On the variational distance of two trees

M. A. Steel and L. A. Szekely
ON THE VARIATIONAL DISTANCE OF TWO TREES

M. A. STEEL AND L. A. SZÉKELY

Abstract. A widely-studied model for generating sequences is to `evolve' them on a tree according to a symmetric Markov process. We prove that model trees tend to be maximally “far apart” in terms of variational distance. Yet, almost paradoxically, tree reconstruction is successful for sequences that are short enough that the sample is also likely to have near-maximal variational distance from the model tree.

1. Introduction

In this paper we investigate sequences that have been generated on the tree by a simple Markov model. Such processes are widely-studied in molecular genetics, and in other areas of applied probability (including broadcasting and statistical physics). More precisely, we study the separation—as measured by variational distance—of the probability distribution on sequence patterns generated by different trees. We find that a large tree generates a probability distribution that is typically at maximal distance from that generated by nearly all other trees. Yet the observed distribution of sequence patterns is also maximally distant from the distribution generated by the generating tree, when the sequences have sub-exponential length (despite still being long enough to recover the generating tree with high probability).

To describe our results more precisely we first provide some terminology concerning trees and random processes on them. In a tree, vertices of degree 1 are called leaves, as opposed to internal vertices. A tree is binary, if all vertices have degree 1 or 3. Consider a set X of labels. A phylogenetic X-tree is a tree, in which leaves are identified with elements of X. We will regard two phylogenetic X-trees as being identical, if there is a graph isomorphism between them, which in addition, if restricted to X, is the identity function of X. If $|X| = n$, then the number of different binary phylogenetic X-trees is $(2n-5)!!$ ($= 1 \times 3 \times 5 \times \cdots \times (2n-5)$) [13]. For a phylogenetic X-tree T, let $|T|$ denote the corresponding unlabelled tree. The distance $d_T(u,v)$ between two vertices, u,v in a tree T is the number of edges on the unique path connecting them.

We now describe a model for the evolution of binary sequences on a tree. This model has been described by various authors (and in a range of disciplines including molecular biology, information theory, and physics; for references see [6, 13]). Here we refer to this model as the CFN model (short for ‘Cavender-Farris-Neyman’).
model’); it has also been referred to in the literature as the ‘symmetric binary channel’ and the ‘symmetric 2-state Poisson model’. The CFN model provides a simple model for the evolution of purine–pyrimidine sequences. The significance of this simple model is, that phenomena shown for the CFN model often extends to more realistic models of sequence evolution, and we will describe how our main results concerning the CFN model generalise.

Suppose we have two states, 0 and 1, and a phylogenetic X-tree T. The CFN model assigns probabilities to the patterns of state of the elements of X as follows. Let us associate a number p_e ($0 < p_e < 1/2$) with the edge e called the substitution probability. Let ξ_e denote a random indicator variable associated to edge e with $P[\xi_e = 1] = p_e$, and assume the ξ_e’s are independent. Fix any vertex v and assign state 0 or 1 to v with equal probability $1/2$. Note that for every vertex u of T there is a unique path denoted $\text{path}(u, v)$ in T and so we may define

\begin{equation}
\text{state}(u) = \text{state}(v) + \sum_{e \in \text{path}(u, v)} \xi_e \mod 2.
\end{equation}

This gives a (joint) probability distribution on the set of all assignment of states (0 or 1) to the vertices of T, and thereby a marginal distribution on state assignments to the leaves of T – we call each such assignment $\chi : X \to \{0, 1\}$ a (state) pattern, and we let P_χ denote the probability of generating χ under this model.

The probability p that the endpoints of a path uw in a CFN tree T are in different states is nicely related to the substitution probabilities of edges of the uw-path:

\begin{equation}
p = \frac{1}{2} \left(1 - \prod_{e \in \text{path}(u, w)} (1 - 2p_e) \right).
\end{equation}

Formula (2) is well-known, and is easy to prove by induction. Formula (2) also shows that the substitution probability of a path is not less than smallest transition probability on its edges. It is well-known ([15]) that (1) changing the location of v in T, or (2) substituting a path with internal vertices of degree 2 with a single edge in a CFN tree, and assigning to the new edge a transition probability according to (2) does not change the probability distribution of patterns.

