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APPROXIMATION IN LEARNING THEORY

V.N. Temlyakov

Abstract. This paper addresses some problems of supervised learning in the setting formu-
lated by Cucker and Smale. Supervised learning, or learning-from-examples, refers to a process
that builds on the base of available data of inputs xi and outputs yi, i = 1, . . . , m, a func-

tion that best represents the relation between the inputs x ∈ X and the corresponding outputs
y ∈ Y . The goal is to find an estimator fz on the base of given data z := ((x1, y1), . . . , (xm, ym))
that approximates well the regression function fρ (or its projection) of an unknown Borel prob-

ability measure ρ defined on Z = X × Y . We assume that (xi, yi), i = 1, . . . , m, are indepent
and distributed according to ρ.

We discuss the following two problems: I. the projection learning problem (improper func-

tion learning problem); II. universal (adaptive) estimators in the proper function learning
problem. In the first problem we do not impose any restrictions on a Borel measure ρ except
our standard assumption that |y| ≤ M a.e. with respect to ρ. In this case we use the data z

to estimate (approximate) the L2(ρX) projection (fρ)W of fρ onto a function class W of our
choice. Here, ρX is the marginal prabability measure. In [KT1,2] this problem has been studied
for W satisfying the decay condition εn(W, B) ≤ Dn−r of the entropy numbers εn(W, B) of W

in a Banach space B in the case B = C(X) or B = L2(ρX). In this paper we obtain the upper
estimates in the case εn(W, L1(ρX)) ≤ Dn−r with an extra assumption that W is convex.

In the second problem we assume that an unknown measure ρ satisfies some conditions.
Following the standard way from nonparametric statistics we formulate these conditions in
the form fρ ∈ Θ. Next, we assume that the only a priori information available is that fρ

belongs to a class Θ (unknown) from a known collection {Θ} of classes. We want to build
an estimator that provides approximation of fρ close to the optimal for the class Θ. Along
with standard penalized least squares estimators we consider a new method of construction of

universal estimators. This method is based on a combination of two powerful ideas in building
universal estimators. The first one is the use of penalized least squares estimators. This idea
works well in the case of general setting with rather abstract methods of approximation. The

second one is the idea of thresholding that works very well when we use wavelets expansions as
an approximation tool. A new estimator that we call big jump estimator uses the least squares
estimators and chooses a right model by a thresholding criteria instead of the penalization. In

this paper we illustrate how ideas and methods of approximation theory can be used in learning
theory both in formulation of a problem and in solving it.

1. Introduction. Setting. Known results

We discuss in this paper some mathematical aspects of supervised learning theory. Su-
pervised learning, or learning-from-examples, refers to a process that builds on the base of
available data of inputs xi and outputs yi, i = 1, . . . , m, a function that best represents
the relation between the inputs x ∈ X and the corresponding outputs y ∈ Y . The central
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question is how well this function estimates the outputs for general inputs. This is a big
area of research both in nonparametric statistics and in learning theory. In this paper we
confine ourselves to results obtained in a direction of further development of the settings and
results from the paper of Cucker and Smale [CS]. For results in other settings we recommend
a book of V. Vapnik [V], a survey by T. Evgeniou, M. Pontil and T. Poggio [EPP], and a
survey on the classification problem by G. Lugosi [L]. Our setting is similar to the setting of
the distribution-free regression problem. In this paper we illustrate how ideas and methods
of approximation theory can be used in learning theory both in formulation of a problem
and in solving it.

A standard mathematical framework for the setting of the above learning problem is the
following ([CS], [PS], [DKPT1,2],[KT1,2], [T2]). Let X ⊂ R

d, Y ⊂ R be Borel sets, ρ be a
Borel probability measure on Z = X × Y . For f : X → Y define the error

E(f) :=
∫

Z

(f(x) − y)2dρ.

Consider ρ(y|x) - conditional (with respect to x) probability measure on Y and ρX - the
marginal probability measure on X (for S ⊂ X, ρX(S) = ρ(S ×Y )). Define the conditional
expectation

fρ(x) :=
∫

Y

ydρ(y|x).

The function fρ is known in statistics as the regression function of ρ. It is clear that
if fρ ∈ L2(ρX) then it minimizes the error E(f) over all f ∈ L2(ρX): E(fρ) ≤ E(f),
f ∈ L2(ρX). Thus, in the sense of error E(·) the regression function fρ is the best to
describe the relation between inputs x ∈ X and outputs y ∈ Y . Now, our goal is to find
an estimator fz, on the base of given data z = ((x1, y1), . . . , (xm, ym)) that approximates
fρ (or its projection) well with high probability. We assume that (xi, yi), i = 1, . . . ,m are
independent and distributed accoding to ρ.

There are several important ingredients in mathematical formulation of this problem.
We follow the way that has become standard in approximation theory and has been used
in [DKPT1,2], [KT1,2], and [T2]. In this approach we first choose a function class W (a
hypothesis space H in [CS]) to work with. After selecting a class W we have the following
two ways to go. The first one ([CS], [PS], [KT1,2], [T2]) is based on the idea of studying
approximation of the L2(ρX) projection fW := (fρ)W of fρ onto W . This setting is known
as the improper function learning problem or the projection learning problem. In this case we
do not assume that the regression function fρ comes from a specific (say, smoothness) class
of functions. The second way ([CS], [PS], [DKPT1,2], [KT1,2], [BCDDT], [T2]) is based on
the assumption fρ ∈ W . This setting is known as the proper function learning problem. For
instance, we may assume that fρ has some smoothness. In the case of the proper function
learning problem we use the notation Θ (instead of W ) for a class of priors. In Sections 2
and 3 of this paper we study the projection learning problem and in Sections 4–6 we study
the proper function learning problem.

The main question of nonparametric regression theory and learning theory is how to
choose an estimator fz. There are several different approaches to this problem. We now
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discuss some of them. Recently, driven by ideas from approximation theory, the following
general approach to this problem has been developed. The idea of this approach is to choose
an estimator fz as a solution (approximate solution) of an optimization problem (minimax
problem). So, in this approach we should begin with a formulation of an optimization
problem. A standard formulation of such a problem is the following. We begin with a
fixed class Θ of priors (or a fixed class W where we project fρ). That means we impose
a restriction on an unknown measure ρ, which we want to study, in the form fρ ∈ Θ.
Developping this approach we encounter three immediate questions: 1. What classes Θ of
priors (or classes W ) to choose? 2. What should be the form of fz? 3. How to measure
the quality of estimation (approximation)? We will not discuss these questions in detail
here. We only note that the following partial answers to the above questions are widely
accepted. 1. A very important characteristic of Θ that governs the quality of estimation
is a sequence of the entropy numbers εn(Θ, B) of Θ in a suitable Banach space B. 2. The
following way of building fz provides a near optimal estimator in many cases. First, choose
a right hypothesis space H (that may depend on Θ). Second, construct fz,H ∈ H as the
empirical optimum (least squares estimator). We explain this in more detail. For a compact
subset Θ of a Banach space B we define the entropy numbers as follows

εn(Θ, B) := inf{ε : ∃f1, . . . , f2n ∈ Θ : Θ ⊂ ∪2n

j=1(fj + εU(B))}

where U(B) is the closed unit ball of a Banach space B. We denote N(Θ, ε, B) the covering
number that is the minimal number of balls of radius ε with centers in Θ needed for covering
Θ. We note that N(Θ, εn(Θ, B), B) ≤ 2n.

We define
fz,H = arg min

f∈H
Ez(f),

where

Ez(f) :=
1
m

m∑
i=1

(f(xi) − yi)2

is the empirical error (risk) of f . This fz,H is called the empirical optimum or the least
squares estimator. 3. It seems natural (see [CS], [GKKW], [DKPT1], [DKPT2], [KT1],
[KT2], [BCDDT]) to measure the quality of approximation by E(fz) − E(fρ). It is easy to
see that for any f ∈ L2(ρX)

E(f) − E(fρ) = ‖f − fρ‖2
L2(ρX).

Thus the choice ‖ · ‖ = ‖ · ‖L2(ρX) looks natural. The reader can find a discussion of recent
results on optimal rates of estimation for different classes Θ in a survey [T2].

In this paper we address the following important issue. In many cases we do not know
exactly what is a class Θ of priors where an unknown fρ comes from. Therefore, we try
to construct an estimator that provides good estimation (near optimal) not for a single
class of priors Θ but for a collection of classes of priors. Clearly, in order to claim that
an estimator fz is near optimal for a class Θ we need to compare the upper estimates of
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approximation by fz with the corresponding lower bounds of optimal estimation for Θ. We
will discuss some known lower estimates. The usual in regression theory way to evaluate
the performance of the estimator fz is by studying its convergence in expectation, i.e. the
rate of decay of the quantity E(‖fρ − fz‖2

L2(ρX)) as the sample size m increases. Here the
expectation is taken with respect to the product measure ρm defined on Zm. We note that
E(fz) − E(fρ) = ‖fz − fρ‖2

L2(ρX). A more accurate and more delicate way of evaluating
the performance of fz has been pushed forward in [CS]. In [CS] they study the probability
distribution function

ρm{z : ‖fρ − fz‖L2(ρX) ≥ η}
instead of the expectation E(‖fρ − fz‖2

L2(ρX)).
The study of the probability distribution function ρm{z : ‖fρ − fz‖L2(ρX) ≥ η} is a more

difficult problem than the study of the expectation E(‖fρ − fz‖2
L2(ρX)). We encounter this

difficulty even at the level of formulation of an optimization problem. The reason for this
is that the probability distribution function provides control of two characteristics: η – the
error of estimation and 1 − ρm{z : ‖fρ − fz‖L2(ρX) ≥ η} – the confidence of the error η.
Therefore, we need a mathematical formulation of the above discussed problems of optimal
estimators.

We proposed (see [DKPT2], [T2]) to study the following function that we call the accuracy
confidence function. Let a set M of admissible measures ρ, and a sequence E := {E(m)}∞m=1

of allowed classes E(m) of estimators be given. For m ∈ N, η > 0 we define

ACm(M, E, η) := inf
Em∈E(m)

sup
ρ∈M

ρm{z : ‖fρ − fz‖L2(ρX) ≥ η}

where Em is an estimator that maps z → fz. For a example, E(m) could be a class of all
estimators, a class of linear estimators of the form

fz =
m∑

i=1

wi(x1, . . . , xm, x)yi,

or a specific estimator. In the case E(m) is the set of all estimators, m = 1, 2, . . . , we drop
E from the notation and write ACm(M, η).

We begin our discussion of known results with the lower estimate of the accuracy con-
fidence function from [DKPT2]. These lower bounds have been established in terms of a
certain variant of the Kolmogorov entropy of Θ which we shall call tight entropy. For a
compact Θ in a Banach space B we define the packing numbers as

P (Θ, δ) := P (Θ, δ, B) := sup{N : ∃ f1, ..., fN ∈ Θ,

with
δ ≤ ‖fi − fj‖B , ∀i 
= j}.

It is well known [P] and easy to check that N(Θ, δ, B) ≤ P (Θ, δ, B). The tight packing
numbers are defined as follows. Let 1 ≤ c1 < ∞ be a fixed real number. We define the tight
packing numbers as

P̄ (Θ, δ) := P̄ (Θ, δ, c1, B) := sup{N : ∃ f1, ..., fN ∈ Θ,
4



with

(1.1) δ ≤ ‖fi − fj‖B ≤ c1δ, ∀i 
= j}.

It is clear that P̄ (Θ, δ, c1, B) ≤ P (Θ, δ, B).
We let µ be any Borel probability measure defined on X and let M(Θ, µ) denote the

set of all ρ such that ρX = µ, |y| ≤ 1, fρ ∈ Θ. We specify B = L2(µ) and assume that
Θ ⊂ L2(µ). We will use the abbreviated notation P̄ (δ) := P̄ (Θ, δ, c1, L2(µ)).

