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THE SCHRÖDINGER’S DENSITY, AND THE TALBOT’S EFFECT

K.I.OSKOLKOV

Abstract. We study the fractal properties of the time-dependent probability density func-
tion for the free quantum particle in a box, i. e. the squared magnitude of the solution of the
Cauchy initial value problem for the Schrödinger equation with zero potential, and the periodic
initial data.

√
δ -families of the initial functions are considered whose squared magnitudes ap-

proximate the periodic Dirac’s δ-function. The focus is on the set of rectilinear domains where
the density has a special character, in particular, remains bounded, or even has low average
values (“the valleys of shadows”).

An essential part of the paper is dedicated to a review of some earlier results concerning
the fractal properties of the Vinogradov’s extensions, which incorporate the solutions of a
wide class of Schrödinger type equations. Relations are discussed with the optical diffraction
phenomena discovered in 1836 by W.H.F. Talbot, the British inventor of photography. In
the modern Physics literature, self-similarity in the wave diffracted by periodic gratings, is
known as fractional and fractal revivals, and quantum carpets (M. Berry, W. Schleich, and
many others). Self-similarity has been well-known, and extensively utilized in Analytic Number
Theory, since the creation of the circle method of Hardy – Littlewood – Ramanujan, and the
Vinogradov’s method of estimation and asymptotic formulas for H. Weyl’s exponential sums.
According to these methods, on the major arcs, the complete rational exponential sums are the
scaling factors, while the appropriate oscillatory integrals constitute the pattern of the arising
arithmetical carpets.
Math. Subject Classification: 42A16, 35J10, 11L017, 11T24, 81.
Key words: Cauchy initial value problem, Schrödinger equation, Wigner’s function, Helmholtz
equation, exponential sums, circle method, Gauss’ sums, density, fractals, Hilbert transforms,
asymptotical formulas, quadratic variation.

0.1. Introduction. Some time ago, in a personal conversation, Z. Ciesielski advised me to
study the properties of the solutions of the Cauchy initial value problem for the Schrödinger
equation of a free particle, with the Jacobi’s elliptic ϑ-function as the periodic initial data:

∂ψ

∂t
=

1

2πi

∂2ψ

∂x2
, ψ(t, x)

∣∣∣∣
t=0

= ϑε(x) = c(ε)
∑

m∈Z1

e−
π(x−m)2

ε .

Here, ε is a small positive number (parameter), in fact, ε → 0, and c(ε) – a positive factor,
normalizing the data in the space L2(T1), i. e., on the period. Dr. D. Dix, my colleague at
USC, conducted a series of computer experiments. I am deeply indebted to him for his work,
and many useful discussions. Dix computed and plotted the 3d-graph of the density function
ρ = ρ(ϑε, t, x) := |ψ(ϑε, t, x)|2, (t, x) ∈ R2, for ε = 0.01, the contour map, and the so-called
Bohm’s trajectories.
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Figure 1. The Schrödinger landscape

Fig. 1 depicts “one quarter” (i.e., (t, x) ∈ [0, 1/2]× [0, 1/2]) of the 3d-graph of ρ, and Fig. 2 is
the contour (topographical) map, i. e., the level lines of the density ρ. Two features are appar-
ent. First, the graphs represent a rugged “mountain landscape”, and second, the landscape is
not a completely random combination of “peaks and trenches”. In particular, it is criss-crossed
by a rather well-organized set of deep rectilinear canyons, or “the valleys of shadow”1. On
Fig. 3 , a family of the so-called Bohm’s trajectories can be seen (c.f.[6]. In the given case, the
initial data is real-valued and positive, and these trajectories are curves, on which the solution

1Even though I walk through the valley of the shadow of death, I will fear no evil, for you are with me; your
rod and your staff, they comfort me. Psalm 23 of David.
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Figure 2. Schrödinger density – the contour map

ψ conserves the initial value of the phase, i. e. remains real-valued and positive. Self-similarity,
the main feature of fractals, is obvious on all three graphs.

Seeing this, the author decided to work out the answers to the following questions.
1) What is the description of “the valleys of shadow”, and how “deep” they are ?
2) What happens with the density function ρ outside of the valleys ?
3) Do these effects appear only as a result of the specific choice of the initial data, or they
represent a typical property, a “seal” of the Schrödinger equation, for wide classes of compressed,
narrowly supported data, or data functions with distinct singularities ?
4) How does the introduction into the equation of a potential, generally neither smooth, nor
periodic, affect the self-similarity features of the solutions ?

We denote

ψ(f ; t, x) :=
∑
n∈Z1

f̂ne
2πi(n2t+nx), ρ(f ; t, x) := |ψ(f ; t, x)|2
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Figure 3. Bohm’s trajectories

the generalized solution, and, respectively, the arising density, for the Cauchy initial value
problem

(1)
∂ψ

∂t
=

1

2πi

∂2ψ

∂x2
, ψ(f ; t, x)

∣∣∣∣
t=0

= f(x) =
∑
n∈Z1

f̂ne
2πinx;

for p ∈ [1,∞], Lp(·) – the usual notation for Lp functional spaces on the specified subsets
(·), with regard to the Lebesgue measure on these subsets; in the limiting case p = ∞, L∞

denotes the space of essentially bounded functions with the norm ess sup |f |; C – the space of
continuous functions with the norm max |f |.

Let us introduce the notion of a periodic
√
δ-family. By the definition, a set of functions

F = {fε}ε>0 ⊂ L2(T1), parameterized by positive ε, is called a
√
δ-family (root-delta family),



if

∀g ∈ C(T1) : lim
ε→0

∫ 1

0

|fε(x)|2g(x)dx = g(0).

In the other words, the squared magnitudes |fε|2 of the complex-valued (in general) functions
fε approximate, as ε→ 0, the periodic Dirac’s delta function. If, in addition, all functions of F
are even, i. e. fε(−x) ≡ fε(x), we say that F is an even root-delta family, and use the notation√
δ+; if fε(−x) ≡ −fε(x), the set F will be called an odd root-delta family, and the notation√
δ− applied.
The family {ϑε} of the Jacobi’s ϑ-functions

ϑε(x) :=
4

√
2

ε

∑
m∈Z1

e−
π(x−m)2

ε =
4
√

2ε
∑
n∈Z1

e−πn2εe2πinx, ε > 0,

suggested by Z. Ciesielski, is an example of a
√
δ+-family. Of course, there are many other

classical
√
δ -families, such as the Dirichlet kernels, wave packets, characteristic functions of

intervals, and periodic Haar functions :

wε(x) :=
√
ε

∑
n: |n|ε≤1/2

e2πinx, wε,k(x) := e2πikxwε(x), k ∈ Z1;

1̃ε(x) :=
1√
ε

∑
m∈Z1

1ε(x−m); χ̃ε(x) :=
1√
ε

∑
m∈Z1

χε(x−m) ,(2)

where 1ε denotes the characteristic function of the interval [−ε/2, ε/2], i. e. 1ε(x) = 1 if
|2x| ≤ ε, and 1ε(x) = 0 for all other x; χε(x) := 1ε(x)sign x. In physics literature, see e. g.
[4],[5], [26], the initial data 1̃ε are known as Ronchi’s grating (for ε = 1/2). The initial densities
w2

ε , 1̃2
ε, ϑ

2
ε are classical tools of the theory of trigonometric series, and approximation theory;

in particular, w2
ε are known as Fejer’s (C, 1)-summation kernels, see e. g. [34], v. 1, Ch. 3;

1̃2
ε is the kernel of the convolution operator of the moving average, or sliding window; ϑ2

ε - the
kernels of the Gauss’ summation method.

In the sequel, for fixed real numbers N, ξ, denote, respectively, LN,ξ and LT
N,ξ, the following

lines on the plane R2:

LN,ξ :=
{
x = (t, x) ∈ R2 : x+Nt = ξ

}
, LT

N,ξ :=
{
x = (t, x) ∈ R2 : Nx+ t = ξ

}
.

Given a line L on R2, denote ρ|L the restriction (trace) of the density ρ on L. For the initial
data f of the class L2(T1), ρ(f)|L is a (locally) integrable function on L; it is periodic if the
slope N is a rational number.

Let F = {fε}ε>0 be a
√
δ-family. We say that a (positive) density distribution ρ0 is the weak

limit of ρ(fε)|L as ε→ 0, if for every continuous and compactly supported function g on L

lim
ε→0

∫
L

ρ(fε)|L g dµ =

∫
L

ρ0g dµ;



µ denotes the usual Lebesgue measure on L. If the limit ρ0 not only exists, but also is the
same for all

√
δ-families, we say that ρ0 is the trace of ρ(

√
δ) on L, and apply the notation

ρ(
√
δ ; L) := ρ0. The definitions of the weak limits ρ(

√
δ ; R2), ρ(

√
δ+ ; L), ρ(

√
δ− ; L) are

analogous, and the latter notations are applied if and only if the limits ρ0 exist, and do not
depend on the

√
δ-family, or, respectively,

√
δ+
√
δ− -families of the initial data.

Visually, the special lines on Fig. 1 and Fig. 2 are LN, M
2
, where N,M are integers. The

following theorem contains an explanation, and answers a part of the raised questions concerning
the limit densities.

Theorem 1. A) Assume that N,M are integers. Then

(3) ρ
(√

δ+ ; LN, M
2

)
= 1 + (−1)NM ; ρ

(√
δ− ; LN, M

2

)
= 1 − (−1)NM .