Usually k independent experiments are made to generate random patterns from a binary CFN tree T, they are called sites. The (abstract) phylogeny reconstruction problem is the following: from the observed pattern frequencies, tell with a prescribed probability, what was the underlying binary phylogenetic X-tree. We have shown in [4] and [17] that if $|X| = n$ and $n \to \infty$, then $k = \Omega(\log n)$ sites are needed to return the true underlying tree with probability at least $1/2 + \epsilon$ with either a deterministic algorithm or with a randomized algorithm whose random bits are independent from the random events on the CFN tree. Sequence length requirements for accurate tree reconstruction is not only of mathematical interest, but also a topical issue in molecular systematics (eg. [3, 12]). We showed in [4] that for fixed $0 < f \leq g < 1/2$, $f \leq p_e \leq g$, and $n \to \infty$, phylogeny reconstruction is possible for all model trees, when k is a certain polynomial of n; is possible for some model trees, when k is a logarithmic function of n; and is possible for almost all model trees, either in the uniform random binary X-tree model or in the Yule–Harding model, when k is a certain polylogarithmic function of n.
In this paper we show asymptotic results. The theorems are about n-leaf trees, and the conclusion is a limit relation. The understanding is that for a sequence of n-leaf trees satisfying the hypotheses, the limit relation holds. With the exception of Section 4 and partly Section 6, we study problems where the bounds on p_e are fixed, and we let $n \to \infty$. In Section 4 we show that many of the results generalize if dependence of the bounds on n is allowed but limited.

2. Results

Let us be given two binary phylogenetic X-trees T_1, T_2 with CFN transition mechanism P_1 and P_2, respectively. The variational distance of their pattern distributions is

\[\text{vardist} \left((T_1, P_1), (T_2, P_2) \right) = \sum_{\chi} \left| (P_1)_\chi - (P_2)_\chi \right|. \]

In Theorem 3.1 we show that almost all binary trees are maximally distant (in terms of variational distance) from any given binary tree with a given CFN transition mechanism, under mild assumptions on their transition mechanisms. A practitioner may argue that Theorem 3.1 has limited relevance, since the uniform distribution of trees is just one particular prior distribution on trees, and the CFN model is very particular. However, the conclusion of Theorem 3.1 holds not just for the counting measure, but for all permutation invariant measures on phylogenetic X-trees; moreover it holds for more general, and for the applications more realistic classes of transition mechanisms (Theorem 4.1).

In Theorem 5.1 we also show that all binary trees are separated (in terms of variational distance) from any given binary tree with a given, mildly restricted CFN transition mechanism, under no assumptions on their CFN transition mechanisms.

Farach and Kannan [7], [8] designed an algorithm for phylogeny reconstruction based on convergence to the true tree in variational distance and suggested to pay more attention to the variational distance in phylogeny reconstruction. Some support for the utility of this metric is provided by results that we present in Sections 3, 4 and 5: if we get just close to a model tree in variational distance, then we already excluded most of the false candidates for the phylogenetic tree.

Section 6 provides a sharp contrast to the results mentioned above. Note that in practice we estimate the model distribution of patterns by the observed frequency of patterns. In Section 6 we obtain a surprising result: For sub-exponential sequence length, which is known to be sufficient for phylogeny reconstruction with probability $1 - o(1)$ as $0 < f \leq g < 1/2$ fixed and $f \leq p_e \leq g$, as $n \to \infty$ (see the discussion in Section 1), the variational distance between the model pattern distribution and the observed pattern distribution is near 2 with probability $1 - o(1)$. In other words, phylogeny reconstruction is well possible without convergence of the observed pattern distribution to the model pattern distribution in variational distance.
Therefore the accuracy of tree reconstruction cannot be captured by variational distance alone. This conclusion was suggested by [5] and [11], though with less striking clarity.

3. Variational distance of CFN trees is typically large

Theorem 3.1. Fix $0 < f$ and $g < 1/2$. For every binary phylogenetic X-tree T_1 with CFN transition mechanism P_1 where $p_e \leq g$ in P_1, the following holds. For almost all (i.e. $(1 - o(1))(2n - 5)!!$ in number) binary phylogenetic X-trees T_2, equipped with an arbitrary transition mechanism P_2, where $f \leq p_e$ in P_2, we have

$$\text{vardist} \left((T_1, P_1), (T_2, P_2) \right) \to 2,$$

as $n \to \infty$.

The proof requires a number of lemmas, which we now state.

Lemma 3.2. For every binary phylogenetic X-tree T on $n \geq 4$ leaves, there are at least $n/4$ disjoint pairs of leaves a_i, b_i, such that for every i:

(i) a_i and b_i are separated by a distance of 2 or 3;

(ii) for $i \neq j$, the $a_i b_i$ and the $a_j b_j$ paths in T are edge disjoint.