Let us fix any set Θ and any Borel probability measure µ defined on X. We set M :=
M(Θ, µ) as defined above. We also take 1 < c1 in an arbitrary way but then fix this constant.
For any fixed δ > 0, we let {fi}P̄

i=1, with P̄ := P̄ (δ), be a net of functions satisfying (1.1).
To each fi, we shall associate the measure

dρi(x, y) := (ai(x)dδ1(y) + bi(x)dδ−1(y))dµ(x),

where ai(x) := (1 + fi(x))/2, bi(x) := (1 − fi(x))/2 and dδξ denotes the Dirac delta with
unit mass at ξ. Notice that (ρi)X = µ and fρi = fi and hence each ρi is in M(Θ, µ).

The following theorems are known.

Theorem 1.1 [DKPT2]. Let 1 < c1 be a fixed constant. Suppose that Θ is a subset of
L2(µ) with tight packing numbers P̄ := P̄ (δ). In addition suppose that for δ = 2η > 0,
the net of functions {fi}P̄

i=0 in (1.1) satisfies ‖fi‖C(X) ≤ 1/4, i = 1, . . . , P̄ . Then for any
estimator fz we have for some i ∈ {1, . . . , P̄}

ρm
i {z : ‖fz−fi‖L2(µ) ≥ η} ≥ min(1/2, (P̄ (2η)−1)1/2e−8c2

1mη2−3/e), ∀η > 0, m = 1, 2, . . . .

By C and c we denote absolute positive constants and by C(·), c(·), and A0(·) we denote
constants that are determined by their arguments. For two nonnegative sequences a =
{an}∞n=1 and b = {bn}∞n=1 the relation (order inequality) an � bn means that there is a
number C(a, b) such that for all n we have an ≤ C(a, b) bn; and the relation an 
 bn means
that an � bn and bn � an.

Theorem 1.2 [T2]. Assume Θ is a compact subset of L2(µ) such that Θ ⊂ 1
4U(C(X)) and

(1.2) εn(Θ, L2(µ)) 
 n−r.

Then there exist δ0 > 0 and ηm := ηm(r) 
 m− r
1+2r such that

(1.3) ACm(M(Θ, µ), η) ≥ δ0 for η ≤ ηm

and

(1.4) ACm(M(Θ, µ), η) ≥ Ce−c(r)mη2
for η ≥ ηm.
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Remark 1.1 [T2]. Theorem 1.2 holds in the case Θ ⊂ M
4 U(C(X)), |y| ≤ M , with constants

allowed to depend on M .

The lower estimates from Theorem 1.2 will serve as a benchmark for the performance of
particular estimators. Let us formulate a condition on a measure ρ and a class H that we
will often use:

(1.5) for all f ∈ H, we have |f(x) − y| ≤ M a.e. with respect to ρ.

Clearly, (1.5) is satisfied if |y| ≤ M/2 and |f(x)| ≤ M/2, f ∈ H.
In Section 4 we prove the following complementary to Theorem 1.2 result.

Theorem 1.3. Let fρ ∈ Θ and let ρ, Θ satisfy (1.5). Assume

εn(Θ, L2(ρX)) ≤ Dn−r, n = 1, 2, . . . , Θ ⊂ DU(L2(ρX)).

Then there exists an estimator fz such that for η ≥ 7ε0, ε0 := C(M,D, r)m− 2r
1+2r , m ≥

60(M/D)2, we have

ρm{z : ‖fz − fρ‖2
L2(ρX) ≥ η} ≤ exp

(− mη

200M2

)
.

In the case of Θ satisfying the assumption

εn(Θ, C(X)) ≤ Dn−r, n = 1, 2, . . . , Θ ⊂ DU(C(X)).

Theorem 1.3 has been obtained in [KT1].
A combination of Theorems 1.2 and 1.3 completes the study of the behavior (in the sense

of order) of the AC-function of classes satisfying (1.2). We formulate this as a theorem.

Theorem 1.4. Let µ be a Borel probability measure on X. Assume r > 0 and Θ is a
compact subset of L2(µ) such that

εn(Θ, L2(µ)) 
 n−r.

Then there exist δ0 > 0 and η−
m ≤ η+

m, η−
m 
 η+

m 
 m− r
1+2r such that

ACm(M(Θ, µ), η) ≥ δ0 for η ≤ η−
m

and
C1e

−c1(r)mη2 ≤ ACm(M(Θ, µ), η) ≤ e−c2mη2

for η ≥ η+
m.

Let us make a general remark on the technique that we use in this paper. It usually
consists of a combination of results from nonparametric statistics with results from ap-
proximation theory. Both the results from nonparametric statistics and the results from
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approximation theory that we use are either known or very close to known results. The
novelty of this paper is in combining these known results and applying them in a new set-
ting. For example, in the proof of Theorem 1.3 we have used a statistical technique that
was used in many papers (for instance, [LBW], [BBM], [CS]) and goes back to Barron’s
seminal paper [B]. We also used some elementary results on the entropy numbers from
approximation theory.

We now proceed to results on construction of universal (adaptive) estimators. Let us
begin with a case where we impose conditions on the class Θ in a spirit of Kolmogorov’s
widths. Denote for a set L of a Banach space B

d(Θ, L)B := sup
f∈Θ

inf
g∈L

‖f − g‖B.

Let L := {Ln}∞n=1 be a sequence of n-dimensional subspaces of C(X). Denote by W(L, α, β)
a collection of classes W r(L), r ∈ [α, β], satisfying the following relations

d(W r(L), Ln)C(X) ≤ Dn−r, n = 1, 2, . . . ; W r(L) ⊂ DU(C(X)).

In the following discussion let us assume that the unknown measure ρ satisfies the condition
|y| ≤ M (or a little weaker |y| ≤ M a.e. with respect to ρ) with some fixed M . Then it is
clear that for fρ we have |fρ(x)| ≤ M for all x (for almost all x). Therefore, it is natural
to assume that a class Θ of priors where fρ belongs is embedded into the C(X)-ball (L∞-
ball) of radius M . We make this assumption in all theorems of the introduction without
formulating it. In Sections 4 and 7 we prove the following theorem (see Theorem 7.1) that
extends the corresponding results from [DKPT1,2] for the collection W(L, α, 1/2) to a result
for the collection W(L, α, β) with any 0 < α ≤ β < ∞.

Theorem 1.5. For a given collection W(L, α, β), 0 < α ≤ β < ∞, there exists an estimator
fz such that if fρ ∈ W r(L), r ∈ [α, β] then for A ≥ A0(M,α, β)

ρm{E(fz) − E(fρ) ≤ C(D)A(lnm/m)
2r

1+2r } ≥ 1 − mC1(M)(C2(M)−A).

The above theorem provides a universal estimator for the collection W(L, α, β) of classes
defined in terms of approximation in the uniform norm by linear subspaces. As we already
mentioned the natural norm to work with in learning theory is the L2(ρX) norm.

We do not know if Theorem 1.5 holds for fρ satisfying

d(fρ, Ln)L2(ρX) ≤ Dn−r, n = 1, 2, . . . ,

instead of fρ ∈ W r(L). However, we prove in Section 4 such a generalization of Theorem
1.5 with the subspaces Ln, n = 1, 2, . . . replaced, for instance, by the C(X)-balls of Ln. We
note that these results generalize the corresponding results from [KT2] where we imposed
extra assumptions on the subspaces Ln in the form of uniform boundedness of the L2(µ)
projections on Ln as operators from B(X) to B(X) (see Section 7 for detail). We also
mention the paper [BCDDT] that addresses in addition to the issue of universality the issue
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of online implementation. The construction of good estimators from [BCDDT] is based on
adaptive (data dependent) partitioning of X and on thresholding.

In this paper we give a general scheme for construction of universal estimators. It begins
with a sequence of hypothesis spaces Hn, n = 1, 2, . . . . Then we consider the sequence of
least squares estimators fz,Hn , n = 1, 2, . . . . Next, we use two different ways of choosing
an estimator fz := fz,Hn(z) (choosing n(z)). The first way is based on a known idea of
penalization. We discuss the corresponding results in Section 4. The second way is based
on a thresholding type criterion for the differences Ez(fz,H2s−1 ) − Ez(fz,H2s ). We discuss
this way in Sections 5 and 6.

In Sections 5 and 6 we consider a new method of construction of universal estimators. This
method is based on a combination of two powerful ideas in building universal estimators.
The first one is the use of penalized least squares estimators. This idea works well in
the case of general setting with rather abstract methods of approximation, like in Section
4. The second one is the idea of thresholding that works very well when we use wavelets
expansions as an approximation tool. A new estimator that we call big jump estimator uses
the least squares estimators and chooses a right model by thresholding criteria instead of
penalization. The technique of studying these new estimators is more complicated than the
technique developed in Section 4 for studying the penalized least aquares estimators. As a
result we got some restrictions, for instance, r ≤ 1/2 in Theorem 5.2, that probably reflect
technical difficulties rather than a new phenomenon. Our method uses a mixture of the
previous techniques: we measure compactness of Hn in the uniform norm and approximate
f by elements from Hn in the L2(ρX) norm.

Section 3 plays a preparatory role for Sections 5–6. However, it might be of independent
interest. In this section we generalize a known result from [CS] that holds for convex
hypothesis spaces H to the case of nonconvex hypothesis spaces H. We prove that the
condition of convexity can be replaced by a control of the distance from fρ to H.

We will often use the classical Bernstein’s inequalities. If ξ is a random variable (a real
valued function on a probability space Z) then denote

E(ξ) := Eρ(ξ) :=
∫

Z

ξdρ; σ2(ξ) :=
∫

Z

(ξ − E(ξ))2dρ.

For a single function f we have the following probabilistic Bernstein inequalities. If |ξ(z)−
E(ξ)| ≤ M a.e. then for any ε > 0 one has

(1.6) Probz∈Zm{| 1
m

m∑
i=1

ξ(zi) − E(ξ)| ≥ ε} ≤ 2 exp
(
− mε2

2(σ2(ξ) + Mε/3)

)

with z := (z1, . . . , zm). Here are the corresponding one-sided inequalities

(1.7) Probz∈Zm{ 1
m

m∑
i=1

ξ(zi) − E(ξ) ≥ ε} ≤ exp
(
− mε2

2(σ2(ξ) + Mε/3)

)
,
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(1.8) Probz∈Zm{ 1
m

m∑
i=1

ξ(zi) − E(ξ) ≤ −ε} ≤ exp
(
− mε2

2(σ2(ξ) + Mε/3)

)
.

In the paper we formulate assumptions on a class W in the following form

(1.9) εn(W,B) ≤ Dn−r, W ⊂ DU(B).

We denote Sr := Sr(D) := Sr
∞(D) a collection of classes W that satisfy (1.9) with B =

C(X). The notation Sr
p := Sr

p(D) is used for a collection of classes W satisfying (1.9) with
B = Lp(ρX), 1 ≤ p < ∞.

We often have error estimates of the form (lnm/m)α that hold for m ≥ 2. We could
write these estimates in the form, say, (ln(m + 1)/m)α to make them valid for all m ∈ N.
However, we use the first variant throughout the paper for the following two reasons: simpler
notations, we are looking for the asymptotic behavior of the error.

2. Least squares estimators for convex hypothesis spaces

In this section we give some results from [CS] in the case when the hypothesis space
H is convex. We present these results with complete proofs for the following reason. In
Section 3 we proof similar results under the assumption of convexity replaced by other
assumption. In Section 4 we formulate results similar to those from this section without
proofs. So, for the sake of completeness and for the sake of the reader’s convenience we
have included the complete proofs here. Also, our proofs that use the same ideas as in [CS]
are a little simpler technically and give better numerical constants in the inequalities. We
note that the technique presented in this section is a development of techniques used in
[B], [LBW], [BBM]. At the end of Section 2 we apply this technique to a problem of the
projection learning (improper function learning). Theorem 2.5 is new, it extends known
results (Theorem 2.4) in the direction of replacing the assumption H ∈ Sr by a weaker
assumption H ∈ Sr

1 . Further comments are given at the end of Section 2. In addition to the
notation fz,H defined in the Introduction we will use the following notation for the L2(ρX)
projection of fρ onto H (we assume existence)

fH := arg min
f∈H

E(f).