B) Assume that N is a rational number, N /∈ Z1, ξ – real, and τ – irrational. Then

ρ(
√
δ ,LN,ξ) = ρ(

√
δ ,LT

0,τ ) = ρ(
√
δ ; R2) = 1.

Remark 1. Assume that τ is a rational number, τ = a
q
, a ∈ Z1, q ∈ N1, (a, q) = 1. Then

ρ
(√

δ; LT
0, a

q

)
=

1

q

∑
m

δm
q

{
1, if q ≡ 1 (mod 2),

1 + (−1)m+ q
2 , if q ≡ 0 (mod 2).

(4)

Remark 2. If N,M are odd integers, and L = LN, M
2
, then according to (3) ρ(

√
δ+ ,L) = 0,

i. e. L is one of the “valleys of shadow”. Since ρ(fε) are positive functions, the weak limit

equality ρ(
√
δ+ ,L) = 0 is equivalent to the statement of strong convergence in L1

loc(L): if N is

an odd integer, and F = {fε}ε>0 – a
√
δ+-family, then

lim
ε→0

∫ 1

0

ρ

(
fε; t, Nt+

1

2

)
= 0.

It can be seen on Fig. 1 and Fig. 2, that the density ρ(ϑε) has a special character not
only on the lines LN, M

2
, but also on the transversal lines LT

N, M
2

where M,N are odd integers.

Although here the peculiarity is less apparent, and these lines are not “valleys of shadow”, D.
Dix expressed a conjecture, based on the numerical analysis and the graphics, that the density
remains bounded as ε→ 0.

The next statement confirms this conjecture of Dix for the above mentioned classical
√
δ+-

families of the initial data: ϑ-functions, Dirichlet kernels, and Ronchi’s gratings. (It does not

seem likely, however, that the conjecture is true for general
√
δ+-families.)

Theorem 2. Assume that N,M are odd numbers, L̃ := LN, M
2
∪ LT

N, M
2

, and the family

F = {fε}ε>0 consists of the functions ϑε, wε or 1ε, see (2). Then

(5) sup
ε∈(0,1)

‖ρ(fε)‖L∞(L̃) <∞.



For these initial data, the densities ρ(fε) tend to 0 on the line LN, M
2

not only in L1, but also

in Lp for all p <∞ .

Remark 3. The lines LN, M
2
, LT

N, M
2

with odd N,M , where the density remains bounded,

are exceptional, indeed. Thus, it can be proved that the trace of the density ρ(wε), as ε → 0,
is almost everywhere unbounded on each of the lines LN,M , LT

N,M with integer N,M , and for
almost all ξ

sup
ε∈(0,1)

‖ρ(wε)‖L∞(L0,ξ) = ‖ρ(wε)‖L∞(LT
0,ξ) = ∞.

Theorem 2 is deeper, than theorem 1. The proof requires the local estimates of the elliptic ϑ-
function of complex argument ϑ(z) :=

∑
n∈Z1 e−n2z, �z > 0, the estimates of the exponential

sums with the quadratic phase
∑n

ν=1 e
2πi(ν2t+νx), and the results concerning the local properties

of the discrete oscillatory Hilbert transforms, see section 8 below,

H(t, x) := p.v.
∑

n∈Z1\{0}

e2πi(n2t+nx)

2πin
.

In the next few sections, we provide some comments on the fractal nature of the solutions
of a wide class of Schrödinger type equations with the periodic initial data. We also discuss
the relations with the optical effect of W.H.F. Talbot [29]. The proofs of the theorems are
contained in sections 6 – 8.

0.2. V -extensions as multi-fractals. In the earlier papers [21]-[23] (a review can be found
in [24]), the author studied the properties of the solutions ψ, and also of an essentially wider
class of trigonometric series, called Vinogradov’s extensions, for brevity, V -extensions. A V -
extension (of degree r ∈ N, r ≥ 2) of a periodic function f is defined as the sum of the series
with the real algebraic polynomial phase of higher degree in the exponentials:

V (f ;x) :=
∑
n∈Z1

f̂ne
2πiP (x,n), P (x, n) := xrn

r + · · · + x1n, x = (xr, . . . , x1) ∈ Rr.

The Vinogradov’s extensions, and in particular, the solutions of the Cauchy problem (1),
are multi-fractals. Self-similarity is the most typical feature of a V -extension, and the classical
complete rational exponential sums (Gauss’ sums of higher order) play the role of scaling factors.

Rather superficially, the source of self-similarity can be seen if we consider V -extensions for
fixed rational values of the “senior” coefficients of the polynomial in the exponent xr, . . . , x2,
as a function of the variable “junior” coefficient x = x1. In the sequel, Qr denotes the following
subset of the rational points in Rr:

Qr :=

{
y = (yr, . . . , y2, y1) =

(
ar

qr
, · · · , a2

q2
,
m

q

)
, q := [qr, . . . , q2], m ∈ Z1

}
where qs ∈ N1, as ∈ Z1, (as, qs) = 1, s = r, . . . , 2, and q = q(y) := [qr, . . . , q2] is the least
common multiple of the denominators of the rational numbers yr, . . . , y2.



We have

V

(
f ;
ar

qr
, · · · , a2

q2
, x

)
=
∑
n∈Z1

f̂ne
2πiP (n)

q e2πinx, P (n) := q

(
arn

r

qr
+ · · · + a2n

2

q2

)
.

It follows that V as a function of x, appears as a result of the multiplier transformation of

the Fourier series of the initial data f . The multiplier
{
e

2πiP (n)
q

}
n∈Z1

is a periodic function of

n ∈ Z1, of the period = q. Consequently, applying the discrete Fourier transform, we see that

V

(
f ;
ar

qr
, · · · , a2

q2
, x

)
=

q∑
m=1

G
(
y(m)

)
f

(
x− m

q

)
,(6)

y(m) :=

(
ar

qr
, · · · , a2

q2
,
m

q

)
, G

(
y(m)

)
=

1

q

q∑
n=1

e2πi
P (n)+mn

q .

Therefore, in the given context, V is a q-term linear combination of the translates of the initial
data f .

The coefficients G in these linear combinations are universal, they do not depend from the
initial data. They are (normalized) complete rational exponential sums, or Gauss’ sums of
higher order. The following identities (“conservation laws”) are elementary:

q∑
m=1

G
(
y(m)

)
=

q∑
m=1

|G (y(m)
) |2 = 1.

In the particular case of r = 2, the coefficients G are the classical quadratic Gauss’ sums,

G

(
a

q
,
m

q

)
=

1

q

q∑
n=1

e2πi an2+mn
q , (a, q) = 1,

and the magnitudes of these complex numbers are well-known, see also (4),∣∣∣∣G
(
a

q
,
m

q

)∣∣∣∣
2

=
1

q

{
1, if q ≡ 1 (mod 2),

1 + (−1)m+ q
2 if q ≡ 1 (mod 2).

(7)

Therefore, if q is odd, the solution operator ψ
(
f ; a

q
, x
)

= V
(
f ; a

q
, x
)

of the problem (1)reproduces

q copies on the torus T1, of the initial function f , while if q is even, the number of such (non-
zero) copies is q

2
.

Of course, the term “copy” is only conditionally applicable in this interpretation of (6),

because different translates of the initial data f
(
x− m

q

)
generally interfere with each other.

However, if the function f(x) is a “sharp image”, say, it is supported in a narrow neighborhood
|x| ≤ ε of the origin (like the Ronchi’s grating 1ε, cf. (2)), and if the rational moment of time
t = a

q
is such that qε ≤ 1, then the solution operator ψ is a “copy machine”, indeed, because



the supports of the translates do not overlap. On the other hand, if qε > 2, the interference
between translates of f blends the sharp separate copies unrecognizably.

The same applies for higher degree V -extensions. Summarizing, we see that the discrete
functions (distributions) on Rr

(8) G :=
∑
y∈Qr

G(y)δy, G2 :=
∑
y∈Qr

|G(y)|2δy,

of the arithmetical comb type, are intrinsically associated with the general V -extensions of
periodic initial data, and consequently, with the solutions of a wide class of Schrödinger type
equations. However, a big difference with the generic case r = 2 is that the rational sums G(y)
of degree r ≥ 3 are significantly more complicated arithmetical functions, than the quadratic
Gauss’ sums. Anyhow, the set of rational points y for which G(y) = 0 is everywhere dense in
Rr, so that a general V -extension V (f,x) is a fractal function, indeed. In particular, the sum
of the series with the cubic phase

u(f ; t, x) =
∑
n∈Z1

f̂ne
2πi(n3t+nx),

is fractal. This series represents the solution of the Cauchy initial value problem for the lin-
earized Korteweg-deVries equation with the periodic initial data function

(9)
∂u

∂t
= − 1

4π2

∂3u

∂x3
, u(t, x)

∣∣∣∣
t=0

= f(x) =
∑
n∈Z1

f̂ne
2πinx,

and in this case, the scaling factors are complete cubic rational sums

G

(
a

q
, 0,

m

q

)
=

1

q

q∑
n=1

cos 2π

(
an3 +mn

q

)
.

In this relation, examples of essentially fractal functions are the sums of the following sin-series
with the cubic phase

A(t) :=
∞∑

n=1

sin 2πn3t

πn
, B(t, x) :=

∞∑
n=1

sin 2π(n3t+ nx)

πn
.