Proof. The claim is true for $4 \leq n \leq 8$, since then the longest path ends in two disjoint cherries. This is the basis for an induction proof on n. It is easy to see that the end of a longest path in T with $n \geq 9$ must show one of the four cases on Fig. 1. In each of the four cases truncate the tree T_i, as indicated by the curve to obtain T_i'. For $i = 1, 2, 3, 4$, T_i' has $n - 2$ (resp. $n - 2$, $n - 3$, $n - 4$) leaves, and the induction hypothesis applies to T_i'. In all four cases it is easy to add two new close vertex pairs to create the required set of them for T_i, while destroying at most one which pre-existed in T_i'.

Remark 3.3. As Fig. 2 shows, the conclusion of Lemma 3.2 is essentially the best possible.

Lemma 3.4. Tree-chopping lemma [Steel, Goldstein, and Waterman [14] Lemma 3]

Let T be an arbitrary binary X-tree and $q \geq 2$ integer. Then edges can be deleted from T such that a forest results with the following properties:

(i) The number of leaves from X in any tree of the forest is at most $2q - 2$.

(ii) The number of leaves from X in any tree of the forest is at least q, except possibly for one tree. (We shall call this exceptional tree degenerate.)

Recall the Azuma–Hoeffding inequality (see [1]):
Lemma 3.5. Suppose $X = (X_1, X_2, \ldots, X_k)$ are independent random variables taking values in any set S, and $L : S^k \to \mathbb{R}$ is any function that satisfies the condition: $|L(u) - L(v)| \leq t$ whenever u and v differ at just one coordinate. Then,

$$
\mathbb{P} \left[|L(X) - \mathbb{E}[L(X)]| \geq \lambda \right] \leq 2 \exp \left(-\frac{\lambda^2}{2t^2k} \right). \quad \square
$$

The following lemma is obvious.

Lemma 3.6. Let F denote a fixed phylogenetic X-tree such that $|F| = t$, with $|X| = n$. Let π be a randomly selected permutation of X under the uniform distribution. Let $\pi(F)$ denote the phylogenetic X-tree that we obtain from F by changing all leaf labels from v to $\pi(v)$ simultaneously. Then $\pi(F)$ represents a random uniform selection from those binary phylogenetic X-trees whose underlying unlabelled tree is t. \quad \square

From now on, for notational convenience, we pretend that 4 divides n.

Lemma 3.7. For an X with $|X| = n$, and $n/4$ disjoint a_i, b_i ordered pairs from X, there exist functions $m(n) \to \infty$, $h(n) \to \infty$, and $g(n) \to \infty$, such that the
following holds. For every unlabelled binary tree t with n leaves, for all but a $\frac{1}{\pi(n)}$ fraction of binary phylogenetic X-trees T with property $[T] = t$, there is an index set I such that $|I| = m(n)$ and

(i) $d_T(a_i, b_i) \geq h(n)$ for all $i \in I$; and

(ii) for $i, j \in I$, $i \neq j$, $\text{path}_T(a_i, b_i)$ and $\text{path}_T(a_j, b_j)$ are edge disjoint.

Proof. Let F denote a fixed phylogenetic X-tree such that $|F| = t$, with $|X| = n$. Apply Lemma 3.4 to F with $q = \lceil \log^2 n \rceil$. Let L_1, L_2, \ldots, L_s denote the leaf sets that the non-degenerate trees contain from X. From the lemma, $q \leq |L_i| \leq 2q - 2$, and at most $q - 1$ element of X is not in some L_i. Let π be a randomly selected permutation of X under the uniform distribution. Let $\pi(F)$ denote the phylogenetic X-tree that we obtain from F by changing all leaf labels from v to $\pi(v)$ simultaneously. According to Lemma 3.6, $\pi(F)$ represents a random uniform selection from those binary phylogenetic X-trees whose underlying unlabelled tree is t. The previous application of Lemma 3.4 still partitions $\pi(F)$, the leaf sets of the non-degenerate trees intersect X in $\pi(L_1), \pi(L_2), \ldots, \pi(L_s)$, and we still have $q \leq |\pi(L_i)| \leq 2q - 2$. Therefore, for $i \neq j$, if path_i (path_j) is connecting 2 vertices of L_i (L_j) in the tree $\pi(F)$, then

(6) path_i is edge disjoint from path_j.

Set $h(n) = \log \log n$ and $m(n) = \frac{n}{4q - 2} - \frac{1}{7}$. Observe from Lemma 3.4 and the choice of q that $n \leq (s + 1)(2q - 2)$, and therefore

(7) $m(n) \leq \frac{s}{2}$.