We begin with the following theorem.

Theorem 2.1 [CS]. Suppose that H is a compact and convex subset of C(X). Assume that
ρ and H satisfy (1.5). Then, for all ε > 0

ρm{z : E(fz,H) − E(fH) < ε} ≥ 1 − N(H, ε/(16M)) exp(− mε

80M2
).
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Lemma 2.1 [CS]. Let H be a convex subset of C(X) such that fH exists. Then for all
f ∈ H

‖f − fH‖2
L2(ρX) ≤ E(f) − E(fH).

Proof. By the convexity assumption for any f ∈ H and g := f−fH, we have (1−ε)fH+εf =
fH + εg is in H and therefore,

0 ≤ ‖fρ − fH − εg‖2
L2(ρX) − ‖fρ − fH‖2

L2(ρX) = −2ε

∫
X

(fρ − fH)g dρX + ε2
∫

X

g2 dρX .

Letting ε → 0, we obtain the following well-known result:

(2.1)
∫

X

(fρ − fH)(f − fH) dρX ≤ 0, f ∈ H.

Then letting ε = 1 we see that ‖fρ − f‖L2(ρX) > ‖fρ − fH‖L2(ρX) whenever f 
= fH and so
fH is unique. Also, (2.1) gives

‖f − fH‖2
L2(ρX) ≤ ‖f − fρ‖2

L2(ρX) − ‖fρ − fH‖2
L2(ρX) = E(f) − E(fH).

We will use the following notations.

δ(H) := E(fH) − E(fρ) = ‖fH − fρ‖2
L2(ρX);

EH(f) := E(f) − E(fH); EH,z(f) := Ez(f) − Ez(fH);

	(f) := 	(f, z) := (f(x) − y)2 − (fH(x) − y)2, z = (x, y).

We note that

EH(f) = Eρ(	(f, z)); EH,z(f) =
1
m

m∑
i=1

	(f, zi).

Lemma 2.2 [CS]. Assume that H is convex and ρ and H satisfy (1.5). Then we have

σ2 := σ2(	(f)) ≤ 4M2EH(f).

Proof. We have

σ2(	(f)) ≤ E(	(f)2) = E((f(x) − fH(x))2(f(x) + fH(x) − 2y)2)

≤ 4M2E((f(x) − fH(x))2) = 4M2‖f − fH‖2
L2(ρX) ≤ 4M2EH(f).

At the last step we have used Lemma 2.1. �
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Lemma 2.3 [CS]. Assume that H is convex and ρ and H satisfy (1.5). Let f ∈ H. For
all ε > 0, α ∈ (0, 1] one has

ρm{z : EH(f) − EH,z(f) ≥ α(EH(f) + ε)} ≤ exp
(−α2mε

5M2

)
,

ρm{z : EH(f) − EH,z(f) ≤ −α(EH(f) + ε)} ≤ exp
(−α2mε

5M2

)
.

Proof. Denote a := EH(f). We note that a ≥ 0. The proofs of both inequalities are
the same. We will carry out only the proof of the first one. Using one-sided Bernstein’s
inequality (1.8) for 	(f) we obtain

ρm{z : EH(f) − EH,z(f) ≥ α(a + ε)} ≤ exp
(− mα2(a + ε)2

2(σ2 + M2α(a + ε)/3)
)
.

It remains to check that

(2.1)
(a + ε)2

2(σ2 + M2α(a + ε)/3)
≥ ε

5M2
.

Using Lemma 2.2 we get on the one hand

(2.2) 2ε(σ2 + M2α(a + ε)/3) ≤ M2ε(9a + 2ε/3).

On the other hand

(2.3) 5M2(a + ε)2 ≥ M2ε(10a + 5ε).

Comparing (2.2) and (2.3) we obtain the required inequality. �
Lemma 2.4 [CS]. Assume that ρ and H satisfy (1.5). Let α ∈ (0, 1), ε > 0, and let f ∈ H
be such that

(2.4)
EH(f) − EH,z(f)

EH(f) + ε
< α.

Then for all g ∈ H such that ‖f − g‖C(X) ≤ αε
4M we have

(2.5)
EH(g) − EH,z(g)

EH(g) + ε
< 2α.

Proof. Denote

a := EH(f), a′ := EH(g), b := EH,z(f), b′ := EH,z(g).
11



Then our assumption ‖f − g‖C(X) ≤ αε
4M implies

(2.6) |a − a′| ≤ αε/2, |b − b′| ≤ αε/2.

By (2.4) and (2.6) we get (a ≥ 0)

(2.7) a(1 − α) < b + αε ≤ b′ + 3αε/2.

Also, by (2.6)

(2.8) a(1 − α) ≥ (a′ − αε/2)(1 − α) ≥ a′ − αa′ − αε/2.

Combining (2.7) and (2.8) we obtain

a′ − b′ < αa′ + 2αε ≤ 2α(a′ + ε)

which implies (2.5). �

A combination of Lemma 2.3 and Lemma 2.4 gives the following theorem.

Theorem 2.2 [CS]. Assume that H is convex and ρ, H satisfy (1.5). Then for all ε > 0
and α ∈ (0, 1)

ρm{z : sup
f∈H

EH(f) − EH,z(f)
EH(f) + ε

≥ 2α} ≤ N(H,
αε

4M
, C(X)) exp

(−α2mε

5M2

)
.

Proof. Let f1, . . . , fN be the αε
4M -net of H in C(X), N := N(H, αε

4M , C(X)). Let Λ be the set
of z such that for all j = 1, . . . , N we have

EH(fj) − EH,z(fj)
EH(fj) + ε

< α.

Then by Lemma 2.3

(2.9) ρm(Λ) ≥ 1 − N exp
(−α2mε

5M2

)
.

We take any z ∈ Λ and any g ∈ H. Let fj be such that ‖g − fj‖C(X) ≤ αε
4M . By Lemma 2.4

we obtain that
EH(g) − EH,z(g)

EH(g) + ε
< 2α.

It remains to use (2.9). �
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Theorem 2.3 [CS]. Let H be a compact and convex subset of C(X) and ρ, H satisfy (1.5).
Then for all ε > 0 with probability at least

p(H, ε) := 1 − N(H,
ε

16M
, C(X)) exp

(− mε

80M2

)

one has for all f ∈ H

(2.10) E(f) ≤ 2Ez(f) + ε − E(fH) + 2(E(fH) − Ez(fH)).

Proof. Using Theorem 2.2 with α = 1/4 we get with probability at least p(H, ε)

(2.11) EH(f) < 2EH,z(f) + ε.

Substituting
EH(f) := E(f) − E(fH); EH,z(f) := Ez(f) − Ez(fH)

we obtain (2.10). �
Corollary 2.1. Under the assumptions of Theorem 2.3 we have

Ez(fH) − Ez(fz,H) ≤ ε/2

with probability at least p(H, ε).

We will use Corollary 2.1 and other corollaries of Theorem 2.3 in Section 5. The reader
can find a proof of Corollary 2.1 in Section 5.

Proof of Theorem 2.1. We use (2.11) with f = fz,H. From the definition of fz,H we obtain
that EH,z(fz,H) ≤ 0. This completes the proof of Theorem 2.1. �

The following theorem is a direct corollary of Theorem 2.1.

Theorem 2.4 [CS], [DKPT1,2]. Assume that H ∈ Sr is convex and ρ, H satisfy (1.5).
Then for η ≥ ηm := A0(M,D, r)m− r

1+r one has

ρm{z : E(fz,H) − E(fH) ≥ η} ≤ exp(−c(M)mη).

Proof. We get from the assumption H ∈ Sr that

N(H, η/(16M)) ≤ 2(CDM/η)1/r

.

Expressing η in the form η = Am− r
1+r we obtain that for A ≥ A0(M,D, r)

2(CDM/η)1/r

exp(− mη

80M
) ≤ exp(−c(M)mη).
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Theorem 2.5. Let W be a convex and compact in L1(ρX) set and let ρ, W satisfy (1.5).
Assume W ∈ Sr

1 that is

(2.12) εn(W,L1(ρX)) ≤ Dn−r, n = 1, 2, . . . , W ⊂ DU(L1(ρX)).

Then there exists an estimator fz ∈ W such that for η ≥ ηm := (6M + 4)ε0, ε0 :=
C(M,D, r)m− r

1+r , m ≥ 60(M/D)2, we have

ρm{z : E(fz) − E(fW ) ≥ η} ≤ exp
(−c(M)mη

)
.

Proof. Let N := Nε0(W,L1(ρX)) be a minimal ε0-net of W in the L1(ρX) norm. The
constant C(M,D, r) will be chosen later. Then (2.12) implies that

(2.13) |N | ≤ 2(D/ε0)
1/r+1.

As an estimator fz we take

fz := fz,N := arg min
f∈N

Ez(f).

We take ε ≥ ε0 and apply the first inequality of Lemma 2.3 with α = 1/2 to each f ∈ N .
In such a way we obtain a set Λ1 with

ρm(Λ1) ≥ 1 − |N | exp
(− mε

20M2

)

with the property: for all f ∈ N and all z ∈ Λ1 one has

(2.14) EW (f) ≤ 2EW,z(f) + ε.

Therefore, for z ∈ Λ1

(2.15) EW (fz) ≤ 2EW,z(fz) + ε ≤ 2EW,z(fN ) + ε.

Let Λ2 be the set of all z such that

(2.16) EW (fN ) − EW,z(fN ) ≤ −1
2
(EW (fN ) + ε).

By the second inequality of Lemma 2.3 with α = 1/2

ρm(Λ2) ≤ exp
(− mε

20M2

)
.

Consider Λ := Λ1 \ Λ2. Then

ρm(Λ) ≥ 1 − (|N | + 1) exp
(− mε

20M2

)
.
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Using the inequality opposite to (2.16) we continue (2.15) for z ∈ Λ

EW (fz) ≤ 2EW,z(fN ) + ε ≤ 3EW (fN ) + 2ε.

Next,

(2.17) EW (fN ) = E(fN )−E(fW ) = min
f∈N

(E(f)−E(fW )) ≤ min
f∈N

2M‖f−fW ‖L1(ρX) ≤ 2Mε0.

Therefore
EW (fz) ≤ 6Mε0 + 2ε.

We choose ε0 ≤ D from the equation

3(D/ε0)
1
r =

mε0
20M2

.

We get
ε0 = (60M2)

r
1+r D

1
1+r m− r

1+r .

For m ≥ 60M2/D we have ε0 ≤ D. We let η = 6Mε0 + 2ε. Then our assumption η ≥
(6M + 4)ε0 implies ε ≥ 2ε0 and

ρm(Zm \ Λ) ≤ (|N | + 1) exp
(− mε0

20M2

)
exp

(−m(ε − ε0)
20M2

)

≤ exp
(− mε

40M2

) ≤ exp
(− mη

40M2(3M + 2)
)
.

This completes the proof of Theorem 2.5. �

We note that Theorem 2.5 with the assumption W ∈ Sr (instead of W ∈ Sr
1 ) has been

proved in [CS], [DKPT1,2] with fz = fz,W (see Theorem 2.4). It is interesting to compare
Theorem 2.5 with the corresponding results when we do not assume that W is convex. Let
us compare only the accuracy thresholds ηm. Theorem 2.5 says that for a convex W the
assumption W ∈ Sr

1 implies
ηm � m− r

1+r .

The results of [KT2] state that W ∈ Sr
2 (no convexity assumption) implies

ηm � m− r
1+r , r ∈ (0, 1],

ηm � m−1/2, r ≥ 1.

The results of [KT1] give the following estimates for W ∈ Sr

(2.18) ηm � m−r, r ∈ (0, 1/2],
15



(2.19) ηm � m−1/2, r ≥ 1/2.

It has been proved in [KT1] that the estimates (2.18) and (2.19) cannot be improved.
Therefore, even under a strong assumption W ∈ Sr the best we can get is ηm � m−1/2.
Theorem 2.5 shows that the convexity combined with a weaker assumption W ∈ Sr

1 provide
better estimates for big r.