Both series converge everywhere, and the partial sums are uniformly bounded, according to a
more general theorem from [2], see section 8. The function B represents the solution u(f ; t, x)
of the problem (9) with the initial data f(x) := 1

2
− {x}, where {·} denotes the fractional part

function. Thus, A(t) describes the time-evolution, in accordance with (9), of one single “unit
jump” on the period in the space variable. This jump is reproduced on an everywhere dense
set of the rational t = a

q
, where A has discontinuities of the first kind (jumps). The value of the

”little jump” at t = a
q

equals the cubic rational sum G
(

a
q
, 0, 0

)
; for more details, the reader

may be referred to the earlier review paper [24].
Remark 4. For r = 2, the zeros of the Gauss’ arithmetic function G(y) align themselves along



the “valleys of shadow”, i. e. on the lines LN, M
2

with odd N, M , see also lemma 1 below. It

would be interesting to clarify whether or not the zeros of G(y) for r ≥ 3 also align themselves
along geometrically simple manifolds in Rr.

0.3. The circle method and the fractals. A much deeper fact is the self-similarity in the
H. Weyl’s exponential sums

Wn(x) :=
1

n

n∑
ν=1

e2πiP (x,ν), x := (xr, . . . , x1) ∈ Rr, n ∈ N,

when these sums are considered globally, as functions of r + 1 variables: the natural n, and
the real coefficients xr, . . . , x1 of the algebraic polynomial in the exponent. This property has
been well understood, and utilized, in analytic number theory since the beginning of the 20th
century, when the famous circle method of Hardy – Littlewood – Ramanujan – Vinogradov was
created. This method combines estimates and asymptotic formulas for the Weyl’s sums. The
original goal was Waring’s problem, however, the scope of applications of the circular method
in number theory alone, is immense.

As an illustration of the fractal properties in the Weyl’s sums, let us consider the asymptotic
formulas on the so-called major arcs. G.I. Arkhipov [1] established the following variant of
Vinogradov’s [31] method of exponential sums. Given a (large) natural number n, denote �n

the “rectangular box”

�r
n := {z = (zr, . . . , z1) ∈ Rr, |zs| ≤ n0.3−s, s = r, . . . , 1},

and consider the subset Qr
n of the rational points in Rr with “relatively small denominators”

(see also the previous section)

Qr
n :=

{
y =

(
ar

qr
, · · · , a2

q2
,
a1

q

)
, q = q(y) := [qr, . . . , q2] ≤ n0.3

}
.

The major arc An is defined as the union of the boxes, centered at the points of Qr
n : An =

Qr
n + �r

n; for y ∈ Qr
n, z ∈ �r

n the following asymptotic formulas are valid

(i) Wn(z) = Wn(z) +O(n−0.7), Wn(z) :=
1

n

∫ n

0

e2πiP (z,ν) dν;

(ii) Wn(y + z) = G(y)Wn(z) +O(n−0.7).(10)

The complete rational sumsG(y) appear as scaling factors in these formulas, while the“pattern”
Wn(z) is given by the continuous analog of the sum Wn, i. e. the oscillatory integral with the
algebraic polynomial phase. A useful estimate of the integral in many applications, in particular,
in Schrödinger type equations, is the following:

(11) |Wn(z)| ≤ min

(
1,

c

P
1/r
∗ (z, n)

)
, P∗(z, n) := |zr|nr + · · · + |z1|n.



This estimate is an equivalent form of the Vinogradov’s lemma [31], Ch. 2, on oscillatory
integrals, cf. also [20].

As for the minor arc, which by the definition is the complement of the major arc, Bn :=
Rr \ An, Weyl’s sums satisfy here the estimate

Wn(x) = O(n−α), α = (8r2(ln r + 1, 5 ln ln r + 4.2))−1, x ∈ Bn, n→ ∞.

0.4. An excerpt from the work of W.H.F. Talbot. In optics, the multi-scaled self-
similarity effects were experimentally discovered as early as in 1836 by W.H.F. Talbot [29], the
British inventor of photography.

Below is an excerpt from this wonderful publication of Talbot.
. . . In order to see these appearances in their perfection, it is requisite to have a dark chamber and a
radiant point of intense solar light, which, for the sake of convenience, should be reflected horizontally
by a mirror. I will relate a few, out of several experiments which were made in this manner.

1. About ten or twenty feet from the radiant point, I placed in the path of the ray an equidistant
grating (a plate of glass covered with gold-leaf, on which several hundred parallel lines are cut, in order
to transmit the light at equal intervals) made by Fraunhofer, with its lines vertical. I then viewed
the light which had passed through the grating with a lens of considerable magnifying power. The
appearance was very curious, being a regular alternation of numerous lines of red and green colour,
having their direction parallel to the lines of the grating. On removing the lens a little further from the
grating, the bands gradually changed their colours, and became alternately blue and yellow. When the
lens was a little more removed, the bands again became red and green. And this change continued to
take place for an indefinite number of times, as the distance between the lens and the grating increased.
In all cases the bands exhibited two complementary colours.

It was very curious to observe that though the grating was greatly out of focus of the lens, yet the
appearance of the bands was perfectly distinct and well defined.

This however only happens when the radiant point has a very small apparent diameter, in which
case the distance of the lens may be increased even to one or two feet from the grating without much
impairing the beauty and distinctness of the coloured bands. So that if the source of light were a mere
mathematical point it appears that this distance might be increased without limit; or that the disturbance
of the luminous indulations caused by the interposition of the grating, continues indefinitely, and has
no tendency to subside of itself.

2. Another grating was then placed at right angles to the first, and the light transmitted through both
was examined by the lens. The appearance now resembled a tissue woven with red and green threads. It
seemed exactly as if each colour disappeared alternately behind the other. An alteration in the distance
of the lens, altered the two complementary colours.

3. A plate of copper pierced with small circular holes of equal diameter and in regular rows, was
substituted for the gratings. When this plate was held perpendicular to the ray, it produced a beautiful
pattern consisting of rows of circles divided by coloured lines or bars. When the lens was approached
to the plate, there was a particular distance between them at which it appeared in the centre of each
circle a black spot, as small and well defined in appearance as a full point in a printed book, being a
curious instance of the well-known fact, of the interference of rays of light producing darkness. This
black spot was seen in all circles at once, in consequence of their having equal diameters.



4. When the copper-plate was placed obliquely and held in various positions, a great variety of very
singular patterns were dispayed, which can be compared to nothing so well as to tissues woven with
threads of various colours. It would be impossible to describe these, and more than the ever-changing
figures of the kaleidoscope. They seem to vary ad infinitum, and in whatever position the plate is
placed, they appear as distinct as if they were in the focus of the lens...

The author of the present paper learnt about Talbot’s phenomenon from the manuscript of
the work [18] which he happened to referee, and from the subsequent acquaintance with the
physics literature, e. g. [3] - [5], [26]. The modern physics terminology with regard to the
self-similarity features includes quantum carpets, self-imaging; integer, fractional and fractal
revivals, etc. The integer revival reflects that the solution of the Cauchy problem(1) with the
space-periodic initial data is periodic in both space and time variables, ψ(f ; t+ 1/2, x+ 1/2) ≡
ψ(f ; t, x) ≡ ψ(f ; t+ 1, x) ≡ ψ(f ; t, x+ 1). Self-imaging reflects the property of the multi-scaled
reproduction of the initial data. Fractional and fractal revivals mean that at rational moments
of time t = a

q
with small denominators q, the copies of the initial data reappear in the sharp

focus from a blended mass. This group of phenomena is illustrated above by the relation (6)
for general Vinogradov’s extensions. A typical quantum carpet is depicted on Fig. 2, and the
functions G, G2, see (8), are quantum combs.

0.5. Equations: Wave⇒Helmholtz⇒Schrödinger. Paraxial approximation. It seems
proper to provide a partial argument, mathematically not meticulous, why the fractal prop-
erties of the Schrödinger wave function ψ could so brightly manifest themselves in the optics
phenomenon discovered by Talbot. We borrow the explanation from the papers [4], [18], with
slight modifications.

The assumption is that the diffracted light wave in the space past the grating satisfies the
wave equation (

1

c2
∂2

∂t2
− ∆

)
W = 0, ∆ :=

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

where c denotes the speed of light in vacuum, t - the time variable; (x, z) := (x, y, z) is the
Cartesian coordinate system erected so that z = 0 describes the “grated” plane R2 = {x =
(x, y)}, and the half-space past the plane is given by z > 0. The light is assumed to be
monochromatic, of some fixed frequency ω. 2 Accordingly, the solution of the wave equation
is assumed to have the form W = e2πiωtU(x, z) where U is the complex local amplitude. The
boundary value U(x, 0) = f(x), x = (x, y) ∈ R2, models the original image on the diffraction
plane, so that the mathematical “Ansatz 1” of the problem is

W (t,x, z) = e2πiωtU(x, z);

(
∆ +

(
2π

λ

)2
)
U = 0, U(x, z)

∣∣∣∣∣
z=0

= f(x), x = (x, y) ∈ R2,

2The given explanation seemingly does not apply to the effects of bands changing colors in the experiment of
Talbot, who used a radiant point of intense solar light as a source, i. e. white light, the composition of several
frequencies.



where λ := c
ω

denotes the wave-length of the light signal. Concerning U , one needs to solve the
boundary value problem for Helmholtz equation. The Fourier method of separation of variables
is applied for this purpose:

U(x, z) =

∫
R2

f̂(y)e2πi(Ω(y)z+x·y) dy, f̂(y) =

∫
R2

f(x)e−2πiy·x dx , y = (y1, y2) ∈ R2.