We are going to find an appropriate $g(n)$ for this choice. We call a leaf set $Y \subset X$ infected, it there is a $1 \leq j \leq n/4$, such that both $a_j, b_j \in Y$. Let E denote the event that for our fixed t and F, $\pi(F)$ has the property that for all $j = 1, 2, \ldots, s$, $\pi(L_j)$ is infected; and let F denote the event that in addition to E, for at least half of the indices $j = 1, 2, \ldots, s$, one finds some i_j, such that both $a_{i_j}, b_{i_j} \in \pi(L_j)$ (i.e. they do infect $\pi(L_j)$) and $d_{\pi(F)}(a_{i_j}, b_{i_j}) \geq h(n)$. In view of (6), the a_{i_j}, b_{i_j} paths in $\pi(F)$ are pairwise edge disjoint for $j = 1, 2, \ldots, s$.

Observe that

(8) $P[\pi(L_j) \text{ not infected}] = \frac{\sum_{u=0}^{\lfloor L_j \rfloor} \binom{n/4}{u} 2^u \binom{n/2}{\lfloor L_j \rfloor - u}}{\binom{n}{\lfloor L_j \rfloor}}$.

(A non-infected L_j can have zero or one element from every (a_i, b_i) pair, for $i = 1, 2, \ldots, n/4$. The case analysis is based on the number $u = |\pi(L_j) \cap \{a_i, b_i : i = 1, 2, \ldots, n/4\}|$. There are $\binom{n/4}{u}$ to select a subset of u indices from $\{1, 2, \ldots, n/4\}$, and then 2^u ways to tell if a_i or b_i selected for the particular index set into L_j. There are $\binom{n/2}{\lfloor L_j \rfloor - u}$ ways to make L_j complete using $|L_j| - u$ elements not belonging to $\{a_i, b_i : i = 1, 2, \ldots, n/4\}$.)
Comparison of consecutive terms show that the largest term in the numerator of the RHS of (8) is $u = |L_j|$. Using the usual notation $(x)_m$ for the m^{th} falling factorial, it follows that

$$\Pr[\pi(L_j) \text{ not infected}] \leq \frac{(|L_j| + 1)2^{1|L_j|}(n/|L_j|)!}{n!}$$

$$\leq \frac{n^{1|L_j|}(n - |L_j|)!}{4|L_j|!(n - |L_j|)!}((|L_j| + 1)2^{1|L_j|})$$

$$\leq (1 + o(1))2^{-|L_j|}|L_j| + 1 \leq (1 + o(1))2^{-q}(2q - 1) \leq 2^{-0.01 \log^2 n},$$

and from (9-10-11),

$$\Pr[\exists \ j : \pi(L_j) \text{ not infected}] \leq \frac{n}{q} 2^{-0.01 \log^2 n}.$$

By (12), we showed that

$$\Pr[E] > 1 - n2^{-0.01 \log^2 n}.$$

Call the ordered s-tuple of pairwise disjoint sets $Y_1, Y_2, \ldots, Y_s \subset X$ feasible, if $|Y_i| = |L_i|$ and Y_i is infected for $i = 1, 2, \ldots, s$. Now we turn to the conditional probability $\Pr[F|E]$. Observe

$$\Pr[F|E] = \sum_{Y_1, Y_2, \ldots, Y_s \text{ feasible}} \Pr[F|\forall i : \pi(L_i) = Y_i] \Pr[\forall i : \pi(L_i) = Y_i]$$

$$\leq \max_{Y_1, Y_2, \ldots, Y_s \text{ feasible}} \Pr[F|\forall i : \pi(L_i) = Y_i].$$

Assume now that an arbitrary feasible Y_1, Y_2, \ldots, Y_s is fixed. A π that satisfies the condition in (15) is nothing else but the juxtaposition of $\pi_i : L_i \to Y_i$ bijections for $i = 1, 2, \ldots, s + 1$. Therefore a uniform random π satisfying the condition in (15) can be realized by a sequence of independent uniform random choices of bijections π_i from L_i to Y_i, $i = 1, 2, \ldots, s + 1$.

Let $\pi_i : L_i \to Y_i$ denote a uniform random bijection for $i = 1, 2, \ldots, s + 1$. Conditional on E, for every $i = 1, 2, \ldots, s$, fix an a_i, b_i leaf pair that infects Y_i. Observe that the conditional event

$$F|\forall i : \pi(L_i) = Y_i$$

is implied, if for at least half of the indices $1 \leq i \leq s$, we have $d_{\pi(F)}(a_i, b_i) \geq h(n)$. Also observe that notwithstanding the notation $d_{\pi(F)}$, this distance depends only on the single π_i under consideration. No matter what is the value of $\pi_i^{-1}(a_i)$, at most $2^{h(n)}$ vertices of L_i can be closer than $h(n)$ to $\pi_i^{-1}(a_i)$ in the binary tree F. Those at most $2^{h(n)}$ vertices can be pre-images of b_i under π_i (and π as well), if $d_{\pi(F)}(a_i, b_i) < h(n)$. Therefore,

$$\Pr[d_{\pi(F)}(a_i, b_i) \geq h(n)] \geq 1 - \frac{2^{h(n)}}{|L_i|} = 1 - \frac{2\log \log n}{\log^2 n} = 1 - \frac{1}{\log^2 \log^2 n}.$$