Let us make a comment on studying the accuracy confidence function for the projection
learning problem (improper function learning problem). Similarly to the case of the proper
function learning problem we introduce the corresponding accuracy confidence function

ACp
m(W, E, η) := inf

Em∈E(m)
sup

ρ
ρm{z : E(fz) − E((fρ)W ) ≥ η2}

where supρ is taken over ρ such that ρ, W satisfy (1.5). In the case E(m), m = 1, 2, . . . , is
a collection of all estimators Em : z → fz ∈ W we drop E from the notation. We note that
in the case of convex W we have by Lemma 2.1 for any f ∈ W

‖f − (fρ)W ‖2
L2(ρX) ≤ E(f) − E((fρ)W ).

Theorem 2.5 provides an upper estimate for the ACp-function in the case of convex W from
Sr

1 :

ACp
m(W, η1/2) ≤ exp(−c(M)mη), η ≥ ηm � m− r

1+r .

We note that the behavior of the ACp-function is well understood only in the following
special cases. Let r > 1/2 then (see [KT1], [T2])

C1 exp(−c1(M)mη4) ≤ sup
W∈Sr(D)

ACp
m(W, η) ≤ C(M,D, r) exp(−c2(M)mη4)

for η ≥ m−1/4. Also for r ≥ 1 (see [KT2])

C1 exp(−c1(M)mη4) ≤ sup
W∈Sr

2 (D)

ACp
m(W, η) ≤ C(M,D, r) exp(−c3(M)mη4)

provided η � m−1/4.
It would be interesting to find the behavior of

sup
W∈S

ACp
m(W, η)

in the following cases: I. S = Sr(D), r ≤ 1/2; II. S = Sr
2 (D), r < 1; III. S = {W : W ∈

Sr
q (D), W is convex}, q = 1, 2,∞.
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3. Least squares estimators for nonconvex hypothesis spaces

The following result has been proved in [DKPT1].

Theorem 3.1 [DKPT1]. Let H be a compact subset of C(X). Assume that ρ and H satisfy
(1.5). Then, for all ε > 0

ρm{z : E(fz,H) − E(fH) ≤ ε} ≥ 1 − N(H, ε/(24M))2 exp(− mε

C(M,K)
)

under assumption E(fH) − E(fρ) ≤ Kε.

Theorem 3.1 shows that we obtain an analogue of Theorem 2.1 with the convexity as-
sumption replaced by the assumption δ(H) := E(fH) − E(fρ) ≤ Kε. In this section we will
develop further the idea of replacing the convexity assumption by an estimate for δ(H). The
motivation for this is that applications of results of the type of Theorem 3.1 in construction
of universal estimators require bounds in a more general situation than δ(H) ≤ Kε. The
following theorem provides bounds for ρm{z : E(fz,H)−E(fH) ≥ ε} in the case of arbitrary
ε and δ(H).

Theorem 3.2. Suppose H is a compact subset of C(X) and E(fH) − E(fρ) ≤ δ. Assume
that ρ, H satisfy (1.5). Then, for all ε > 0

ρm{z : E(fz,H) − E(fH) ≥ ε} ≤ N(H,
ε

16M
, C(X)) exp

(− mε2

29M2(ε + δ)
)
.

Lemma 3.1 [DKPT1]. For any f we have

‖f − fH‖2
L2(ρX) ≤ 2(E(f) − E(fH) + 2‖fH − fρ‖2

L2(ρX)).

Proof. We have

‖f − fH‖L2(ρX) ≤ ‖f − fρ‖L2(ρX) + ‖fρ − fH‖L2(ρX).

Next,
‖f − fρ‖2

L2(ρX) = E(f) − E(fρ) = E(f) − E(fH) + E(fH) − E(fρ).

Combining the above two relations we get

‖f − fH‖2
L2(ρX) ≤ 2(‖f − fρ‖2

L2(ρX) + ‖fH − fρ‖2
L2(ρX))

≤ 2(E(f) − E(fH) + 2‖fH − fρ‖2
L2(ρX)). �
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Lemma 3.2. Assume that ρ and H satisfy (1.5). Then we have

σ2 := σ2(	(f)) ≤ 8M2(EH(f) + 2δ(H)).

Proof. We have

σ2(	(f)) ≤ E(	(f)2) = E((f(x) − fH(x))2(f(x) + fH(x) − 2y)2)

≤ 4M2E((f(x) − fH(x))2) = 4M2‖f − fH‖2
L2(ρX) ≤ 8M2(EH(f) + 2δ(H)).

At the last step we have used Lemma 3.1. �

Lemma 3.3. Assume that ρ and H satisfy (1.5). Let f ∈ H. For all ε > 0, α ∈ (0, 1] one
has

ρm{z : EH(f) − EH,z(f) ≥ α(EH(f) + ε)} ≤ exp
(− α2mε2

32M2(ε + δ(H))
)
.

ρm{z : EH(f) − EH,z(f) ≤ −α(EH(f) + ε)} ≤ exp
(− α2mε2

32M2(ε + δ(H))
)
.

Proof. Denote a := EH(f). The proofs of both inequalities are the same. We will carry
on only the proof of the first one. Using one-sided Bernstein’s inequality (1.8) for 	(f) we
obtain

ρm{z : EH(f) − EH,z(f) ≥ α(a + ε)} ≤ exp
(− mα2(a + ε)2

2(σ2 + M2α(a + ε)/3)
)
.

It remains to check that

(3.1)
(a + ε)2

2(σ2 + M2α(a + ε)/3)
≥ ε2

32M2(ε + δ(H))
.

Using Lemma 3.2 we get on the one hand

(3.2) ε2(σ2 + M2α(a + ε)/3) ≤ M2ε2(9a + 16δ(H) + ε/3).

On the other hand

(3.3) 16M2(ε + δ(H))(a + ε)2 ≥ M2ε2(32a + 16δ(H) + 16ε).

Comparing (3.2) and (3.3) we obtain (3.1). �

A combination of Lemma 3.3 and Lemma 2.4 gives the following theorem.
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Theorem 3.3. Assume that ρ and H satisfy (1.5) and are such that E(fH) − E(fρ) ≤ δ.
Then for all ε > 0 and α ∈ (0, 1)

ρm{z : sup
f∈H

EH(f) − EH,z(f)
EH(f) + ε

≥ 2α} ≤ N(H,
αε

4M
, C(X)) exp

(− α2mε2

32M2(ε + δ)
)
.

Proof. Let f1, . . . , fN be the αε
4M -net of H in C(X), N := N(H, αε

4M , C(X)). Let Λ be the set
of z such that for all j = 1, . . . , N we have

EH(fj) − EH,z(fj)
EH(fj) + ε

< α.

Then by Lemma 3.3

(3.4) ρm(Λ) ≥ 1 − N exp
(− α2mε2

32M2(ε + δ)
)
.

We take any z ∈ Λ and any g ∈ H. Let fj be such that ‖g − fj‖C(X) ≤ αε
4M . By Lemma 2.4

we obtain that
EH(g) − EH,z(g)

EH(g) + ε
< 2α.

It remains to use (3.4). �

Theorem 3.4. Let H be a compact subset of C(X) such that E(fH) − E(fρ) ≤ δ. Assume
that ρ, H satisfy (1.5). Then for all ε > 0 with probability at least

p(H, ε, δ) := 1 − N(H,
ε

16M
, C(X)) exp

(− mε2

29M2(ε + δ)
)

one has for all f ∈ H

(3.5) E(f) ≤ 2Ez(f) + ε − E(fH) + 2(E(fH) − Ez(fH)).

Proof. Using Theorem 3.3 with α = 1/4 we get with probability at least p(H, ε, δ)

(3.6) EH(f) ≤ 2EH,z(f) + ε.

Substituting
EH(f) := E(f) − E(fH); EH,z(f) := Ez(f) − Ez(fH)

we obtain (3.5). �
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Corollary 3.1. Under the assumptions of Theorem 3.4 we have

Ez(fH) − Ez(fz,H) ≤ ε/2

with probability at least p(H, ε, δ).

Proof of Theorem 3.2. The statement of the theorem follows immediately from (3.6) with
f = fz,H because EH,z(fz,H) ≤ 0 from the definition of fz,H.

Theorem 3.5. Let W be a compact in L1(ρX) set and let ρ, W satisfy (1.5). Assume
W ∈ Sr

1 that is

(3.7) εn(W,L1(ρX)) ≤ Dn−r, n = 1, 2, . . . , W ⊂ DU(L1(ρX)).

Then there exists an estimator fz such that for η ≥ ηm := (6M + 4)ε0,

ε0 := C(M,D, r)
(
m−1 max(m− r

1+r , δ(W ))
) r

1+2r , m ≥ C1(M,D, r),

we have

ρm{z : E(fz) − E(fW ) ≥ η} ≤ exp
(−c(M)mη2

η + δ(W )
)
.

Proof. Let N := Nε0(W,L1(ρX)) be a minimal ε0-net of W in the L1(ρX) norm. The
constant C(M,D, r) will be chosen later. Then (3.7) implies that

(3.8) |N | ≤ 2(D/ε0)
1/r+1.

As an estimator fz we take

fz := fz,N := arg min
f∈N

Ez(f).

We take ε ≥ ε0 and apply the first inequality of Lemma 3.3 with α = 1/2 to each f ∈ N .
In such a way we obtain a set Λ1 with

ρm(Λ1) ≥ 1 − |N | exp
(− mε2

128M2(ε + δ(W ))
)

with the property: for all f ∈ N and all z ∈ Λ1 one has

(3.9) EW (f) ≤ 2EW,z(f) + ε.

Therefore, for z ∈ Λ1

(3.10) EW (fz) ≤ 2EW,z(fz) + ε ≤ 2EW,z(fN ) + ε.
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Let Λ2 be the set of all z such that

(3.11) EW (fN ) − EW,z(fN ) ≤ −1
2
(EW (fN ) + ε).

By the second inequality of Lemma 3.3 with α = 1/2

ρm(Λ2) ≤ exp
(− mε2

128M2(ε + δ(W ))
)
.

Consider Λ := Λ1 \ Λ2. Then

ρm(Λ) ≥ 1 − (|N | + 1) exp
(− mε2

128M2(ε + δ(W ))
)
.

Using the inequality opposite to (3.11) we continue (3.10) for z ∈ Λ

EW (fz) ≤ 2EW,z(fN ) + ε ≤ 3EW (fN ) + 2ε.

By (2.17) we obtain from here

EW (fz) ≤ 6Mε0 + 2ε.

We choose ε0 := C(M,D, r)
(
m−1 max(m− r

1+r , δ(W ))
) r

1+2r from the inequality

3(D/ε0)
1
r − mε20

128M2(ε0 + δ(W ))
≤ 0.

Then for m ≥ C1(M,D, r) we have ε0 ≤ D. We let η = 6Mε0 + 2ε. Then our assumption
η ≥ (6M + 4)ε0 implies ε ≥ 2ε0. Using the inequality

ε0 + δ

ε + δ
≥ ε0

ε
, ε ≥ ε0,

we obtain
ε2

ε + δ(W )
− ε20

ε0 + δ(W )
≥ 1

2
ε2

ε + δ(W )
.

Therefore
ρm(Zm \ Λ)

≤ (|N | + 1) exp
(− mε20

128M2(ε0 + δ(W ))
)
exp

(− mε2

128M2(ε + δ(W ))
+

mε20
128M2(ε0 + δ(W ))

)

≤ exp
(− mε2

256M2(ε + δ(W ))
) ≤ exp

(−c(M)mη2

η + δ(W )
)
.

This completes the proof of Theorem 3.5. �
Let a, b, be two positive numbers. Consider a collection K(a, b) of compacts Kn in C(X)

satisfying

(3.12) N(Kn, ε, C(X)) ≤ (a(1 + 1/ε))nnbn, n = 1, 2, . . . .