Since for a fixed vector y ∈ R2(
∆ +

(
2π

λ

)2
)
e2πi(Ωz+x·y) = 4π2((λ−2 − |y|2) − Ω2)e2πi(Ωz+x·y),

the basic equation for the selection of Ω = Ω(y), according to the Fourier method, is

Ω2(y) = λ−2 − |y|2.
Of course, this equation is not enough for a single-valued determination of Ω(y), and here is
“Ansatz 2” made in [4],[18]: physics of the problem suggests the following solution

Ω(y) :=
√
λ−2 − |y|2 =

√
1 − |λy|2
λ

, for |y| ≤ λ−1; Ω(y) := i

√|λy|2 − 1

λ
, for |y| > λ−1,

so that the eigen-functions “shall not explode” for large values of |y|, z, and on the contrary,
decay exponentially.

“Ansatz 3” consists in the substitution of U(x, z) by its’ paraxial approximation

(12) U(x, z) ≈ Ũ(x, z) := e2πi z
λ

∫
R2

f̂(y)eπi(−|y|2λz+2x·y) dy.

The idea of this approximation is that only the low frequency domain λ|y| � 1 provides a
significant input, ∫

R2

f̂(y)e2πi(Ω(y)z+x·y) dy ≈
∫

λ|y|�1

f̂(y)e2πi(Ω(y)z+x·y) dy,

and in this domain
√

1 − |λy|2 approximately equals its’ two-term Taylor’ expansion, so that

Ω(y) ≈ 1

λ

(
1 − λ2|y|2

2

)
.

Obviously, ∫
R2

f̂(y)eπi(−|y|2λz+2x·y) dy = ψ

(
f ;−λz

2
,x

)
,

so that the result is the paraxial approximation of the solution of the original problem for wave
equation by the solution of the Cauchy initial value problem for Schrödinger equation:

(13) W (t,x, z) ≈ e2πiω(t+ z
c )ψ

(
f ;−λz

2
,x

)
.



The three optical experiments described by Talbot correspond, respectively, to the following
three classes of periodic initial data functions:

(I) f(x, y) = f(x); (II) f(x, y) = f(x) + f(y); (III) f(x, y) = f(x)f(y),

where f(x) =
∑
n∈Z1

f̂ne
2πinx

Λ , x ∈ R1,

and Λ denotes the period of grating. The respective ψ-functions are given by

(I) ψ1(z, x) =
∑
n∈Z1

f̂ne
−πizλn2

Λ2 e
2πinx

Λ ; (II) ψ2(z, x, y) = ψ1(z, x) + ψ1(z, y);

(III) ψ3(z, x, y) = ψ1(z, x)ψ1(z, y).(14)

The number zT := 2Λ2

λ
equals the period, in the z-variable, of all three ψ-functions, it is known

in optics as Talbot’s distance. The lengths λ of waves of the visible light are contained in the
interval λ ∈ [4.55, 6.50]10−5 cm., while the realistic grating period Λ in Talbot’s experiment
presumably lay in the interval Λ ∈ [10−2, 10−1] cm. Therefore, realistic values of the Talbot’s
distance in optical experiments are contained in the interval from decimeters to tens of meters.

The restriction λ|y| = λ|n|
Λ

� 1 determines the spectral interval of adequate representation

of the true solution U of the Helmholtz equation by its’ paraxial approximation Ũ . This
means, that either the initial data f has to be a trigonometric polynomial of degree � Λ

λ
, or

a “sufficiently smooth” function that can be approximated by such polynomials with a small
error. The latter is an evidence in favor of “mathematical reliability” of such approximation:
the ratio Λ

λ
is sufficiently big, of orders 103 – 104. The subspaces of trigonometric polynomials

of such high orders are sufficiently rich to support the phenomena both in physics -, and the
computational experiments.
Remark 4. In the half-space R3

+ := {(x, y, z), z > 0} past the Talbot’s grating plane, let us
introduce the normalized co-ordinates ξ = x

Λ
, η = y

Λ
, ζ = z

zT
). According to the representations

(14), and the theorems 1 and 2, one could expect that the light intensity in Talbot’s experiments
exhibits special features (of being everywhere bounded, or even small) on the following set of
domains ((Nk,Mk) - arbitrary pairs of odd integers):
(I) in the first experiment – on the hyperplanes ξ +Nζ = M

2
and ζ +Nξ = M

2
.

(II, III) in the second, and the third experiments – on the lines

ξ −M1/2

N1

=
η −M2/2

N2

= ζ; N1ξ − M1

2
= N2η − M2

2
= ζ;

ξ −M1/2

N1

= N2η − M2

2
= ζ;

η −M1/2

N1

= N2ξ − M2

2
= ζ .

It may be interesting to test, whether or not these theoretical conclusions can be confirmed
by experiments.



0.6. Arithmetics of the density. The proof of Theorem 1. Wigner’s functions. The
next statement provides an “arithmetical explanation” of the effect of the valleys of shadow in
the Schrödinger landscape. The operator ψ “fails to copy” the initial data on LN, M

2
and LT

N, M
2

with odd M,N , because the Gauss’ sums vanish on these lines. However, for N = ±1, the
behavior of the density on these two types of lines is different. On each LN, M

2
, the average

density is small for the initial data of all
√
δ+ -families, while it is not small on LT

N, M
2

. Here

the density converges to 1 in the sense of distributions, see theorem 1.

Lemma 1. The set of zeros of the function G(y), y ∈ Q2 admits the following representation:

{y ∈ Q2, G(y) = 0} = Q2 ∩ V, V :=
⋃

N,M≡1 (mod 2)

LN, M
2
.

Further, if y ∈ Q2 ∩ LT
N, M

2

, N,M ≡ 1 (mod 2), then G(y) = 0.

Although it seems puzzling that the zeros of the arithmetic functionG(y), y ∈ Q2, “organize”
themselves in such linear manner, this lemma is, in view of (7), a simple exercise in congruences,
and we omit the proof.
Proof of theorem 1. The density ρ(f,R2) is a bivariate periodic function, and its’ trace
ρ(f,L) on a line L with a rational slope is a univariate function, also periodic. The weak limits
in the claims of the theorem are constant functions. Therefore, we need to calculate the value
of the limit, as ε → 0, of the constant term of the Fourier expansions of ρ(f,R2), ρ(f,L) for
f = fε, and prove that each non-constant term of the expansion tends to 0.

These limits will not depend on the selection of a concrete
√
δ -family, or respectively

√
δ+ -

family of the initial data functions {fε}ε>0. In the calculations below we apply our conventional

notations
√
δ ,
√
δ+ to emphasize, in which sense the limits are understood. Thus, the relations

(15) ‖
√
δ‖2

L2(T1) = 1; ‖
√
δ‖L1(T1) = 0;

̂
(
√
δ)n = 0

mean that for every
√
δ -family {fε}, and every fixed n ∈ Z1 we have, respectively,∫ 1

0

|fε(x)|2 dx→ 1,

∫ 1

0

|fε(x)| dx→ 0,

∫ 1

0

fε(x)e
−2πinx dx→ 0, ε→ 0;

these relations are easy corollaries of the definition of
√
δ -families. We also make a natural

convention: for all non-integral α, f̂α := 0.
First of all, we have

(16) ρ(f ; t, x) =
∑

(n,m)∈Z1×Z1

f̂nf̂
∗
me

2πi((n2−m2)t+(n−m)x) =
∑

(n,m)∈Z1×Z1

f̂n+m
2
f̂ ∗

n−m
2
e2πi(m(nt+x)) ,



so that the the Fourier coefficients ρ̂n,m(f,T2), (n,m) ∈ Z2, of ρ(f,R2) are given by

ρ̂0,0(f,T
2) = ‖f‖2

L2(T1) − |f̂0|2; ρ̂n,0(f,T
2) = 0, n ∈ Z1 \ {0};

ρ̂n,m(f,T2) = f̂ 1
2(

n
m

+m)f̂
∗
1
2(

n
m
−m) , (n,m) ∈ Z1 × (Z1 \ {0}).

The claim ρ(
√
δ ,R2) = 1 is a corollary from here and (15), because ρ̂0,0(

√
δ ,T2) = 1 and

ρ̂n,m(
√
δ ,T2) = 0, (n,m) = (0, 0).

Let us consider a line LN,ξ = {(t, x) : x+Nt = ξ, t ∈ R1} with a rational slope N = A
Q
, Q ∈

N1, (A,Q) = 1. Then the trace ρ (f ; LN,ξ) is a periodic function, and its’ Fourier expansion is

ρ (f ; LN,ξ) = ρ(f ; t,−Nt+ ξ) ∼
∑

(ν,µ)∈Z1×Z1

f̂ ν+µ
2
f̂ ∗

ν−µ
2

e2πi(µ(νt−Nt+ξ))

=
∑
n∈Z1

ρ̂n (f ; LN,ξ) e
2πint

Q , ρ̂n (f ; LN,ξ) =
∑

µ(νQ−A)=n

f̂ ν+µ
2
f̂ ∗

ν−µ
2

e2πiµξ .(17)

If n = 0, then the set of the solutions µ, ν of the equation µ(νQ − A) = n is finite: both µ

and νQ−A have to be divisors of n. From here and (15) it follows that ρ̂n

(√
δ ,LN,ξ

)
= 0 for

n = 0.
Further, if N /∈ Z1, then the solutions set {(µ, ν)} of the equation µ(νQ−A) = 0 is {0}×Z1,

so that in this case
ρ̂0 (f ; LN,ξ) = ‖f‖2

L2(T1), ρ̂0

(√
δ ,LN,ξ

)
= 1,

whence we conclude that ρ
(√

δ ,LN,ξ

)
= 1.