Hence, a lower bound for $\Pr[F|E]$ is the probability of at least $s/2$ successes in a sequence of s independent Bernoulli trials, each with probability of success $p = 1 - \frac{1}{\log^2 \log^2 n}$. Not having at least $m(n)$ successes implies not having at least $s/2$
successes by (7), and probability of the latter event can easily be bounded from above by Lemma 3.5 \((t = 1, k = s, \lambda = s/3)\), as soon as \(\frac{1}{\log 1 + o_n} < 1/6\), by
\[2e^{-s/18}.\]
Finally, using (13) and (16), we have
\[1 - \mathbb{P}[F] = 1 - \mathbb{P}[E] + \mathbb{P}[E](1 - \mathbb{P}[F|E]) \leq n^{2^{-0.1}\log^2 n} + 2e^{-n/(64\log^2 n)},\]
and since the RHS of (17) is \(o(n)\), we can take for \(g(n)\) its reciprocal. \(\square\)

Proof of Theorem 3.1 Specify now \(n/4\) leaf pairs \((a_i, b_i)\) of \(T_1\) according to Lemma 3.2—for notational convenience we assume again that \(n\) is a multiple of 4. We set \(m(n), h(n), g(n),\) and \(I\) according to the statement of Lemma 3.7. We are going to show that for every fixed \((T_1, P_1)\) and fixed unlabelled tree \(t\), if \([T_2] = t\) and \(T_2\) is not in the exceptional set of trees described in Lemma 3.7, then the variational distance between \((T_1, P_1)\) and \((T_2, P_2)\) converges to 2, as \(n \to \infty\).

Recall that \(\text{state}(x)\) denotes the state of leaf \(x \in X\) in a CFN tree. Consider the random indicator variable \(Z_i\), which is 1, if \(\text{state}(a_i) = \text{state}(b_i)\), and 0 otherwise, and \(Z = \sum_{i \in I} Z_i\), which depends on the distribution of leaf colorations of the CFN tree. We will speak about \(Z_i^{(1)}\), \(Z^{(1)}\) \(Z_i^{(2)}\), \(Z^{(2)}\) as the CFN tree is \((T_1, P_1)\) or \((T_2, P_2)\), and similarly about \(\text{state}_1\) and \(\text{state}_2\), and will drop the superscript if the argument applies to both.

By the linearity of expectation
\[\mathbb{E}[Z] = \sum_{i \in I} \mathbb{E}[Z_i] = \sum_{i \in I} \mathbb{P}[\text{state}(a_i) = \text{state}(b_i)].\]

In \((T_1, P_1)\), we have \(\mathbb{P}[\text{state}_1(a_i) \neq \text{state}_1(b_i)] \leq \frac{1}{2}(1 - (1 - 2g)^3)\), by (2), and hence
\[1 - 3g + 6g^2 - 4g^3 \leq \mathbb{P}[\text{state}_1(a_i) = \text{state}_1(b_i)].\]

Formula (18) and inequality (19) imply that
\[\mathbb{E}[Z^{(1)}] \geq (1 - 3g + 6g^2 - 4g^3)m(n)\]

In \((T_2, P_2)\), by a similar argument, we have
\[\mathbb{P}[\text{state}_2(a_i) = \text{state}_2(b_i)] \leq 1 - \frac{1}{2}(1 - (1 - 2f)^{h(n)}) = \frac{1}{2} + o(1)\]
by (2), and \(h(n) \to \infty\). By linearity (18), we have
\[\mathbb{E}[Z^{(2)}] \leq (1 + o(1))\frac{m(n)}{2}.\]

We are going to show to that with high probability both \(Z^{(1)}\) and \(Z^{(2)}\) are very close to their respective expectations. This will be easy to show, since both of them are the sums of independent indicator variables. (Use Lemma 3.5 for \(X_i = Z_i^{(1)}\) (resp. \(Z_i^{(2)}\)), \(k = m(n), t = 1, \lambda = m(n)^{2/3}\)).
It is easy to see that for $0 < g < 1/2$, we have
\begin{equation}
\frac{1}{2} < 1 - 3g + 6g^2 - 4g^3,
\end{equation}
and therefore, using (20) and (22), $\mathbb{E}[Z^{(1)}]$ and $\mathbb{E}[Z^{(2)}]$ are separated by a linear function of $m(n)$, for example $l(n) = \frac{1}{2}(1 - 3g + 6g^2 - 4g^3 + \frac{1}{2})m(n)$. Consider now the event H: “$Z > l(n)$”. In (T_1, P_1), event H has probability $1 - o(1)$, while in (T_2, P_2), the complement of event H has probability $1 - o(1)$. This implies that the variational distance of (T_1, P_1) and (T_2, P_2) is $2 - o(1)$.