Denote δj := Aj−2r, εj := Aj ln m
m . Let jr be the minimal j ∈ (1,m] such that εj ≥ δj . Then

jr 
 ( m

lnm

) 1
1+2r .

Denote ε(r) := εjr .
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Lemma 3.4. Assume {Kn}m
n=1 satisfy (3.12) and r ≤ 1/2. Then for A ≥ C(a, b,M)

m∑
j=jr

(1 − p(Kj , εj , δj)) +
∑
j<jr

(1 − p(Kj , ε(r), δj)) ≤ m−c(M)A.

Proof. For estimating 1 − p(Kj , εj , δj), j ∈ [jr,m] we write

(3.13) ln
(
N(Kj , εj/(16M), C(X)) exp

(− mε2j
29M2(εj + δj)

))

≤ j ln(a(1 + 16M/εj)) + bj ln j − mεj

210M2
≤ j ln(a(1 + 16M)) + j(1 + b) lnm−Ac2(M)j ln m

≤ −Ac3(M) lnm

for A ≥ C1(a, b,M).
We proceed to the case j < jr. We now have

(3.14) ln
(
N(Kj , ε(r)/(16M), C(X)) exp

(− mε(r)2

29M2(ε(r) + δj)
))

≤ j ln(a(1 + 16M/ε(r))) + bj ln j − mε(r)2

210M2δj
≤ c2(a, b,M)j ln m − Ac5(M)m

( lnm

m

) 4r
1+2r j2r

≤ j
(
c2(a, b,M) ln m − Ac5(M)m

( lnm

m

) 4r
1+2r j2r−1

r

) ≤ −Ac6(M) lnm

for A ≥ C2(a, b,M).
Combining (3.13) and (3.14) we complete the proof of Lemma 3.4. �
Lemma 3.4 allows us to use the inequality (3.5) simultaneously for all j = 1, . . . , m with

H = Kj , ε = max(εj , ε(r)), δ = δj .

Theorem 3.6. Let compacts Kj, j = 1, . . . ,m, satisfy (3.12) and all pairs ρ, Kj, j =
1, . . . , m, satisfy (1.5). Assume that

E(fKj ) − E(fρ) ≤ Aj−2r, r ∈ (0, 1/2].

Then there exists A0(a, b,M) such that for A ≥ A0(a, b,M) we have all the inequalities

(3.15) EKj (f) ≤ 2EKj ,z(f) +
Amax(j, jr) ln m

m
, f ∈ Kj , j ∈ [1,m],

where jr is the minimal j ∈ (1,m] such that j1+2r ≥ m/ ln m, with probability ≥ 1 −
m−c(M)A.

Proof. By Theorem 3.4 (see (3.6)) with H = Kj , ε = A max(j,jr) ln m
m , δ = Aj−2r we get

(3.15) for j ∈ [1,m] with the probability

p ≥ 1 − (
m∑

j=jr

(1 − p(Kj , εj , δj)) +
∑
j<jr

(1 − p(Kj , ε(r), δj))) ≥ 1 − m−c(M)A

with the εj , δj , ε(r) defined above. It remains to use Lemma 3.4. �
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Corollary 3.2. Under the assumptions of Theorem 3.6 we have the inequalities

(3.16) Ez(fKj ) − Ez(fz,Kj ) ≤
Amax(j, jr) lnm

2m
, j ∈ [1,m],

with probability ≥ 1 − m−c(M)A.

Proof. The inequalities (3.16) follows from (3.15) with f = fz,Kj if we note that EKj (f) ≥ 0,
f ∈ Kj . �

4. Penalized least squares estimators

The technique from Section 2 can also be used in the following situation. Define

Eρ(f) := E(f) − E(fρ); Eρ,z(f) := Ez(f) − Ez(fρ);

	ρ(f) := (f(x) − y)2 − (fρ(x) − y)2.

Then we have the following analogues of the lemmas from Section 2.

Lemma 4.1. Let f , fρ be such that |f(x) − y| ≤ M , |fρ(x) − y| ≤ M a.s. Then we have

σ2(	ρ(f)) ≤ 4M2Eρ(f).

Lemma 4.2. Let f , fρ be such that |f(x) − y| ≤ M , |fρ(x) − y| ≤ M a.s. Then for all
ε > 0, α ∈ (0, 1] one has

ρm{z : Eρ(f) − Eρ,z(f) ≥ α(Eρ(f) + ε)} ≤ exp
(−α2mε

5M2

)
,

ρm{z : Eρ(f) − Eρ,z(f) ≤ −α(Eρ(f) + ε)} ≤ exp
(−α2mε

5M2

)
.

Lemma 4.3. Assume ρ, H satisfy (1.5) and f, g ∈ H are such that ‖f−g‖C(X) ≤ αε/(4M).
Let α ∈ (0, 1), ε > 0, and let f be such that

Eρ(f) − Eρ,z(f)
Eρ(f) + ε

< α.

Then we have
Eρ(g) − Eρ,z(g)

Eρ(g) + ε
< 2α.

These lemmas imply the following analogue of Theorem 2.3.
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Theorem 4.1. Let H be a compact subset of C(X). Assume that ρ and H satisfy (1.5).
Then for all ε > 0 with probability at least

p(H, ρ, ε) := 1 − N(H,
ε

16M
, C(X)) exp

(− mε

80M2

)

one has for all f ∈ H

(4.1) Eρ(f) ≤ 2Eρ,z(f) + ε.

We first demonstrate how Lemma 4.2 can be used in proving optimal upper estimates.

Theorem 4.2. Let fρ ∈ Θ and let ρ, Θ satisfy (1.5). Assume

(4.2) εn(Θ, L2(ρX)) ≤ Dn−r, n = 1, 2, . . . , Θ ⊂ DU(L2(ρX)).

Then there exists an estimator fz such that for η ≥ ηm := 7ε0, ε0 := C(M,D, r)m− 2r
1+2r ,

m ≥ 60(M/D)2, we have

ρm{z : ‖fz − fρ‖2
L2(ρX) ≥ η} ≤ exp

(− mη

200M2

)
.

Proof. Let N := N
ε
1/2
0

(Θ, L2(ρX)) be a minimal ε
1/2
0 -net of Θ in the L2(ρX) norm. The

constant C(M,D, r) will be chosen later. Then (4.2) implies that

(4.3) |N | ≤ 2(D2/ε0)
1/(2r)+1.

As an estimator fz we take

fz := fz,N := arg min
f∈N

Ez(f).

We take ε ≥ ε0 and apply the first inequality of Lemma 4.2 with α = 1/2 to each f ∈ N .
In such a way we obtain a set Λ1 with

ρm(Λ1) ≥ 1 − |N | exp
(− mε

20M2

)

with the property: for all f ∈ N and all z ∈ Λ1 one has

(4.4) Eρ(f) ≤ 2Eρ,z(f) + ε.

Therefore, for z ∈ Λ1

(4.5) Eρ(fz) ≤ 2Eρ,z(fz) + ε ≤ 2Eρ,z(fN ) + ε.
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Let Λ2 be the set of all z such that

(4.6) Eρ(fN ) − Eρ,z(fN ) ≤ −1
2
(Eρ(fN ) + ε).

By the second inequality of Lemma 4.2 with α = 1/2

ρm(Λ2) ≤ exp
(− mε

20M2

)
.

Consider Λ := Λ1 \ Λ2. Then

ρm(Λ) ≥ 1 − (|N | + 1) exp
(− mε

20M2

)
.

Using the inequality opposite to (4.6) we continue (4.5) for z ∈ Λ

Eρ(fz) ≤ 2Eρ,z(fN ) + ε ≤ 3Eρ(fN ) + 2ε ≤ 3ε0 + 2ε.

We choose ε0 ≤ D2 from the equation

3(D2/ε0)
1
2r =

mε0
20M2

.

We get
ε0 = (60M2)

2r
1+2r D

2
1+2r m− 2r

1+2r .

For m ≥ 60(M/D)2 we have ε0 ≤ D2. We let η = 3ε0 + 2ε. Then our assumption η ≥ 7ε0
implies ε ≥ 2ε0 and

ρm(Zm \Λ) ≤ (|N |+ 1) exp
(− mε0

20M2

)
exp

(−m(ε − ε0)
20M2

) ≤ exp
(− mε

40M2

) ≤ exp
(− mη

200M2

)
.

This completes the proof of Theorem 4.2. �
Let us compare Theorem 4.2 with Theorem 3.5 in the case δ(W ) = 0, what corresponds

to the assumption fρ ∈ W . We note that assumptions Θ ∈ Sr
1 and Θ ⊂ MU(L∞(ρX))

imply that
εn(Θ, L2(ρX)) ≤ (2MD)1/2n−r/2, n = 1, 2, . . . .

Therefore, for Θ ∈ Sr
1 , Θ ⊂ MU(L∞(ρX)) Theorem 4.2 implies

ηm � m− 2(r/2)
1+2(r/2) = m− r

1+r

which corresponds to the estimate from Theorem 3.5. Thus, in the case fρ ∈ Θ Theorem
4.2 implies Theorem 3.5.

We proceed to the universal estimators. Let as above K := K(a, b) be a collection of
compacts Kn in C(X) satisfying (3.12). We take a parameter A ≥ 1 and consider the
following estimator

fA
z := fA

z (K) := fz,Kn(z)

with
n(z) := arg min

1≤j≤m

(Ez(fz,Kj ) +
Aj lnm

m

)
.
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Theorem 4.3. For K := {Kn}∞n=1 satisfying (3.12) there exists A0 := A0(a, b,M) such
that for any A ≥ A0 and any ρ such that ρ, Kn, n = 1, 2, . . . satisfy (1.5) we have

‖fA
z − fρ‖2

L2(ρX) ≤ min
1≤j≤m

(3d(fρ,Kj)2L2(ρX) +
4Aj ln m

m
)

with probability ≥ 1 − m−c(M)A.

Proof. We set εj := 2Aj ln m
m for all j ∈ [1,m]. Applying Theorem 4.1 and Lemma 4.2 we

find a set Λ with
ρm(Λ) ≥ 1 − m−c(M)A

such that for all z ∈ Λ, j ∈ [1,m] we have

Eρ(f) ≤ 2Eρ,z(f) + εj , ∀f ∈ Kj ,

Eρ,z(fKj ) ≤
3
2
Eρ(fKj ) + εj/2.

We get from here for z ∈ Λ

Eρ(fA
z ) ≤ 2Eρ,z(fz,Kn(z)) + εn(z) = 2

(Eρ,z(fz,Kn(z)) +
An(z) lnm

m

)

= 2 min
1≤j≤m

(Eρ,z(fz,Kj ) +
Aj ln m

m

) ≤ 2 min
1≤j≤m

(Eρ,z(fKj ) +
Aj lnm

m

)

≤ 2 min
1≤j≤m

(3
2
Eρ(fKj ) +

2Aj ln m

m

)
. �

We note that results in a style of Theorem 4.3 with bounds of the expectation Eρm(‖fA
z −

fρ‖2
L2(ρX)) are known (see [GKKW, Ch.12]).

Theorem 4.4. Let compacts {Kn} satisfy (3.12). There exists A0 := A0(a, b,M) ≥ 1 such
that for any A ≥ A0 and any ρ satisfying

d(fρ,Kn)L2(ρX) ≤ A1/2n−r, n = 1, 2, . . . ,

and such that ρ, Kn, n = 1, 2, . . . , satisfy (1.5) we have for η ≥ A1/2
(

ln m
m

) r
1+2r

ρm{z : ‖fA
z − fρ‖L2(ρX) ≥ 4A1/2η} ≤ Ce−c(M)mη2

.

Proof. Let η ≥ A1/2( ln m
m )

r
1+2r . We define n as the smallest integer such that 2n ≥

mη2/ ln m. Denote εj := 2Aj ln m
m , j ∈ (n,m]; εj := Aη2, j ∈ [1, n]. We apply Theorem

4.1 to Kj with ε = εj . Denote Λj the set of all z such that for any f ∈ Kj

(4.7) Eρ(f) ≤ 2Eρ,z(f) + εj .
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By Theorem 4.1
ρm(Λj) ≥ p(Kj , ρ, εj).