For an integer slope N , the solutions set {(µ, ν)} of µ(ν−N) = 0 is ({0}×Z1)
⋃

(Z1×{N}),
and consequently

ρ̂0 (f ; LN,ξ) =
∑
ν∈Z1

|f̂ ν
2
|2 +

∑
µ∈Z1

f̂N+µ
2
f̂ ∗

N−µ
2

e2πiµξ −
∣∣∣f̂N

2

∣∣∣2

= ‖f‖2
L2(T1) + UN(f, ξ) −

∣∣∣f̂N
2

∣∣∣2 , Un(f, x) :=
∑

m∈Z1

f̂n+m
2
f̂ ∗

n−m
2
e2πimx .(18)

Un(f, x) is the first of the following two analogs of Wigner’s functions (see e. g. [15], Section
8.4.3 (p. 357)), answering the periodic initial data:

Un(f ;x) :=

∫ 1

0

f(x+ y)f ∗(x− y) e−2πiny dy,

Ũn(f ;x) :=

∫ 1

0

f(x+ y)f ∗(y − x) e−2πiny dy, n ∈ Z, x ∈ R1.

A direct calculation of the Fourier coefficients of these functions shows that

(19) Ûn(f)m = f̂n+m
2
f̂ ∗

n−m
2
, ̂̃Un(f)m = f̂n+m

2
f̂ ∗

m−n
2
,



and consequently ∑
n

‖Un(f)‖2
L2(T1) =

∑
n

‖Ũn(f)‖2
L2(T1) = ‖f‖4

L2(T1) .

Wigner’s functions are continuous, ‖Un(f)‖C(T1) , ‖Ũn(f)‖C(T1) ≤ ‖f‖2
L2(T1) , and Un is real-

valued for every f ∈ L2(T1). The latter is not true for Ũn in a general case, but if f is even,
then obviously Un(f) = Ũn(f); if, on the contrary, f is odd, then Un(f) = −Ũn(f).

It is well known that the Wigner’s functions are intrinsically related with the density ρ. They
appear, see (16), as profiles of the plane waves in ridge series representation of ρ on R2

(20) ρ(f) =
∑

n

Un(f), Un(f) := Un(f ;nt+ x),

and simultaneously as Fourier coefficients of the expansion of ρ on the lines, parallel to x-axis:

(21) ρ(f ; t, x) =
∑

m∈Z1

Ũm(f ;mt) e2πimx .

Since ∫ 1

0

∫ 1

0

Un(f)Um(f) dtdx =

{ ∣∣∣f̂n
2
f̂m

2

∣∣∣2 , if n = m,

‖Un(f)‖2
L2(T1) , if n = m,

it follows that the ridge series in (20) converges unconditionally in the space L2(T2). Indeed,
the double integral on the left side equals the inner product (Un,Um)L2(T2) of Un and Um in
L2(T2). Therefore, for an arbitrary subset of integers A ⊂ Z1 we have∥∥∥∥∥

∑
n∈A

Un

∥∥∥∥∥
2

L2(T2)

=
∑

(n,m)∈A×A

(Un,Um)L2(T2) ≤ 2‖f‖4
L2(T1) −

∑
n∈Z1

|f̂n|4.

This implies the unconditional convergence, and along with it, the following variant of the
Strichartz’ inequality for the L4-norm of the solution ψ on T2:

‖ρ(f)‖1/2

L2(T2) = ‖ψ(f)‖L4(T2) ≤ 21/4‖f‖L2(T1) .

According to (18), the average values (Radon transformations) of ρ on the lines LN,ξ with the

integral slopes N are expressed via Wigner’s functions, too. Their limits for
√
δ,
√
δ+-families

are the following:

Un(
√
δ+ , x) = −Un(

√
δ−) = Ũn(

√
δ , x) =

{
0, if 2x /∈ Z1,

(−1)2nx, if 2x ∈ Z1.
(22)

Indeed,

Ũn(f, x) = e2πinx

∫ 1

0

f(y)f ∗(y − 2x) e−2πiny dy .



Consider a
√
δ -family F = {fε}ε>0; then we see that if 2x /∈ Z1, then Ũn(fε, x) → 0, ε → 0;

on the contrary, if 2x ∈ Z1, then Ũn(fε, x) → e2πinx = (−1)2nx . If F is
√
δ+ -family, then, as it

was mentioned above, Un(fε) = Ũn(fε); for a
√
δ− -family, Un(fε) = −Ũn(fε), and (22) follows.

From here and from (18) we conclude that for a line LN,ξ with the integral slope N

ρ
(√

δ±, LN,ξ

)
= ρ̂0

(√
δ±, LN,ξ

)
= 1 ± ŨN

(√
δ, ξ
)

=

{
1, if 2ξ /∈ Z1,

1 ± (−1)2Nξ, if 2ξ ∈ Z1,

and to finish the proof of theorem 1, it remains to consider the weak limits on the lines LT (0, τ) =
{(t, x) : t = τ}, parallel to the x-axis. If τ is an irrational number, then according to (21),

(22) we have Ũm(
√
δ ,mτ) = 0, m = 0; Ũ0(

√
δ , 0) = 1, and the equality ρ

(√
δ ,LT (0, τ)

)
= 1

follows from (21). Finally, if τ is a rational number, then (4) is a corollary of (6), and the
classical formulas (7) for the magnitudes of the Gauss’ sums. But we can also derive (4), using
(22) and (21):

ρ
(√

δ ,LT (0, τ)
)

=
∑
m

Ũm(
√
δ ,mτ)e2πimx =

∑
2mτ∈Z1

(−1)2m2τe2πimx .

Assume that τ = a
q
, a ∈ Z1, q ∈ N1, (a, q) = 1. If q is odd, then 2mτ ∈ Z1 means that m ≡ 0

(mod q), and in this case (−1)2m2τ = 1, so that

ρ
(√

δ ,LT (0, τ)
)

=
∑
m

e2πimqx =
1

q

∑
n

δn
q
.

If q is even, q = 2Q, Q ∈ N1, then 2mτ ∈ Z1 means that m ≡ 0 (mod Q). In this case

(−1)2m2τ = (−1)m2Q = (−1)mQ = eπimQ , and thus

ρ
(√

δ ,LT (0, τ)
)

=
∑
m

e2πimQ(x+1/2) =
1

Q

∑
n

δ 1
2
+ n

Q
=

1

q

∑
n

(
1 + (−1)n+ q

2

)
δn

q
.

This completes the proof of theorem 1, and the remark 1.

0.7. The exponential sums with the quadratic phase. The known results concerning
the sums Wn(x), see section 3, in the generic case r = 2 are much more detailed, than for r ≥ 3.
A fundamental input in the analysis of the exponential sums with the quadratic polynomial
phase was done by G.H. Hardy and J.E. Littlewood in [13]. With the global precision (error
estimate) of order O(n−1/2), n→ ∞, the asymptotic formulas of Vinogradov’s type (10) reach
out everywhere on R2. In this sense, the minor arcs for r = 2 have been “eliminated”, see [8],
or [22].

Given a natural number ν, let us denote Q2
ν := {y ∈ Q2 : q(y) ≤ ν}, i .e., the subset of

rational points y =
(

a
q
, m

q

)
∈ Q2 (recall, that this notation implies that (a, q) = 1), such that



q ≤ ν; further, let

�2
ν(y) :=

{
y + z, |z2| ≤ 1

νq
, |z1| ≤ 1

2q

}
, q = q(y), y ∈ Q2

ν .

Then

(i) Wn(y + z) −G(y)Wn(z) = O

(√
q

n

)
= O

(
1√
n

)
, y + z ∈ �2

8n(y);

(ii)
⋃

y∈Q2
8n

�2
8n(y) = R2.(23)

The proof of (23, i) in [8], [22] followed a general scheme that originated from the papers of
Vinogradov and Van der Corput. Further, (23,ii) says that every point x on R2 belongs to a
rectangle �2

8n(y) with q = q(y) ≤ 8n, where the asymptotic formula (23, i) is valid for Wn(x).
(23,ii) it is a corollary from the Dirichlet’s box principle (also known as pigeon hole). Indeed,
let x = (t, x) ∈ R2, ν ∈ N. Then there exists a rational number y2 = a

q
, (a, q) = 1 such

that |z2| ≤ 1
νq
, z2 := t − y2, and q ≤ ν. Once such y2 is established, we can find an integer

m (in general, not co-prime with q) such that for y1 := m
q
, z1 := x − y1 we have |z1| ≤ 1

2q
.

Summarizing, we see that every x ∈ R2 belongs to a rectangle �2
n(y) where q = q(y) ≤ ν := 8n,

which implies (23,ii).
The rational approximant a

q
of t can be also found more “constructively”, as a convergent

fraction [t] +
aj

qj
, where [t] denotes the integer part of t, and

aj

qj
– the jth truncation,

aj

qj
:=

[k1, . . . , kj], j = 1, 2, . . . , of the full continued fraction of {t} = t− [t], see e.g. [16], Ch. 10,

{t} =
1

k1 +
1

k2 + · · ·
= [k1, k2, . . . ], kj ∈ N, j = 1, 2, . . . .(24)

The natural numbers kj are known as the partial quotients of t, and the sequence of the con-

vergents
{

aj

qj

}
is defined by the matrix relations

(
aj+1 aj

qj+1 qj

)
=

(
aj aj−1

qj qj−1

)(
kj 1
1 0

)
, j = 1, . . . ;

(
a1 a0

q1 q0

)
:=

(
1 0
k1 1

)
.

All fractions
aj

qj
generated by these recurrence are reduced, i. e. (aj, qj) = 1; the approximation

properties with regard to the given t ∈ R1 are the following:

(25) t = [t] +
aj

qj
+

(−1)jθj

qjqj+1

,
1

2
≤ θj ≤ 1; j = 0, 1, . . .