4. Variational distance in more general models

In this section we provide a result (Theorem 4.1) that is a three-fold generalization of Theorem 3.1. The three extensions allow (i) more general probability distributions on trees (‘permutation-invariant measures’), (ii) more general transition models than the CFN model (‘conservative, separable processes’) and (iii) a weakening of the constraints on the parameters of the model.

Permutation-invariant measures on trees

Let us call a measure μ on the set of $(2n - 5)!!$ binary phylogenetic X-trees permutation invariant, if for every π permutation of X and any phylogenetic X-tree F, $\mu(F) = \mu(\pi(F))$. Note that Lemma 3.6 stated that the uniform distribution (or counting measure) on binary phylogenetic X-trees is permutation invariant. A practitioner may argue that Theorem 3.1 has limited relevance, since the uniform distribution of trees is just one particular prior distribution on trees. However, any relevant distribution of trees is permutation invariant and it is easy to see that the stronger Theorem 4 holds with basically the same proof; and it extends to more general models of sequence evolution as well. A non-uniform, phylogenetically relevant permutation invariant distribution on phylogenetic X-trees is the unrooted Yule-Harding distribution [4].

More general transition processes (conservative, separable processes)

The restriction of the CFN to two states and symmetric substitution probabilities is convenient for description and proofs. However much of the argument used in the proof of Theorem 3.1 can be generalized to models that are much closer to those used in modern molecular biology. We identify two key properties that are used in the proof, and that both apply to a range of substitution models.

Suppose we have a set S of $q \geq 2$ states. A pattern will now refer to a state assignment function $\chi : X \rightarrow S$, where X is the leaf set of T. Assume that we have a probability distribution on the patterns of a binary phylogenetic X-tree, where P_χ denotes the probability of pattern χ. Selecting a random pattern according to the distribution, we can observe a random state of any particular leave. For a pair of leaves a, b let $E(a, b)$ be the event that $\text{state}(a) = \text{state}(b)$. Let us be given a strictly decreasing function $H : [0, \infty) \rightarrow (c, 1]$ with $H(0) = 1$, and a $c > 0$ constant, such that $\lim_{x \rightarrow \infty} H(x) = c$. We assume that H and c are fixed and do
not depend on \(n \). We say that a probability distribution on patterns is *conservative* if

\[(C) \text{ there exists an assignment of } t(e) > 0 \text{ to each edge } e \text{ of } T, \]

so that the following condition holds: For each pair \(a, b \in X \),

\[P[E(a, b)] = H(\sum_{e \in \text{path}(a,b)} t(e)).\]

The CFN model satisfies condition (C), as can easily be seen from (2) by taking \(t(e) = -\frac{1}{2} \log(1 - 2p_e) \), \(H(x) = \frac{1}{2}(1 + \exp(-2x)) \), and \(c = \frac{1}{2} \). More generally, condition (C) is satisfied by any tree-based Markov process that can realised by a stationary, reversible, continuous-time Markov process operating on each edge \(e \) of \(T \) for a duration (corresponding to \(t(e) \) (this is Theorem 4(2) of [15]; for more details on such models see [13]).

Next, we say that a probability distribution on patterns is *separable* if it satisfies the following property:

\[(S) \text{ Whenever } (a_1, b_1), (a_2, b_2), \ldots, (a_m, b_m) \text{ are pairs of leaves whose connecting paths are pairwise edge-disjoint then } \{E(a_i, b_i), i = 1, \ldots, m\} \text{ are independent events.}\]

It is easily seen that the CFN model is separable. Moreover, any group-based model satisfies the separation condition (S) (Theorem 10 of [19], generalizing [9]); briefly, ‘group-based models’ are defined in the same way as the CFN model, but over an arbitrary finite abelian group, rather than the particular group \(\{0, 1\}, +_{\text{mod}2} \) (for more details see [13]).