For estimating p(Kj , ρ, εj) we write (j ∈ [n,m])

ln
(
N(Kj , εj/(16M), C(X)) exp

(− mεj

80M2

))

≤ j ln(a(1 + 16M/εj)) + bj ln j − mεj

80M2
≤ j ln(a(1 + 8M)) + j(1 + b) ln m − Ac2(M)j lnm

≤ −Ac3(M)j lnm ≤ −Ac3(M)n lnm ≤ −Ac4(M)mη2

for A ≥ C1(a, b,M). Similar estimate for j ∈ [1, n] follows from the above estimate with
j = n.

Thus (4.7) holds for all 1 ≤ j ≤ m on the set Λ′ := ∩m
j=1Λj with

(4.8) ρm(Λ′) ≥ 1 − e−c5(M)mη2
.

For j ∈ [1,m] we have by the assumption of Theorem 4.4 that

(4.9) Eρ(fKj ) = ‖fKj − fρ‖2
L2(ρX) ≤ Aj−2r.

We apply the second inequality of Lemma 4.2 to each fKj with α = 1/2 and εj chosen
above, j = 1, . . . , m. Then we obtain a set Λ′′ of z such that

(4.10) Eρ,z(fKj ) ≤
3
2
Eρ(fKj ) + εj/2, j = 1, . . . , m,

and

(4.11) ρm(Λ′′) ≥ 1 −
m∑

j=1

exp
(− mεj

20M2

) ≥ 1 − e−c6(M)mη2
.

For the set Λ := Λ′ ∩ Λ′′ we have the inequalities (4.7) and (4.10) for all j ∈ [1,m]. Let
z ∈ Λ. We apply (4.7) to fA

z = fz,Kn(z) . We consider separately two cases: I. n(z) > n; II.
n(z) ≤ n. In the first case we obtain

(4.12) Eρ(fA
z ) ≤ 2

(Eρ,z(fA
z ) +

An(z) lnm

m

)
.

Using the definition of fA
z and the inequality (4.10) we get

(4.13) Eρ,z(fA
z ) +

An(z) lnm

m
= min

1≤j≤m

(Eρ,z(fz,Kj ) +
Aj lnm

m

)
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≤ min
1≤j≤m

(Eρ,z(fKj ) +
Aj lnm

m

)

≤ min
(

min
n<j≤m

(3
2
E(fKj ) +

2Aj lnm

m

)
, min
1≤j≤n

(3
2
E(fKj ) +

Aj ln m

m

)
+ Aη2/2

)

≤ min
1≤j≤m

(3
2
E(fKj ) +

2Aj lnm

m

)
+ Aη2/2 ≤ min

1≤j≤m

(3
2
Aj−2r +

2Aj lnm

m

)
+ Aη2/2.

Substituting j = [(m/ ln m)
1

1+2r ] + 1 and using the inequalities

(m/ ln m)
1

1+2r ≤ j ≤ 2(m/ ln m)
1

1+2r

we obtain from (4.12) and (4.13)

Eρ(fA
z ) ≤ 11A

( lnm

m

) 2r
1+2r + Aη2 ≤ 12Aη2.

This gives the required bound

‖fA
z − fρ‖L2(ρX) ≤ 4A1/2η.

In the second case we obtain

Eρ(fA
z ) ≤ 2Eρ,z(fA

z ) + Aη2.

Next, we have

Eρ,z(fA
z ) ≤ min

1≤j≤m

(Eρ,z(fKj ) +
Aj lnm

m

)
.

Using Lemma 4.2 we continue

≤ min
1≤j≤m

(3
2
Eρ(fKj ) + Aη2/2 +

2Aj lnm

m

)

≤ min
1≤j≤m

(3
2
Aj−2r +

2Aj lnm

m

)
+ Aη2/2 ≤ 6Aη2.

Therefore,
Eρ(fA

z ) ≤ 13Aη2.

The proof of Theorem 4.2 is complete. �
As it is mentioned in the Introduction in [DKPT2] we proposed to study the AC-function.

In the discussion that follows it will be more convenient for us to express the results in terms
of the following variant of the accuracy confidence function

acm(M, E, η) := ACm(M, E, η1/2).
28



We may study the ac-function in two steps.
Step 1. For given M, m, E(m) find for δ ∈ (0, 1) the smallest tm(M, δ) := tm(M, E(m), δ)

such that
acm(M, E, tm(M, δ)) ≤ δ.

It is clear that for η > tm(M, δ) we have acm(M, E, η) ≤ δ and for η < tm(M, δ) we have
acm(M, E, η) > δ.

The following modification of the above tm(M, δ) is also of interest. We now look for the
smallest tm(M, δ, c) such that

acm(M, E, tm(M, δ, c)) ≤ δm−c, c > 0.

It is clear that tm(M, δ) ≤ tm(M, δ, c). We call the tm(M, δ) and tm(M, δ, c) the approxi-
mation threshold for the proper function learning.

Step 2. Find the right order of acm(M, E, η) for η ≥ tm(M, δ) as a function on m and
η.

It has been proved in [DKPT2], [T2] (see Theorem 1.2 of Introduction) that for a compact
Θ ⊂ L2(µ) such that Θ ⊂ 1

4U(L∞(µ)) and

(4.14) εn(Θ, L2(µ)) 
 n−r,

one has: there exists δ0 > 0 such that for any δ ∈ (0, δ0]

tm(M(Θ, µ), δ) � m− 2r
1+2r .

Theorem 4.2 implies that under the above assumptions

tm(M(Θ, µ), δ) � m− 2r
1+2r .

Therefore, for any Θ satisfying the above assumptions we have

(4.15) tm(M(Θ, µ), δ) 
 m− 2r
1+2r , δ ∈ (0, δ0].

We now proceed to the concept of universal (universally optimal) estimator. Let a collec-
tion M := {M} of classes M of measures and a sequence E of allowed classes of estimators
be given.

Definition 4.1. An estimator fz ∈ E(m) is a universal (universally optimal) in a weak
sense for the pair (M, E) if for any ρ ∈ M ∈ M we have

ρm{z : ‖fρ − fz‖2
L2(ρX) ≥ C1(M, E)(lnm)wtm(M, δ, c)} ≤ C2m

−c1 ,

where C1, c1, and C2 do not depend on ρ and m.

In the case w = 0 in the above definition we replace in a weak sense by in a strong sense.
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We now discuss an application of Theorem 4.4 for construction of universal estimators.
Let L := {Ln}∞n=1 be a sequence of n-dimensional subspaces of C(X). Consider the C(X)-
balls in Ln of radius D:

Kn := DU(C(X)) ∩ Ln, n = 1, 2, . . . .

Then the sequence K := {Kn} satisfy (3.12) with a = 2D. Consider the classes

(4.16) Θr(K, µ) := {f : d(f,Kn)L2(µ) ≤ C3n
−r, n = 1, 2, . . . },

with C3 a fixed positive number. We also consider a set V of Borel probability measures ν
defined on X such that

(4.17) εn(Θr(K, ν), L2(ν)) ≥ C4n
−r, ν ∈ V, r ∈ [α, β].

We consider a class M(r, ν) of measures ρ such that |y| ≤ M a.e. with respect to ρ and
ρX = ν, fρ ∈ Θr(K, ν). Finally, we define a collection

M := {ρ : ρ ∈ M(r, ν), ν ∈ V, r ∈ [α, β]}.
Then for any ν ∈ V , r ∈ [α, β] our assumptions (4.16) and (4.17) imply (by Carl’s inequality
[C]) that

(4.18) εn(Θr(K, ν), L2(ν)) 
 n−r, ν ∈ V, r ∈ [α, β].

Therefore, by Theorem 1.2
tm(M(r, ν), δ, c) � m− 2r

1+2r .

Choosing w = 1 we get from Theorem 4.4 that for any ρ ∈ M(r, ν) ∈ M

ρm{z : ‖fA
z − fρ‖2

L2(ρX) ≥ C1(M)(lnm)tm(M(r, ν), δ, c)} ≤ C2(M)m−c1 ,

provided that A is big enough. This indicates that the estimator fA
z is an universal estimator

in a weak sense for the collection M.

5. Big jump estimators. Convex compacts

We will use the following theorem that is a corollary of Theorem 2.3.

Theorem 5.1. Let H be a compact and convex subset of C(X). Assume that ρ, H satisfy
(1.5). Then for all ε > 0 with probability at least

(5.1) p(H,m, ε) := 1 − N(H, ε/(8M), C(X)) exp
(− mε

40M2

)
one has for all f ∈ H

Ez(fH) − Ez(f) ≤ ε.

Proof. By Theorem 2.3 (with the parameter 2ε) with probability at least p(H,m, ε) we have

E(f) ≤ 2Ez(f) + 2ε + E(fH) − 2Ez(fH).

Taking into account that for any f ∈ H one has E(f) ≥ E(fH) we obtain

Ez(fH) − Ez(f) ≤ ε.

The following direct corollary of Theorem 5.1 has been formulated as Corollary 2.1 in
Section 2.

30



Corollary 5.1. Under assumptions of Theorem 5.1 we have

(5.2) Ez(fH) − Ez(fz,H) ≤ ε

with probability at least p(H,m, ε).

We present a scheme of building universal estimators based on convex hypothesis spaces.
Let V := {Vs}∞s=0 be a sequence of compact convex sets in C(X). Assume that

(5.3) N(Vs, ε, C(X)) ≤ (a2s(1 + 1/ε))2
s

, Vs ⊂ aU(C(X)), s = 0, 1, . . . .

It will be convenient for us to assume that V0 consists of only one element f0. Let ρ be such
that all pairs ρ, Vs, s = 0, 1, . . . , satisfy (1.5). Then for εs := A2s ln m

m we get from (5.1) and
(5.3) that

(5.4)
[log m]∑

s=0

(1 − p(Vs,m, εs)) ≤ m−c1(M)A

provided A ≥ A0(a,M).
We take two parameters A ≥ A0(a,M) and K and build an estimator fz := fz(A,K) in

the following way. Denote

∆z,s := Ez(fz,Vs−1) − Ez(fz,Vs).

First, if

(5.5) ∆z,s ≤ (A + K)
2s lnm

m
+ 2A1/2

( lnm

m

)1/2
, s = 1, . . . , [log m]

then we set fz := f0.
Second, if (5.5) is not satisfied then we let l ∈ [1, log m] be such that for s ∈ (l, log m]

(5.6) ∆z,s ≤ (A + K)
2s ln m

m
+ 2A1/2

( ln m

m

)1/2
,

and

(5.7) ∆z,l > (A + K)
2l ln m

m
+ 2A1/2

( ln m

m

)1/2
.

Then we set fz := fz,Vl
.

We will prove that this estimator is universal for the following collection of classes. We
define a class W r

ν (V, D) as the set of f that satisfy the estimate:

d(f, Vs)L2(ν) ≤ D2−rs, s = 0, 1, . . . .

We denote
W[V, D] := {W r

ν (V, D) : r ≤ 1/2, ν is any Borel measure}.
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Theorem 5.2. Let V = {Vs}∞s=0 be a sequence of compact convex sets in C(X) satisfying
(5.3). Assume ρ is such that all pairs ρ, Vs, s = 0, 1, . . . , satisfy (1.5). For D > 0 we
set K := 3D2. Then there exists A1(a,M) such that the estimator fz = fz(A,K) with
parameters A ≥ A1(a,M), K has the following property. For any fρ ∈ W r

ρX
(V, D), r ≤ 1/2

we have

ρm{z : ‖fz − fρ‖2
L2(ρX) ≥ C(D)A

( lnm

m

) 2r
1+2r + 4(log m)

(A ln m

m

)1/2} ≤ m−c(M)A.