The following lemma is true.



Lemma 2. Assume that N,M are odd integers, n a natural number, ε > 0. Denote L̃N,M,ε,

and respectively L̃T
N,M,ε, the following stripes around the lines LN,M , VT

N,M :

L̃N,M,ε :=

{
x = (t, x) ∈ R2, x = Nt+

M

2
+ δ, |δ| ≤ ε

}
,

L̃T
N,M,ε :=

{
x = (t, x) ∈ R2, x =

1

N

(
t− M

2

)
+ δ , |δ| ≤ ε

|N |
}
.

Then for n ≥ |N |, ε = εn := 1
32n

(26) (i) sup
(t,x)∈L̃N,M,ε

∣∣∣∣∣
n∑

ν=1

e2πi(ν2t+νx)

∣∣∣∣∣ ≤ c
√
n, (ii) sup

(t,x)∈L̃T
N,M,ε

∣∣∣∣∣
n∑

ν=1

e2πi(ν2t+νx)

∣∣∣∣∣ ≤ c
√
|N |n .

Proof. We will derive this lemma from (23). Recall that

Wn(x) =
1

n

n∑
ν=1

e2πi(ν2t+νx) .

Let us first prove (26,i), i. e. that if n ≥ |N |, x = (t, x) ∈ L̃N,M,ε, where N,M are odd, then
|Wn(x)| ≤ c√

n
. Without loss of generality, we may assume that t is an irrational number on

(0, 1).
Further, by (23), the main terms G(y)Wn(z) only have to be estimated. In the other words,

we have to show that for a sufficiently large absolute constant c,

(27) L̃N,M,ε ⊂
⋃

y∈Q2
8n

{
y + z ∈ �2

8n(y), |G(y)Wn(z)| ≤ c√
n

}
.

Given x = (t, x) ∈ L̃N,M,ε with an irrational t ∈ (0, 1), consider the sequence of convergent

fractions
{

aj

qj

}
of t, see (24), and find j such that 8n ∈ [qj, qj+1). Denote

(28) q := qj, q̄ := qj+1, y2 :=
a

q
=
aj

qj
, y1 :=

m̄

q
; y := (y2, y1); z := x − y,

where the integer m̄ is determined by the condition − 1
2q

≤ x − m̄
q
< 1

2q
. Then x ∈ �2

8n(y),

where q(y) = q = qj ≤ 8n, because |z1| ≤ 1
2q

by the definition of m̄, and |z2| ≤ 1
qq̄
< 1

8nq
.

To prove that |G(y)Wn(z)| ≤ cn−1/2, let us recall that for x = (t, x) ∈ L̃N,M,ε we have

x = Nt+
M

2
+ δ, |δ| ≤ 1

32n
,

and consider separately two cases: a) q = q(y) is even, and b) q is odd.
In the case a) we have q = 2Q, Q ∈ N1, and∣∣∣∣x− Na+MQ

q

∣∣∣∣ ≤ |N |
qq̄

+ |δ| ≤ |N |
8nq

+
1

32n
≤ 1

8q
+

1

4q
<

1

2q
,



whence it follows that m̄ = Na+MQ. Consequently, in the case a) the point y, defined by (28),
belongs to the line LN,M . On this line, according to lemma 1, all Gauss’ sums G(y) vanish, so
that G(y)Wn(z) = 0, which completes the consideration of the case a).

In the case b) the denominator q is an odd number, and therefore, the magnitude of z1 is
estimated from below as |z1| ≥ 1

8q
, because

|z1| = min
m∈Z1

∣∣∣∣x− m

q

∣∣∣∣ = min
m∈Z1

∣∣∣∣Nt+
M

2
+ δ − m

q

∣∣∣∣
≥ min

m∈Z1

∣∣∣∣12 − m

q

∣∣∣∣−
( |N |
qq̄

+ |δ|
)

≥ 1

2q
−
(

1

8q
+

1

4q

)
≥ 1

8q
.

Therefore, by (11), the oscillatory integral Wn(z) satisfies the estimate

(29) |Wn(z)| ≤ c√|z2|n2 + |z1|n
≤ c

√
q√
n
,

and we have |G(y)| = 1√
q
. Thus, |G(y)Wn(z)| ≤ c√

n
, which completes the proof of (27), and

(26, i).
To prove the second part of the lemma, i. e., the estimate (26,ii), it is sufficient to establish

the following modification of (27)

(30) L̃T
N,M,ε ⊂

⋃
y∈Q2

8n

{
y + z ∈ �2

8n(y), |G(y)Wn(z)| ≤ c
√|N |√
n

}
.

For x = (t, x) ∈ L̃T
N,M,ε with an irrational t, let us modify the rational point y in (28) by letting

y2 = a
q

:= [t] +
aj

qj
, where j is determined as above, i. e., by the condition 8n ∈ [qj, qj+1), and

y1 := m̄
q
, also as above, by the condition − 1

2q
≤ x − m̄

q
< 1

2q
. Then x ∈ �2

8n(y), and it follows

from the definition of the stripe L̃T
N,M,ε that

t =
a

q
+

θ

qq̄
, |θ| ≤ 1, x =

2a− qM

2qN
+

θ

Nqq̄
+ δ, |δ| ≤ 1

32n|N | .

Let

ζ := min
m∈Z1

∣∣∣∣2a− qM

2qN
− m

q

∣∣∣∣ ,
and denote m̃ the integer, for which this minimum is attained; let ỹ :=

(
a
q
, m̃

q

)
.

There are two possibilities: either a) ζ = 0, or b) ζ ≥ 1
2q|N | .

Let us first consider the case a). In this case, q is necessarily an even number, i. e. q = 2Q,
and we have a = QM +Nm̃. All three numbers a,M,N are odd, so that if Q is even, then m̃ is
odd; on the contrary, if Q is odd, then m̃ is even. Anyway, in the case a) Q− m̃ ≡ 1 (mod 2),



and according to lemma 1 G(ỹ) = 0. It is easy to see that m̃ = m̄, i. e. ỹ = y, because∣∣∣∣x− m̃

q

∣∣∣∣ ≤ ζ +
1

|N |qq̄ +
1

32n|N | ≤
1

4q
.

This means, that in the case a) the point y belongs to the transversal line LT
N,M . This completes

consideration of the case a), because G(y)Wn(z) = 0.
In the case b), the magnitude of z1 is estimated from below as follows:

|z1| ≥ ζ −
(

1

|N |qq̄ +
1

32n|N |
)

≥ 1

|N |
(

1

2q
− 1

4q

)
≥ 1

4|N |q .

Consequently, by (29), the oscillatory integral Wn in the case b) satisfies the estimate |Wn(z)| ≤
c
√

|N |q
n

, and since |G(y)| ≤
√

2
q
, we see that in this case |G(y)Wn(z)| ≤ c

√
|N |
n

, which completes

the proof of the lemma.
For ε := 1

2n
we have

ψ(wε; t, x) =
1√
2n

∑
|ν|≤n

e2πi(ν2t+νx) =

√
n

2

(
Wn(t, x) +Wn(t,−x) − 1

n

)
.

Thus, the claim of theorem 2 concerning boundedness of the density ρ(wε; t, x) on the lines
LN,M ,LT

N,M with odd N,M is a corollary from lemma 4.
Remark 3 to theorem 2 is also a corollary from the asymptotic formula (23). This statement

is of the type of Ω-theorems, established by Hardy and Littlewood in [13], and we do not provide
the detailed proof here. The set Ξ of the“bad” values of the parameter ξ of the numbers with
the unbounded sequence of the partial quotients {kj}, see (24):

Ξ =

{
ξ = [k1, k2, . . . ]; lim sup

j→∞
= ∞

}
.

0.8. Hilbert transforms. Global boundedness, self-similarity. The following results
concerning discrete oscillatory Hilbert transforms with the algebraic polynomial phase were
proved by Arkhipov and the author in [2] on the base of Vinogradov’s method of exponential
sums:

(i) sup
n∈N1

sup
x∈Rr

|Hn(x)| <∞, Hn(x) :=
∑

1≤|ν|≤n

e2πiP (x,ν)

2πiν
,(31)

(ii) ∀x ∈ Rr, ∃H(x) := lim
n→∞

Hn(x) = p.v.
∑

ν∈Z1\{0}

e2πiP (x,ν)

2πiν
.

Independently and somewhat later the global boundedness result was proved by E.M. Stein
and S. Wainger, see [28]. Let us note, that in a much earlier paper [27] Stein and Wainger



established boundedness of the integral analogs of H, i. e.

∀r ∈ N : ‖H‖L∞(Rr) <∞, H(x) := p.v.

∫
R1

e2πiP (x,ν)

2πiν
dν .

The function H(x) is self-similar which can be expressed by the following local incremental
relations, see also (10):

(32) (i) H(z) = H(z) + o(1); (ii) H(y + z) −H(y) = G(y)H(z) + o(1), z → 0, y ∈ Qr,

and for y ∈ Qr the value of H(y) can be calculated as a finite discrete Hilbert transformation,
which is an analog of the complete rational sum G(y):

H(y) =
1

2qi

q−1∑
n=1

e2πiP (y,n) cot
πn

q
.

Obviously, in (32) the complete rational sums again appear as the scaling factors, while the
pattern is represented by the integral Hilbert transformation H.

