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Abstract. We continue to study efficiency of approximation and convergence
of greedy type algorithms in uniformly smooth Banach spaces. This paper is a

development of two recent papers [T1] and [T5] in the direction of making practical
algorithms out of theoretical approximation methods. The Weak Chebyshev Greedy
Algorithm (WCGA) has been introduced and studied in [T1]. The WCGA is a

general approximation method that works well in an arbitrary uniformly smooth
Banach space X for any dictionary D. It is an inductive procedure with each step

of implementation consisting of several substeps. We describe the first substep of a
particular case of the WCGA. Let t ∈ (0, 1]. Then at the first substep of the mth step
we are looking for an element ϕm from a given symmetric dictionary D satisfying

(1) Ffm−1(ϕm) ≥ t sup
g∈D

Ffm−1(g)

where fm−1 is a residual after (m − 1)th step and Ffm−1 is a norming functional

of fm−1. It is a greedy step of the WCGA. It is clear that in the case of in-
finite dictionary D there is no direct computationally feasible way of evaluating
supg∈D Ffm−1(g). This is the main issue that we address in the paper. We con-

sider countable dictionaries D = {±ψj}∞j=1 and replace (1) by

Ffm−1 (ϕm) ≥ t sup
1≤j≤Nm

|Ffm−1(ψj)|, ϕm ∈ {±ψj}Nm
j=1.

The retriction j ≤ Nm is known in the literature ([Do]) as the depth search condition.
We prove convergence and rate of convergence results for such a modification of the

WCGA.

1. Introduction

In this paper we discuss approximation by linear combinations of elements that
are taken from a redundant (overcomplete) system of elements. We begin with a
brief discussion of the question: why do we need redundant systems? Answering this
question we first of all mention three classical redundant systems that are used in
different areas of mathematics. Perhaps the first example of m-term approximation
with regard to redundant dictionary was considered by E. Schmidt in 1907 [S] who
considered the approximation of functions f(x, y) of two variables by bilinear forms

m∑
i=1

ui(x)vi(y)

1This research was supported by the National Science Foundation Grant DMS 0200187
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in L2([0, 1]2). This problem is closely connected with properties of the integral
operator

Jf (g) :=
∫ 1

0

f(x, y)g(y)dy

with kernel f(x, y). E. Schmidt [S] gave an expansion (known as the Schmidt
expansion)

f(x, y) =
∞∑

j=1

sj(Jf )φj(x)ψj(y)

where {sj(Jf )} is a nonincreasing sequence of singular numbers of Jf , i.e. sj(Jf ) :=
λj(J∗

f Jf )1/2, {λj(A)} is a sequence of eigenvalues of an operator A, J∗
f is the

adjoint operator to Jf . The two sequences {φj(x)} and {ψj(y)} form orthonormal
sequences of eigenfunctions of the operators JfJ∗

f and J∗
f Jf respectively. He also

proved that

‖f(x, y)−
m∑

j=1

sj(Jf )φj(x)ψj(y)‖L2 = inf
uj ,vj∈L2, j=1,...,m

‖f(x, y)−
m∑

j=1

uj(x)vj(y)‖L2 .

Another example which is well known in statistics is the projection pursuit re-
gression problem. We formulate the related setting in the function theory language.
The problem is to approximate in L2(Ω), Ω ⊂ R

d is a bounded domain, a given
function f ∈ L2(Ω) by a sum of ridge functions, i.e. by

m∑
j=1

rj(ωj · x), x, ωj ∈ R
d, j = 1, . . . , m,

where rj , j = 1, . . . , m, are univariate functions.
The third example is from signal processing. In signal processing the most

popular means of approximation are wavelets and the system of Gabor functions
{ga,b(x − c), ga,b(x) := eiaxe−bx2

, a, c ∈ R, b ∈ R+}. The Gabor system gives
more flexibility in constructing an approximant but it is a redundant (not minimal)
system. It also seems natural (see discussion in [Do]) to use redundant systems in
modeling analyzing elements for the visual system.

Thus, in order to address the contemporary needs of approximation theory and
computational mathematics a very general model of approximation with regard to
a redundant system (dictionary) has been considered in many recent papers. We
refer the reader for a servey of some of these results to [D], [T4]. As such a model we
choose a Banach space X with elements as target functions and an arbitrary system
D of elements of this space such that spanD = X as an approximating system. We
would like to have an algorithm of constructing m-term approximants that adds at
each step only one new element from D and keeps elements of D obtained at the
previous steps. This requirement is an analog of on-line computation property that
is very desirable in practical algorithms. Clearly, we are looking for good algorithms
which at a minimum converge for each target function. It is not obvious that such
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an algorithm exists in a setting at the above level of generality (X, D are arbitrary).
It turned out that there is one fundamental principal that allows us to build good
algorithms both for arbitrary redundant systems and for very simple well structured
bases like the Haar basis. This principal is the use of a greedy step in searching
for a new element to be added to a given m-term approximant. The common
feature of all algorithms of m-term approximation discussed in this paper is the
presence of a greedy step. By a greedy step in choosing an mth element gm(f) ∈ D
to be used in an m-term approximant, we mean one which maximizes a certain
functional determined by information from the previous steps of the algorithm.
We obtain different types of greedy algorithms by varying the above mentioned
functional and also by using different ways of constructing (choosing coefficients of
the linear combination) the m-term approximant from already found m elements
of the dictionary.

