0,1]) ≤ 3D/n.

This bound implies that

σm,6D(f,K)L2(µ) ≤ 12D/m, m = 1, 2, . . . .

Thus, we have obtained the following embedding in the particular case K(x, u) = χ(x− u)

W (K,D, ν) ⊆ A1(K, 12D, 6D, µ).

It is clear from the above argument that the class W (K,D, ν) is, in general, much smaller
than the class A1(K, 12D, 6D, µ).
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