The author’s original goal of consideration of the transforms HN was P.L. Ul’yanov’s [30]
problem concerning the so-called spectra of uniform convergence, see [24]. The initial result
[19] was the following estimate (“a la H. Weyl”, cf. [32]), of the finite transforms HN , uniform
in the coefficients of the algebraic polynomial in the exponent:

‖Hn‖L∞(Rr) = O
(
(lnn)1−εr

)
, n→ ∞, εr = 21−r.

This estimate was sufficient to solve a part of the problem raised by Ul’yanov: none of the
algebraic polynomial sequences is a spectrum of uniform convergence.

After the more refined result (31) was obtained, Z. Ciesel’skii drew the author’s attention
to the possible applications in the study of the properties of the solutions of Schrödinger type
equations.

A corollary of (31) is the global boundedness condition for V -extensions. Denote BV(T1) the
space of univariate periodic functions, of period = 1, whose total variation in the usual sense is
bounded on [0, 1), with the norm ‖f‖BV := var(f, [0, 1))+ |f(0)|. Then V : BV(T1) �→ L∞(Rr)
in the following sense:

sup
n∈N1

‖Vn(f ; ·)‖L∞(Rr) ≤ c‖f‖BV , Vn(f ;x) :=
∑
|ν|≤n

f̂νe
2πiP (x,ν);

∀f ∈ BV(T1), ∀x ∈ Rr ∃ lim
n→∞

Vn(f ;x) := p.v.
∑
ν∈Z1

f̂νe
2πiP (x,ν).

A further corollary is the existence of generalized solutions of the Cauchy initial data problem
for every Schrödinger type equation with the constant coefficients in the class of regular and
everywhere bounded functions. Thus, assume that P is a univariate algebraic polynomial with



the real coefficients, and consider the Cauchy initial value problem

1

2πi

∂Ψ

∂t
= P

(
1

2πi

∂

∂x

)
Ψ, Ψ(t, x)

∣∣∣∣
t=0

= f(x).

If f ∈ BV(T1), then the generalized solution of this problem

Ψ = Ψ(f ;P ; t, x) = p.v.
∑
n∈Z1

f̂ne
2πi(tP (n)+nx)

is a regular and everywhere bounded function.
For r = 2, the result H ∈ L∞(T2) is equivalent to the global boundedness of the solution

ψ(t, x) = p.v.
∑

n∈Z1\{0}

e2πi(n2t+nx)

2πin
= H(t, x)

of the problem

∂ψ

∂t
=

1

2πi

∂2ψ

∂x2
, ψ(t, x)

∣∣∣∣
t=0

=
1

2
− {x} = p.v.

∑
n∈Z1\{0}

e2πinx

2πin
=
∑
n∈N1

sin 2πnx

πn
.

If the initial data function is the window function (Ronchi’s grating), f(x) = 1̃ε(x), see (2),
then

ψ(1̃ε, t, x) =
1√
ε

∑
n∈Z1

sin πnε

πn
e2πi(n2t+nx) =

√
ε+

H(t, x+ ε/2) −H(t, x− ε/2)√
ε

.(33)

Therefore, the first conclusion from H ∈ L∞(T2) is that for each fixed ε > 0 the solution
ψ(1̃ε) is an everywhere bounded function on R2, and for the corresponding density we have
‖ρ(1̃ε)‖L∞(R2) = O(ε−1), ε → 0. Certainly, this global estimate is not enough for the proof of

theorem 2, which is an essentially stronger estimate ‖ρ(1̃ε)‖L∞(L) = O(1) on the lines L = LN, M
2

or L = LT
N, M

2

with odd N,M . According to (33), the following lemma is sufficient.

Lemma 3. Assume that N,M are odd integers, ε ∈
(
0, 1

|N |

)
. Then

sup
(t,x)∈L

N, M
2

|H(t, x+ ε) −H(t, x− ε)| ≤ c
√
ε ;

sup
(t,x)∈LT

N, M
2

|H(t, x+ ε) −H(t, x− ε)| ≤ c
√
|N |ε .

We only outline the proof. For H(x) = H(t, x) more precise estimates are known, see [22],
[24], than the general self-similarity relation (32). We have

H(t, x) = p.v.

∫
R1

e2πi(n2t+nx)

2πin
dn = e

πi
4

∫ x√
2t

0

e−πiξ2

dξ, t > 0,



i. e. the integral Hilbert transform is expressed by the incomplete Fresnel’s integral (if t < 0,
one can find the value of H using a general relation H(−x) = H∗(x)). Further, the following

estimates are valid in the neighborhood of a rational point y =
(

a
q
, m

q

)
∈ Q2, q = q(y),

H(y + z) −H(y + z̃) = G(y)(H(z) −H(z̃)) +O
(√

q(
√
|z2| + |z̃2| + |z1 − z̃1|)

)
,(34)

y + z,y + z̃ ∈ �̃2(y), �̃2(y) :=

{
y + z, |z2| ≤ 10

q2
; |z1| ≤ 1

2q

}
.

The lemma 3 is deduced from these relations by the arguments close to the proof of lemma
2. The main difference is that instead of (29), here we utilize the following estimate of the
differences of the Fresnel integral H:

∣∣∣∣
∫ b

a

eπiξ2

dξ

∣∣∣∣ =

∣∣∣∣∣∣
∫ b

a

d
(
eπiξ2

)
2πiξ

dξ

∣∣∣∣∣∣ ≤
1

πa
, 1 ≤ a ≤ b;

|H(z2, z̃1) −H(z2, z1)| ≤ cmin

(
1,

√|z2|
z1

)
, 0 ≤ z1 ≤ z̃1.

0.9. Weak quadratic variation, local properties of the solutions. Relation (34) was
utilized in [22] to establish that the Hilbert transform H(t, x), as a function of the variable x
for fixed t, is of bounded weak quadratic variation (weak 2-variation) on the period [0, 1), and
this property holds uniformly in t:

(35) sup
t∈R1

‖H(t, ·)‖WV2(T1) <∞.

For a fixed number p ≥ 1, the definitions of the weak p-variation, and the corresponding
norm ‖ · ‖WVp(T1) of a (bounded) periodic function h : T1 �→ C, are the following. For a given
N ∈ N, denote CN(T1) the set of all periodic piecewise constant functions with N intervals of
constancy on T1, i. e., g ∈ CN if there exist N intervals Ij = [aj, aj+1), j = 1, . . . , N, such that
aN+1 − a1 = 1, and the value of g is constant on each Ij. Further, denote

σN(h) := inf
g∈CN (T1)

‖h− g‖L∞(T1)

the value of the best N -term non-linear approximation of h in L∞ by piecewise constant func-
tions. We say that h is of bounded weak p-variation3 on T1, if σN(h) = O

(
N−1/p

)
, N → ∞.

Let wvarp(h,T1) := supN∈N N
1/pσN(h), and denote WVp(T1) the space of all functions h of

bounded weak p-variation on T1, with the norm

‖h‖WVp(T1) := wvarp(h,T
1) + |f(0)|.

3In [22], another definition of the weak p-variation was used, namely, via counting “large” oscillations of h
over all arbitrary partitions of the period. However, the alternative definition is equivalent to the given above.



A corollary of (35) is the variational property of the solution operator ψ of (1):

sup
t∈R1

‖ψ(f ; t, ·)‖WV2(T1) ≤ c‖f‖BV(T1).

Let us note, that it is not possible to improve the above variational result essentially: one cannot
take the strong quadratic variation (in the sense of N. Wiener) instead of its weak version, as
it was defined above, see [22].

Below are listed some other properties of the function H(x, t) and the solution ψ(f ; t, x) (we
assume that f ∈ BV(T1)), see [24], or [20], p. 222.
A) If t is a fixed irrational number, then the solution ψ(f ; t, x) is a continuous function of the
variable x; the function H(x) = H(t, x) is continuous, but not differentiable for almost all x.
H is discontinuous at all rational points y ∈ Q2 where G(y) = 0.
B) If the sequence of the partial quotients {kj} of the continued fraction (24), is bounded

(in particular, if t is a quadratic irrationality, like t =
√

2) then the solution ψ satisfies the
Lipschitz-Hölder condition of order 1/2, i. e.

ω (ψ(f ; t, ·), δ) = O(δ1/2), δ → 0; ω(h(·), δ) := sup
|x−y|≤δ

|h(x) − h(y)|, δ > 0.

For almost every fixed t, the following estimate of the uniform modulus of continuity of the
solution is true:

ω (ψ(f ; t, ·), δ) = O
(
δ1/2| ln δ|1/4+ε

)
, ∀ε > 0, δ → 0.

C) The solution ψ(f ; t, x) is continuous on every line, non-parallel to the x-axis, and in partic-
ular, ψ is a continuous function of the variable t for each fixed x.
Remark 5. The latter property means that for the initial data of the class BV(T1), the time-
evolution described by (1) is continuous. In this sense, ψ behaves better than the solution u of
the linearized KdV-equation (9). The solution operator u of (9) transfers one singularity of the
initial data f(x) = 1

2
− {x} on T1 to a countable everywhere dense set of singularities (jumps)

of the solution

u(f, t, 0) = A(t) =
∑
n∈N1

sin 2πn3t

πn

as a function of t.

0.10. An application to the incomplete Gauss’ sums. Let q ∈ N, a ∈ Z1, (a, q) = 1,
and let I be an interval on R1 whose length satisfies |I| < q − 1. Then the expression

S

(
a

q
, I

)
:=
∑
n∈I

e
2πian2

q

is called the incomplete Gauss’ sum, answering the parameter t = a
q

and the interval I.

The incomplete Gauss’ sums satisfy the estimate

(36) sup
|I|≤q−1

∣∣∣∣S
(
a

q
, I

)∣∣∣∣ ≤ c
√
q.