Proof. First of all we use the Bernstein inequality (1.6) and obtain

(5.8) ρm{z : max
0≤s≤log m

|E(fVs) − Ez(fVs)| ≤
(A ln m

m

)1/2} ≥ 1 − m−c2(M)A

provided A ≥ A0(M). We set A1(a,M) := max(A0(M), A0(a,M), 1).
Second, we use Theorem 2.4 with H = Vs, ε = A2s(lnm)/m and obtain

(5.9) E(fz,Vs) − E(fVs) ≤ A2s(lnm)/m, s ∈ [0, log m]

with probability at least 1 − m−c3(M)A.
We begin with the case when (5.5) is satisfied and, therefore, fz = f0. We have

(5.10) E(fz) − E(fρ) = E(f0) − E(fρ) =
∞∑

s=1

(E(fVs−1) − E(fVs)).

Using the assumption fρ ∈ W r
ρX

(V, D) we obtain

E(fVn) − E(fρ) = ‖fVn − fρ‖2
L2(ρX) ≤ D22−2rn, n = 0, 1, . . .

and

(5.11) E(fVs−1) − E(fVs) ≤ D22−2rs(1 + 22r) ≤ 3D22−2rs, s = 1, . . . .

We now estimate E(fVs−1) − E(fVs), s ∈ [1, log m], using (5.5). We rewrite

(5.12) E(fVs−1) − E(fVs) = (E(fVs−1) − Ez(fVs−1)) + (Ez(fVs−1) − Ez(fz,Vs−1))

+(Ez(fz,Vs−1) − Ez(fz,Vs)) + (Ez(fz,Vs) − Ez(fVs)) + (Ez(fVs) − E(fVs))

=: (e1) + (e2) + (∆z,s) + (e3) + (e4).

Let us define Λ to be the set of all z such that the following relations hold

(5.13) max
0≤s≤log m

|E(fVs) − Ez(fVs)| ≤
(A ln m

m

)1/2;
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(5.14) E(fz,Vs) − E(fVs) ≤
A2s lnm

m
, s ∈ [1, log m];

(5.15) Ez(fVs) − Ez(fz,Vs) ≤
A2s ln m

m
, s ∈ [1, log m].

Then by (5.8), (5.9), Corollary 5.1 and (5.4) we get

(5.16) ρm(Λ) ≥ 1 − 3m−c4(M)A.

For z ∈ Λ we have from (5.13)

(5.17) e1 + e4 ≤ 2
(A ln m

m

)1/2
, s ∈ [1, log m].

From (5.15) we obtain

(5.18) e2 ≤ A2s ln m

m
, s ∈ [1, log m].

From the definition of fz,Vs we have e3 ≤ 0. We have proved (see (5.11) and a combination
of (5.12), (5.17), (5.18)) the following estimate for z ∈ Λ satisfying (5.5):

E(fVs−1) − E(fVs) ≤ min{3D22−2rs, (2A + K)
2s ln m

m
+ 4

(A ln m

m

)1/2}, s ∈ [1, log m].

We use the first estimate for s such that 2s(1+2r) ≥ m/ ln m and use the second estimate for
the remaining s. Summing up these inequalities we get from (5.10) for r ≤ 1/2

(5.19) E(fz) − E(fρ) ≤ C(D)A
( ln m

m

) 2r
1+2r + 4(log m)

(A ln m

m

)1/2
.

We now proceed to the case z ∈ Λ and (5.5) is not satisfied. In this case fz = fz,Vl
. We

write

(5.20) E(fz) − E(fρ) = E(fz,Vl
) − E(fρ) = E(fz,Vl

) − E(fVl
) +

∞∑
s=l+1

(E(fVs−1) − E(fVs)).

The sum
∑∞

s=l+1(·) in the right side of (5.20) can be estimated similar to (5.19) (we use
(5.6) in place of (5.5)):

(5.21)
∞∑

s=l+1

(E(fVs−1) − E(fVs)) ≤ C(D)A
( lnm

m

) 2r
1+2r + 4(log m)

(A ln m

m

)1/2
.
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In order to estimate E(fz,Vl
) − E(fVl

) we will obtain an upper estimate for l. On the one
hand ∆z,l satisfies (5.7). On the other hand we have

(5.22) ∆z,l = Ez(fz,Vl−1) − Ez(fz,Vl
)

= (Ez(fz,Vl−1) − Ez(fVl−1)) + (Ez(fVl−1) − E(fVl−1)) + (E(fVl−1) − E(fVl
))

+(E(fVl
)−Ez(fVl

)) + (Ez(fVl
)−Ez(fz,Vl

)) =: (δ1) + (δ2) + (E(fVl−1)−E(fVl
)) + (δ3) + (δ4).

From the definition of fz,Vs−1 we get δ1 ≤ 0. By (5.13) we have for z ∈ Λ

(5.23) δ2 + δ3 ≤ 2
(A ln m

m

)1/2
.

By (5.11) we have

(5.24) E(fVl−1) − E(fVl
) ≤ K2−2rl.

By (5.15) we obtain for z ∈ Λ

(5.25) δ4 ≤ A2l lnm

m
.

Combining (5.22)–(5.25) we get

∆z,l ≤ 2
(A ln m

m

)1/2 + K2−2rl +
A2l lnm

m
.

Comparing this with (5.7) we conclude that

(5.26) 2−2rl ≥ 2l(lnm)/m.

By (5.14) we have

(5.27) E(fz,Vl
) − E(fVl

) ≤ A2l(lnm)/m.

Substituting (5.26) into (5.27) we get from (5.21) and (5.27) that

E(fz) − E(fρ) ≤ C(D)A
( ln m

m

) 2r
1+2r + 4(log m)

(A ln m

m

)1/2
. �
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6. Big jump estimators. Nonconvex compacts

We now present a general scheme of building universal estimators. Let V := {Vs}∞s=0 be
a sequence of compact sets in C(X). Assume that

(6.1) N(Vs, ε, C(X)) ≤ (a2bs(1 + 1/ε))2
s

, Vs ⊂ aU(C(X)), s = 0, 1, . . . .

It will be convenient for us to assume that V0 consists of only one element f0. Let ρ be such
that all pairs ρ, Vs, s = 0, 1, . . . , satisfy (1.5). We take two parameters A ≥ A0(a,M) and
K and define an estimator fz in the same way as in Section 5 (see (5.5)–(5.7)). We will
prove that this estimator is universal for the collection W[V, D] of classes defined in Section
5.

Theorem 6.1. Let V = {Vs}∞s=0 be a sequence of compact sets in C(X) satisfying (6.1).
Assume ρ is such that all pairs ρ, Vs, s = 0, 1, . . . , satisfy (1.5). For D > 0 we set
K := 3D2. Then there exists A1(a, b,M) such that the estimator fz = fz(A,K) with
parameters A ≥ A1(a, b,M), K has the following property. For any fρ ∈ W r

ρX
(V, D),

r ≤ 1/2 we have

ρm{z : ‖fz − fρ‖2
L2(ρX) ≥ C(D)A(log m)

( ln m

m

) 2r
1+2r } ≤ m−c(M)A.

Proof. Let sr be the minimum s satisfying 2s(lnm)/m ≥ 2−2rs. We define Λ to be the set
of all z such that the following relations hold

(6.1) max
0≤s≤log m

|E(fVs) − Ez(fVs)| ≤
(A ln m

m

)1/2;

(6.2) E(fz,Vs) − E(fVs) ≤
A2max(s,sr) ln m

m
, s ∈ [1, log m];

(6.3) Ez(fVs) − Ez(fz,Vs) ≤
A2max(s,sr) lnm

m
, s ∈ [1, log m].

By Bernstein’s inequality (6.1) holds with probability ≥ 1−m−c1(M)A provided A ≥ A0(M).
By Theorem 3.6 (6.2) holds with probability ≥ 1−m−c1(M)A. By Corollary 3.2 (6.3) holds
with probability ≥ 1 − m−c1(M)A. Therefore,

ρm(Λ) ≥ 1 − 3m−c1(M)A

provided A ≥ C1(a, b,M).
We begin with the case when (5.5) is satisfied and, therefore, fz = f0. Similar to (5.11)

we have

(6.4) E(fVs−1) − E(fVs) ≤ D22−2rs(1 + 22r) ≤ 3D22−2rs, s = 1, . . . .
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We now estimate E(fVs−1)−E(fVs), s ∈ [1, log m], using (5.5). Similar to (5.12) we rewrite

(6.5) E(fVs−1) − E(fVs) = (E(fVs−1) − Ez(fVs−1)) + (Ez(fVs−1) − Ez(fz,Vs−1))

+(Ez(fz,Vs−1) − Ez(fz,Vs)) + (Ez(fz,Vs) − Ez(fVs)) + (Ez(fVs) − E(fVs))

=: (e1) + (e2) + (∆z,s) + (e3) + (e4).

From (6.1) we have for z ∈ Λ

(6.6) e1 + e4 ≤ 2
(A ln m

m

)1/2
, s ∈ [1, log m].

By (6.3) we obtain for z ∈ Λ

(6.7) e2 ≤ A2sr ln m

m
, s ∈ [1, sr].

Substituting (6.6), (6.7) into (6.5) we obtain the following estimate for z ∈ Λ satisfying
(5.5):

(6.8) E(fVs−1) − E(fVs) ≤ (2A + K)
2sr lnm

m
+ 4

(A ln m

m

)1/2
, s ∈ [1, sr].

We use (6.4) for s ≥ sr and use (6.8) for the remaining s. Summing up these inequalities
we get from (5.10) for r ≤ 1/2

(6.9) E(fz) − E(fρ) ≤ C(D)A(log m)
( lnm

m

) 2r
1+2r .

We now proceed to the case z ∈ Λ and (5.5) is not satisfied. In this case fz = fz,Vl
. We

write

(6.10) E(fz) − E(fρ) = E(fz,Vl
) − E(fρ) = E(fz,Vl

) − E(fVl
) +

∞∑
s=l+1

(E(fVs−1) − E(fVs)).

The sum
∑∞

s=l+1(·) in the right side of (6.10) can be estimated similar to (6.9):

(6.11)
∞∑

s=l+1

(E(fVs−1) − E(fVs)) ≤ C(D)A(log m)
( ln m

m

) 2r
1+2r .

In order to estimate E(fz,Vl
) − E(fVl

) we need an upper estimate for l. Suppose l ≤ sr.
Then by (6.2) we obtain for z ∈ Λ

E(fz,Vl
) − E(fVl

) ≤ A2sr lnm

m
.
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Now, suppose l ≥ sr. On the one hand ∆z,l satisfies (4.7). On the other hand we have

(6.12) ∆z,l = Ez(fz,Vl−1) − Ez(fz,Vl
)

= (Ez(fz,Vl−1) − Ez(fVl−1)) + (Ez(fVl−1) − E(fVl−1)) + (E(fVl−1) − E(fVl
))

+(E(fVl
)−Ez(fVl

)) + (Ez(fVl
)−Ez(fz,Vl

)) =: (δ1) + (δ2) + (E(fVl−1)−E(fVl
)) + (δ3) + (δ4).

From the definition of fz,Vs−1 we get δ1 ≤ 0. By (6.1) we have for z ∈ Λ

(6.13) δ2 + δ3 ≤ 2
(A ln m

m

)1/2
.

By (6.4) we have

(6.14) E(fVl−1) − E(fVl
) ≤ K2−2rl.

By (6.3) we obtain for z ∈ Λ

(6.15) δ4 ≤ A2l lnm

m
.

Combining (6.12)–(6.15) we get

∆z,l ≤ 2
(A ln m

m

)1/2 + K2−2rl +
A2l lnm

m
.

Comparing this with (5.7) we conclude that

(6.16) 2−2rl ≥ 2l(lnm)/m.

By (6.2) we have for z ∈ Λ

(6.17) E(fz,Vl
) − E(fVl

) ≤ 2l(lnm)/m.