We will call a model that satisfies conditions (C) and (S) a *conservative, separable process*. Examples of such models include the CFN model, and more generally the symmetric \(q \)-state model, for which, when a transition occurs, one of the remaining states is selected uniformly at random. For this model we have \(c = \frac{1}{q} \) in condition (C), and this model is well-known in a variety of field, including physics, broadcasting and molecular biology, where it is referred to as the ‘\(q \)-state Potts model’, the ‘\(q \)-ary symmetric channel’, and the ‘Neyman \(q \)-state model’, respectively (and, in the special case when \(q = 4 \), as the ‘Jukes-Cantor model’); for more details see [10]. A further example of a conservative, separable process in molecular biology is the Kimura 3ST model (for details see [13]).

Weakened constraints

In Theorem 3.1 we imposed the condition \(f \leq p_c \) for a fixed \(f > 0 \) for the transition mechanism \(P_2 \). In fact an inspection of the proof reveals that \(0 < f = f(n) \) may depend on \(n \), as far as we have \(\lim_{n \to \infty} h(n)f(n) = \infty \), where \(h(n) \) is any function satisfying the statement of Lemma 3.7. (The present proof of Lemma 3.7 allows \(f(n) \to 0 \) “very slowly”, but the truth is likely just “slowly”.)

The result allowing these three types of extension is the following.

Theorem 4.1. Fix \(0 < t_+ < \infty \), and allow \(t_- = t_-(n) > 0 \) to vary with \(n \) if still \(\lim_{n \to \infty} h(n)t_-(n) = \infty \), where \(h(n) \) is any function satisfying the statement of
Lemma 3.7. For every binary phylogenetic X-tree T_1 with a conservative, separable process P_1 where $t(e) \leq t_+$ in P_1, the following holds. For any μ permutation invariant measure on phylogenetic X-trees, a set of binary phylogenetic X-trees of measure $1 - o(1)$ has the property, that any of them equipped with an arbitrary conservative, separable process P_2, with $t(e) \geq t_-$ in P_2 (assuming P_2 has the same H and c as P_1) has

\begin{equation}
\text{vardist} \left((T_1, P_1), (T_2, P_2) \right) \to 2,
\end{equation}

as $n \to \infty$.

Proof. We need a straightforward modification of the proof of Theorem 3.1. Leaving out the subscript from the notation for the generic leaf pair (a_i, b_i), formula (19) can be substituted by

\begin{equation}
H(3t_+) \leq H \left(d_{T_1}(a, b)t_+ \right) \leq \mathbb{P}[\text{state}_1(a) = \text{state}_1(b)];
\end{equation}

(21) can be substituted by

\begin{equation}
\mathbb{P}[\text{state}_2(a) = \text{state}_2(b)] \leq H \left(d_{T_2}(a, b)t_- \right) \leq H \left(h(n)t_- \right) < c + \epsilon
\end{equation}

for any fixed $\epsilon > 0$ as $n \to \infty$. For a sufficiently small $\epsilon > 0$, we have

\begin{equation}
c + \epsilon < H(3t_+)
\end{equation}

(this follows from the assumptions on H and c), and thus inequality (27) substitutes for (23). □

5. A separation result

Recall that in Theorem 3.1, in order to obtain the conclusion (4), we had the following two restrictions on (T_2, P_2): for “almost” all T_2 and “$g = g(P_2) < 1/2$”. In this section we show that all these restrictions can be dropped and still obtain a similar but weaker conclusion, namely that variational distance is separated from zero. For technical reasons we have to make slightly stronger assumptions for P_1 (we do not cover more general models in this Section). A related (but different) result appears in [2].

Theorem 5.1. For every fixed $0 < f \leq g < 1/8$, there exists an $\epsilon(f, g)$, such that for every binary phylogenetic X-tree T_1 with CFN transition mechanism P_1 where $f \leq p_e \leq g$ in P_1, the following holds. For every other binary phylogenetic X-tree $T_2(\neq T_1)$, equipped with an arbitrary CFN transition mechanism P_2, has

\begin{equation}
\text{vardist} \left((T_1, P_1), (T_2, P_2) \right) \geq \epsilon(f, g).
\end{equation}

Proof. It is well-known that for random variables ξ and η, if we denote by $\xi^{(k)}$ and $\eta^{(k)}$ the result of k independent evaluations of these random variables, then

\begin{equation}
\text{vardist} \left(\xi^{(k)}, \eta^{(k)} \right) \leq 2\sqrt{k} \sqrt{\text{vardist} \left(\xi, \eta \right)},
\end{equation}

for
see for example Section 2 of [18]. We showed in [16] that the variational distance of $(T_1, P_1^{(k)})$ and $(T_2, P_2^{(k)})$ is near 2 for a certain fixed k, since an event of near 1 probability tells them apart. (We showed there that for any fixed values of f and g (the minimum and maximum possible substitution probability) with $0 < f \leq g < 1/8$, some constant number of sites generated by the true (model) tree is enough to tell apart the true tree from a false one, if these two trees are given as input. This decision is achieved with near 1 probability, and can be made by a polynomial time algorithm.) If $\text{vardist} (T_1, P_1), (T_2, P_2)$ could be arbitrarily small, then this would contradict (29). □