This estimate is essentially due to G.H. Hardy and J.E. Littlewood [13], although it has not
been explicitly mentioned by the authors. E.C. Titchmarsh included this estimate into the
comments concerning [13], see [14], v. 1, p. 113 – 114; see also [8].

As a matter of fact, the estimate (36) is equivalent to the statement H ∈ L∞(T2). Moreover,
H(t, x) is a generating function, it“encodes” all possible incomplete Gauss’ sums, see [22].

In this relation, it may be interesting to recall a comment made by S. Chowla, see [9], v. 1,

pp. 426 –428. This paper discusses the unboundedness problem for the sums
∑r

1 e
iαn2 sin nβ

n
.

A footnote on the first page mentions that the formulation of the latter problem is due to
H. Davenport and H. Heilbronn. Secondly, it is remarked that the problem has been solved
in the negative by Dr. Spac̆ek of Prague. The latter amounts to the statement that indeed
H ∈ L∞(T2). However, the author of the present paper did not succeed in locating the
publications by Davenport, Heilbronn and Spac̆ek on this issue.

Utilizing the weak quadratic variation result (35), it is possible to complement the estimate
(36) as follows, cf. [22]. If {Ij} is an arbitrary collection of pairwise non-intersecting intervals
on [1, q], then

card

{∣∣∣∣S
(
a

q
, Ij

)∣∣∣∣ ≥ ε
√
q

}
≤ cε−2, ε > 0,

where card{·} denotes the number of elements of a (finite) set {·}, and c is an absolute positive
constant. In particular ∑

j

∣∣∣∣S
(
a

q
, Ij

)∣∣∣∣
α

≤ cαq
α/2, α > 2,

where the factor cα depends only on α, and is finite for α > 2.

0.11. Some functional identities, and inequalities. The “imaginary heat transfer ker-
nel”

Γ(t, x) = p.v.

∫
R1

eπi(y2t+2yx) dy =

√
i

t
e−

πix2

t , t = 0,
√
i := e

πi
4

is the Green’s function for the Cauchy problem

(37)
∂ϕ

∂t
=

1

4πi

∂2ϕ

∂x2
, ϕ(f ; t, x)

∣∣∣∣
t=0

= f(x) =

∫
R1

f̂(y)e2πiyx dy

with a general, not necessarily periodic, initial data f ; f̂ denotes the Fourier transform of
f on R1, and both f, f̂ can be understood in generalized sense, as tempered distributions.
Comparing two representations of the solution operator, via the convolution of f with the
Green’s function Γ, and the direct, via the Fourier separation of variables, one obtains, c. f.
[23], the following general functional identity

(38) ϕ(f ; t, x) =

√
i

t
e−

πix2

t ϕ

(
f̂ ;−1

t
,−x

t

)
,

√
i := e

πi
4 .



This identity relates the solution ϕ(f̂) of the problem (37) with the solution of the same problem,

but posed for the Fourier transform f̂ as the initial data. It is of the well-known type, of course,
namely, a variant of the classical functional equation for the Jacobi’s elliptic ϑ-function. If we
take the periodic delta-function f =

∑
n∈Z1 δn as the initial data, then f̂ ≡ f (the Poisson

summation formula), and we obtain from (38) the following particular functional identity

(39) Θ(t, x) =

√
i

t
e−

πix2

t Θ

(
−1

t
,−x

t

)
, Θ(t, x) :=

∑
n∈Z1

eπi(n2t+2nx) , t = 0.

This identity is meaningful only as a relation between two distributions, or generalized functions.
For fixed rational values of t = a

q
, Θ as a function of x is “ atomic”, i. e. the sum of Dirac’s

δ-functions with the complex coefficients. In fact, (39) is equivalent to the well-known identity
of Genocchi and Schaar (see [12], pp. 226 – 227) for the bisected Gauss’ sums√

1

q

q∑
n=1

e
πian2

q =

√
i

a

a∑
m=1

e−
πiqn2

a , a, q ∈ N1, (a, q) = 1, a− q ≡ 1 (mod 2).

An integration of both sides of (39) in the variable x results in a point-wise functional identity
for the values of the function

h(t, x) := H

(
t

2
, x

)
= p.v.

∑
n∈Z1\{0}

eπi(n2t+2nx)

2πin
.

As a conclusion, it was shown in [23] that the following functional inequality is valid for the
function h:

(40) |h(t, x)| ≤ √
t

∣∣∣∣h
(

1

t
,
x

t

)∣∣∣∣+ c, (t, x) ∈ �0 := (0, 1) ×
[
−1

2
,
1

2

]
,

where c is an absolute constant. One has h(t + 1, x) ≡ h(t, x + 1/2); h(t, x + 1) ≡ h(t, x).
Therefore, representing 1

t
as 1

t
=
[

1
t

]
+ τ, τ :=

{
1
t

}
, one can iterate (40), keeping the new

variables (τ, ξ) under control, i. e. in the rectangle �0. This “dynamical process” of iterations
of (40) results in an alternative proof that H ∈ L∞(R2), and let us note that on this approach,
almost all number-theoretical complications are eliminated. Let us also note, that the idea
of utilizing iterations of functional identities, or the approximate identities in the study of Θ
appears in many places in the papers of Hardy and Littlewood [12], [13]. In particular, they
established the following approximate functional equation for the partial sums of Θ:

Θn(t, x) =

√
i

t
e−

πix2

t Θ∗
nt

(
1

t
,
x

t

)
+O

(
1√
t

)
, Θn(t, x) :=

∑
1≤ν≤n

e2πi(ν2t+2nx) .

Finally, let us note that the density ρ(f) also satisfies the functional equation

ρ(f, t, x) =
1

2|t|ρ
(
f̂ ,− 1

2t
,− x

2t

)



which is the corollary of (38).
However, it seems more interesting to look on the density as the trace of the solution

R(t, x, y)|y=0 of the Cauchy initial value problem of the following bivariate Schrödinger type
equation:

(41)
∂R

∂t
=

1

2πi

∂2R

∂x∂y
, R(F, t, x, y)

∣∣∣∣
t=0

= F (x, y) := f(x+ y)f ∗(x− y).

The solution R of this problem for a general F via the Fourier method of separation of variables
is given by the double oscillatory integral (or sum, if the initial data function F is bi-periodic)
with the hyperbolic phase

R(F, t, x, y) =

∫
R2

F̂ (ξ, η)e2πi(ξηt+ξx+ηy) dξdη , F̂ (ξ, η) =

∫
R2

F (x, y)e−2πi(ξx+ηy) dxdy ,

and the Green’s function is

G(t, x, y) =
e−

2πixy
t

|t| .

The analog of the functional identity (38) for the solution operator R is the following:

R(F, (t, x, y)) =
e−

2πixy
t

|t| R

(
F̂ ,−1

t
(1, y, x)

)
.

If the bivariate initial data function F is periodic in both variables x, y, of period = 1, the
(generalized) solution of the problem (41) is represented by the double trigonometric series
with the hyperbolic phase

R(F, t, x, y) =
∑

(n,m)∈Z2

F̂n,m e
2πi(nmt+nx+my) .

Not too much is known concerning the properties of the sums of such series, nor their conver-
gence in non-trivial cases. That the sums of such series are fractals, has been demonstrated in
this paper by the elaboration of the case of the initial data F of the type

F (x, y) = f(x+ y)f ∗(x− y), F̂n,m = f̂n+m
2
f̂ ∗

n−m
2
,

and the trace of the solution R(f, t, x, y)|y=0 is the density function ρ(f, t, x). St. Jaffard [17]
studied the convergence, and the multifractal properties of the sums, of an interesting class of
Davenport expansions. The latter are the series of the type

∑
n an({nt}−1/2), where as above,

we keep the notation {·} for the fractional part function. Such series firstly appeared in the
works of H. Davenport [10], [11]. One can also look on the Davenport expansions as the traces
R(t, x, y)|x=y=0 of the solution R of the Cauchy problem (41) for the initial data function F of
the separable type

F (x, y) = A(x)

(
{y} − 1

2

)
, A(x) :=

∑
n

ane
2πinx, F̂n,m =

an

2πim
, m = 0.



In a recent paper [25], the author studied the convergence of the double trigonometric series

C1(t) :=
∑

(n,m)∈N2

sin 2πnmt

πnm
, C2(t) :=

∑
(n,m)∈N2

cos 2πnmt

πnm
.

These series are also traces of the R-function. The convergence sets, in a rather wide under-
standing of the summation process over expanding families of the domains on N2, coincides,
respectively, with the convergence sets of the univariate series

Ξ1(t) :=
∞∑

j=0

(−1)j ln qj+1

qj
, Ξ2(t) :=

∞∑
j=0

ln2 qj+1

qj
,

where qj = qj(t) denotes the denominator of the jth convergent fraction
aj

qj
of a given real t,

see (24). Such recursive series, defined by the continued fraction of t, were introduced by J.R.
Wilton [33]. Wilton established in terms of Ξ1, Ξ2 the full characterization of the convergence
sets of the series ∞∑

n=1

d(n) sin 2πnt

πn
,

∞∑
n=1

d(n) cos 2πnt

πn
,

where d(n) =
∑

m|n 1 denotes the divisor function. The latter univarate series correspond to
the summation of the the double series C1, C2 over expanding families of hyperbolic crosses
on N2. A further development of Wilton’s result is contained in a recent paper of R. de la
Brèteche and G. Tenenbaum [7]. The author of the present paper is indebted to G. Tenenbaum
for bringing up the reference [33].
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