Substituting (6.16) into (6.17) we get from (6.17) and (6.11) that

E(fz) − E(fρ) ≤ C(D)A(log m)
( ln m

m

) 2r
1+2r . �
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7. Some examples

In Sections 4–6 we presented two different ways of construction of universal estimators:
the penalized least squares estimators and the big jump estimators. Both these methods
are based on a given sequence of compacts in C(X). In Section 4 we considered a collection
K(a, b) of compacts Kn in C(X) satisfying

(7.1) N(Kn, ε, C(X)) ≤ (anb/ε)n, n = 1, 2, . . . .

In Section 6 we used a collection V := V(a, b) := {Vs}∞s=0 of compacts Vs in C(X) such that

(7.2) N(Vs, ε, C(X)) ≤ (a2bs/ε)2
s

, s = 0, 1, . . . .

It is clear that the sequence V(a, b) can be seen as a dyadic subsequence of K(a, b). In
Section 5 we considered a particular case V(a, 1). Therefore, in the discussion that follows
we will describe different examples of sequences K(a, b).

We begin with a construction based on the concept of the Kolmogorov width. This
construction has been used in [DKPT1,2]. Kolmogorov’s n-width for a centrally symmetric
compact set F in a Banach space B is defined as follows

dn(F,B) := inf
L

sup
f∈F

inf
g∈L

‖f − g‖B

where infL is taken over all n-dimensional subspaces of B. In other words the Kolmogorov
n-width gives the best possible error in approximating a compact set F by n-dimensional
linear subspaces.

Example 1. Let L = {Ln}∞n=1 be a sequence of n-dimensional subspaces of C(X). For
Q > 0 we define

Kn := QU(C(X)) ∩ Ln = {f ∈ Ln : ‖f‖C(X) ≤ Q}, n = 1, 2, . . . .

Then it is well known [P] that

N(Kn, ε, C(X)) ≤ Qn(1 + 2/ε)n ≤ (2Q(1 + 1/ε))n.

We note that {Kn}∞n=1 = K(2Q, 0). Therefore, Theorem 4.4 applies to this sequence of
compacts. Let us discuss the condition

(7.3) d(fρ,Kn)L2(ρX) ≤ A1/2n−r, n = 1, 2, . . . ,

from Theorem 4.4. We compare (7.3) with a standard in approximation theory condition

(7.4) d(fρ, Ln)C(X) ≤ Dn−r, n = 1, 2, . . . , fρ ∈ DU(C(X)).

First of all we observe that (7.4) implies that there exists ϕn ∈ Ln, ‖ϕn‖C(X) ≤ 2D, such
that

‖fρ − ϕn‖C(X) ≤ Dn−r.

Thus (7.4) implies

(7.5) d(fρ,Kn)C(X) ≤ Dn−r, n = 1, 2, . . .

provided Q ≥ 2D. Also, (7.5) implies (7.3) provided A1/2 ≥ D. Therefore, Theorem 4.4
can be used for fρ satisfying (7.4). We formulate this result as a theorem.
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Theorem 7.1. Let L = {Ln}∞n=1 be a sequence of n-dimensional subspaces of C(X). For
given positive numbers D, M1, M := M1+D there exists A0 := A0(D,M) with the following
property. For any A ≥ A0 there exists an estimator fA

z such that for any ρ with the
properties: |y| ≤ M1 a.e. with respect to ρ and

d(fρ, Ln)C(X) ≤ Dn−r, n = 1, 2, . . . , fρ ∈ DU(C(X))

we have for η ≥ A1/2
(

ln m
m

) r
1+2r

(7.6) ρm{z : ‖fA
z − fρ‖L2(ρX) ≥ 4A1/2η} ≤ Ce−c(M)mη2

.

Theorem 7.1 is an extension of Theorem 4.10 from [DKPT2]. Theorem 4.10 from [DKPT2]
gives (7.6) with e−c(M)mη2

replaced by e−c(M)mη4
under an extra restriction r ≤ 1/2.

Example 2. In the previous example we worked in the C(X) space. We now want to
replace (7.4) by a weaker condition

(7.7) d(fρ, Ln)L2(ρX) ≤ Dn−r, n = 1, 2, . . . , fρ ∈ DU(L2(ρX)).

This condition is compatible with the condition (7.3) (from Theorem 4.4) in the sense of
approximation in the L2(ρX) norm. However, the conditions (7.7) and (7.3) differ in the
sense of the approximation set: it is a linear subspace Ln in (7.7) and a compact subset
of C(X) in (7.3). In Example 1 approximation (7.4) by a linear subspace automatically
provided approximation (7.3) by a suitable compact of C(X). It is clear that similarly to
Example 1 approximation (7.7) by a linear subspace Ln provides approximation (7.3) by
a compact Kn ⊂ Ln of the L2(ρX) instead of the C(X). We cannot apply Theorem 4.4
in such a situation. In order to overcome this difficulty we impose an extra restrictions on
the sequence L and on the measure ρ. We discuss the setting from [KT2]. Let B(X) be a
Banach space with the norm ‖f‖B(X) := supx∈X |f(x)|. Let {Ln}∞n=1 be a given sequence
of n-dimensional linear subspaces of B(X) such that Ln is also a subspace of each L∞(µ),
where µ is a Borel probability measure on X, n = 1, 2, . . . . Assume that n-dimensional
linear subspaces Ln have the following property: for any Borel probability measure µ on X
one has

(7.8) ‖Pµ
Ln

‖B(X)→B(X) ≤ K, n = 1, 2, . . . ,

where Pµ
L is the operator of L2(µ) projection onto L. Then our standard assumption |y| ≤

M1 implies ‖fρ‖L∞(ρX) ≤ M1 and (7.7), (7.8) give

d(fρ,Kn)L2(ρX) ≤ Dn−r, n = 1, 2, . . .

where
Kn := (K + 1)M1U(B(X)) ∩ Ln.

We note that Theorem 4.4 holds for compacts satisfying (3.12) in the B(X) norm instead
of C(X) norm. Thus, as a corollary of Theorem 4.4 we obtain the following result.
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Theorem 7.2. Let L = {Ln}∞n=1 be a sequence of n-dimensional subspaces of B(X) satisfy-
ing (7.8). For given positive numbers D, M1, M := M1 +D there exists A0 := A0(K,D,M)
with the following property. For any A ≥ A0 there exists an estimator fA

z such that for any
ρ with the properties: |y| ≤ M1 a.e. with respect to ρ and

d(fρ, Ln)L2(ρX) ≤ Dn−r, n = 1, 2, . . . ,

we have for η ≥ ηm := A1/2
(

ln m
m

) r
1+2r

(7.9) ρm{z : ‖fA
z − fρ‖L2(ρX) ≥ 4A1/2η} ≤ Ce−c(M)mη2

.

Theorem 7.2 is an extension of Theorem 4.3 from [KT2]. Theorem 4.3 from [KT2] gives
(7.9) with 4A1/2η replaced by C(D)ηm and e−c(M)mη2

replaced by m−c(M)A under an extra
restriction r ≤ 1/2.

Remark 7.1. In Theorem 7.2 we can replace the assumption that L satisfies (7.8) for all
Borel probability measures µ by the assumption that (7.8) is satisfied for µ ∈ M and add
the assumption ρX ∈ M.

Example 3. Our construction here is based on the concept of nonlinear Kolmogorov’s
(N,n)-width ([T1]):

dn(F,B,N) := inf
LN ,#LN≤N

sup
f∈F

inf
L∈LN

inf
g∈L

‖f − g‖B,

where LN is a set of at most N n-dimensional subspaces L. It is clear that

dn(F,B, 1) = dn(F,B).

The new feature of dn(F,B,N) is that we allow to choose a subspace L ∈ LN depending on
f ∈ F . It is clear that the bigger N the more flexibility we have to approximate f .

Let L := {Ln}∞n=1 be a sequence of collections Ln := {Lj
n}Nn

j=1 of n-dimensional subspaces
Lj

n of C(X). Assume Nn ≤ nbn. For Q > 0 we now consider

Kn :=
Nn⋃
j=1

(QU(C(X)) ∩ Lj
n).

Then {Kn}∞n=1 = K(2Q, b). It is also clear that the condition

(7.10) min
1≤j≤Nn

d(fρ, L
j
n)C(X) ≤ Dn−r, n = 1, 2, . . . , fρ ∈ DU(C(X))

implies
d(fρ,Kn)C(X) ≤ Dn−r, n = 1, 2, . . . ,

provided Q ≥ 2D.
We have the following analogue of Theorem 7.1.
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Theorem 7.3. Let L := {Ln}∞n=1 be a sequence of collections Ln := {Lj
n}Nn

j=1 of n-
dimensional subspaces Lj

n of C(X). Assume Nn ≤ nbn. For given positive numbers D,
M1, M := M1 + D there exists A0 := A0(b,D,M) with the following property. For any
A ≥ A0 there exists an estimator fA

z such that for any ρ with the properties: |y| ≤ M1 a.e.
with respect to ρ and

min
1≤j≤Nn

d(fρ, L
j
n)C(X) ≤ Dn−r, n = 1, 2, . . . , fρ ∈ DU(C(X))

we have for η ≥ A1/2
(

ln m
m

) r
1+2r

ρm{z : ‖fA
z − fρ‖L2(ρX) ≥ 4A1/2η} ≤ Ce−c(M)mη2

.

Example 4. In this example we apply the ideas of Examples 2 and 3 for nonlinear
m-term approximation with regard to a given countable dictionary. Let Ψ := {ψn}∞n=1 be
a system of functions ψn from B(X). Let γ ≥ 0 and let M(γ) be a set of Borel probability
measures µ such that all ψn are µ-measurable and

(7.11) ‖
N∑

n=1

anψn‖B(X) ≤ C1N
γ‖

N∑
n=1

anψn‖L2(µ).

We fix a parameter q ≥ 1 and define the best m-term approximation with depth mq as
follows

σm,q(f,Ψ)L2(µ) := inf
ci;ni≤mq

‖f −
m∑

i=1

ciψni‖L2(µ).

For a fixed Q > 0 that will be chosen later we now consider

Kn(Q) := {f : f =
n∑

i=1

aiψni , ni ≤ nq, i = 1, . . . , n, ‖f‖B(X) ≤ Q}.

Then

(7.12) N(Kn(Q), ε,B(X)) ≤ (Q(1 + 2/ε))n

(
nq

n

)
≤ (2Qnq(1 + 1/ε))n.

Suppose we have for µ ∈ M(γ)
σm,q(f,Ψ)L2(µ) ≤ Dn−r, f ∈ DU(L2(µ)).

Then there exists ϕn of the form

ϕn =
n∑

i=1

aiψni , ni ≤ nq, i = 1, . . . , n, ‖ϕn‖L2(µ) ≤ 2D

such that
‖f − ϕn‖L2(µ) ≤ Dn−r.

Next, by our assumption (7.11) we get
‖ϕn‖B(X) ≤ 2DC1n

γq.

Therefore ϕn ∈ Kn(2DC1n
γq). The inequality (7.12) implies that
{Kn(2DC1n

γq)} = K(4DC1, (1 + γ)q).
Consequently, Theorem 4.4 applies in this situation. We formulate the result as a theorem.
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Theorem 7.4. Let Ψ and M(γ) be as above. For given positive numbers q, D, M1, M :=
M1 + D, there exists A0 := A0(γ,C1, q,D,M) with the following property. For any A ≥ A0

there exists an estimator fA
z such that for any ρ with the properties: |y| ≤ M1 a.e. with

respect to ρ, ρX ∈ M(γ), and

σn,q(fρ,Ψ)L2(ρX) ≤ Dn−r, n = 1, 2, . . . , fρ ∈ DU(B(X))

we have for η ≥ A1/2
(

ln m
m

) r
1+2r

ρm{z : ‖fA
z − fρ‖L2(ρX) ≥ 4A1/2η} ≤ Ce−c(M)mη2

.

Remark 7.2. In Theorem 7.4 the condition (7.11) can be replaced by the following weaker
condition. Let mi ∈ [1, nq], i = 1, . . . , n, and

Ln := span{ψmi}n
i=1.

Assume that for µ ∈ M(γ)
‖Pµ

Ln
‖B(X)→B(X) ≤ C1n

qn.
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