6. Reconstruction when observation falls apart from the model in variational distance

Suppose we have a binary phylogenetic X–tree T with n leaves. Consider the CFN model with a transition mechanism P where $0 < f \leq g < 1/2$ are fixed and $f \leq p_e \leq g$, while $n \to \infty$ (or more generally a conservative, separable process, with t_-, t_+ fixed), and assume that we generate k sites independently, where k tends to infinity sub-exponentially with n—that is, $k = o(q^n)$ for any fixed $q > 1$.

On k sites, we obtain a relative frequency \hat{P} of observed patterns. Furthermore, provided k grows at least as fast as a certain polynomial in n (but still sub-exponentially) then it is possible to accurately reconstruct all n-leaf binary phylogenetic trees from \hat{P} under the CFN and even more general models (see [4, 5]). Yet, with probability $1 - o(1)$, the relative frequency \hat{P} is (close to) maximally distant from the model in variational distance, as Proposition 6.2 shows. To establish this result we begin with a lemma.

Lemma 6.1. Consider a conservative, separable process on a binary phylogenetic tree T, with $t(e) \geq t_- > 0$ for each edge e of T. Then for any pattern χ, we have $P_{\chi} \leq \delta^4$ where $\delta = \max\{1 - c, H(2t_-)\} \in (0, 1)$, and c is the constant specified in condition (C).

Proof. For a leaf pair a, b, observe that from the conservative condition (C),

$$P[\text{state}(a) = \text{state}(b)] \leq H(2t_-) \leq \delta,$$

since each path connecting two leaves have at least 2 edges. Similarly,

$$P[\text{state}(a) \neq \text{state}(b)] \leq 1 - c \leq \delta.$$

By Lemma 3.2 we can select at least $n/4$ disjoint paths in T connecting pairs of leaves, a_i, b_i. Let E_i denote the event that

$$\text{state}(a_i) = \text{state}(b_i) \iff \chi(a_i) = \chi(b_i).$$

By the separability condition (S) and the last three displayed formulae we have

$$P[\bigcap_{i=1}^{n/4} E_i] = \prod_{i=1}^{n/4} P[E_i] \leq \delta^{n/4}.$$
Now, the event that pattern χ is generated implies that the event $\cap_{i=1}^{n/4} E_i$ occurs, and thus $P_\chi \leq \delta^{n/4}$ as required.

Proposition 6.2. For conservative, separable processes with $t_- \leq t(e)$ fixed, and the number of independent sites, k is sub-exponential in n, as $n \to \infty$ we have $\text{vardist}((T, P), \hat{P}) = 2 - o(1)$ with probability $1 - o(1)$.

Proof. We denote by P_χ (resp. \hat{P}_χ) the model probability (resp. observed frequency) of pattern χ. Let E denote the event that every pattern χ is observed at most once, i.e. the relative frequency $\hat{P}_\chi \in \{0, 1/k\}$. Then

$$P[E^c] \leq \left(\frac{k}{2}\right) \sum_{\chi} P_\chi^2$$

and so,

$$P[E] \geq 1 - \left(\frac{k}{2}\right) \max_{\chi} \{P_\chi : \sum_{\chi} P_\chi \geq 1 - \left(\frac{k}{2}\right) \max_{\chi} \{P_\chi\}\}$$

(30)

$$\geq 1 - \left(\frac{k}{2}\right) \delta \hat{P} = 1 - o(1),$$

(31)

where the last inequality is by Lemma 6.1, with $\delta = \max\{1 - c, H(2t_-)\}$. Let A denote the set of observed patterns. Now, conditional on E we have

$$\text{vardist}((T, P), \hat{P}) = \sum_{\chi \in A} P_\chi + \sum_{\chi \in A} \left|\frac{1}{k} - P_\chi\right| \geq 2 - 2 \sum_{\chi \in A} P_\chi.$$

Again using Lemma 6.1,

$$\sum_{\chi \in A} P_\chi \leq k \cdot \delta \hat{P} = o(1),$$

which, combined with (30-31), gives $\text{vardist}((T, P), \hat{P}) = 2 - o(1)$ as claimed.

\[\square\]

Acknowledgement

We thank Éva Czabarka for her careful reading of earlier versions of this manuscript.

References

Biomathematics Research Centre, Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand; and Department of Mathematics, University of South Carolina, Columbia SC, USA

E-mail address: m.steel@math.canterbury.ac.nz, szekely@math.sc.edu