We begin presentation of new results by a discussion of previous known results
closely related to the results of this paper. The following general tendency in
the development of these results will be seen in the discussion. We will be going
step by step from theorecical approximation schemes to practically implementable
algorithms.

Let X be a Banach space with norm ‖·‖. We say that a set of elements (functions)
D from X is a symmetric dictionary if each g ∈ D has norm less than or equal to
one (‖g‖ ≤ 1),

g ∈ D implies − g ∈ D,

and spanD = X. We note that in [T1] we required in the definition of a dictionary
normalization of its elements (‖g‖ = 1). However, it is easy to check that the
arguments from [T1] work under assumption ‖g‖ ≤ 1 instead of ‖g‖ = 1. It will
be more convenient for us to have an assumption ‖g‖ ≤ 1 than normalization of a
dictionary.

For an element f ∈ X we denote by Ff a norming (peak) functional for f :

‖Ff‖ = 1, Ff (f) = ‖f‖.

The existence of such a functional is guaranteed by the Hahn-Banach theorem. Let
τ := {tk}∞k=1 be a given sequence of nonnegative numbers tk ≤ 1, k = 1, . . . . We
define first (see [T1]) the Weak Chebyshev Greedy Algorithm (WCGA) that is a
generalization for Banach spaces of Weak Orthogonal Greedy Algorithm defined
and studied in [T2] (see also [DT] for Orthogonal Greedy Algorithm).

Weak Chebyshev Greedy Algorithm (WCGA). We define f c
0 := fc,τ

0 := f .
Then for each m ≥ 1 we inductively define

1). ϕc
m := ϕc,τ

m ∈ D is any satisfying

Ffc
m−1

(ϕc
m) ≥ tm sup

g∈D
Ffc

m−1
(g).

2). Define
Φm := Φτ

m := span{ϕc
j}m

j=1,
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and define Gc
m := Gc,τ

m to be the best approximant to f from Φm.
3). Denote

fc
m := fc,τ

m := f − Gc
m.

In the case tk = 1, k = 1, 2, . . . we call the WCGA the Chebyshev Greedy Algo-
rithm (CGA). Both the WCGA and the CGA are theoretical greedy approximation
methods. The term weak in the above definition means that at the step 1) we do
not shoot for the optimal element of the dictionary which realizes the correspond-
ing sup but are satisfied with weaker property than being optimal. The obvious
reason for this is that we do not know in general that the optimal one exists. An-
other, practical reason is that the weaker the assumption the easier to satisfy it
and, therefore, easier to realize in practice. However, it is clear that in the case
of infinite dictionary D there is no direct computationally feasible way to evaluate
supg∈D Ffc

m−1
(g).

At the second step we are looking for the best approximant of f from Φm. We
know that such an approximant does exist. However, in practice we connot find it
exactly. We can only find it approximately with some error.

The above observations motivated us to consider a variant of the WCGA toward
practically implementable algorithm.

We studied in [T5] the following modification of the WCGA. Let three sequences
τ = {tk}∞k=1, δ = {δk}∞k=0, η = {ηk}∞k=1 of numbers from [0, 1] be given.

Approximate Weak Chebyshev Greedy Algorithm (AWCGA). We define
f0 := fτ,δ,η

0 := f . Then for each m ≥ 1 we inductively define
1). Fm−1 is a functional with properties

‖Fm−1‖ ≤ 1, Fm−1(fm−1) ≥ ‖fm−1‖(1 − δm−1);

and ϕm := ϕτ,δ,η
m ∈ D is any satisfying

Fm−1(ϕm) ≥ tm sup
g∈D

Fm−1(g).

2). Define
Φm := span{ϕj}m

j=1,

and denote
Em(f) := inf

ϕ∈Φm

‖f − ϕ‖.

Let Gm ∈ Φm be such that

‖f − Gm‖ ≤ Em(f)(1 + ηm).

3). Denote
fm := fτ,δ,η

m := f − Gm.

The term approximate in this definition means that we use a functional Fm−1

that is an approximation to the norming (peak) functional Ffm−1 and also we use
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an approximant Gm ∈ Φm which satisfies a weaker assumption than being a best
approximant of f from Φm. Thus, in the approximate version of the WCGA we
have addressed the issue of nonexact evaluation of the norming functional and the
best approximant. We did not address the issue of finding the supg∈D Ffc

m−1
(g).

In this paper we address this issue. We will do it in two steps. First, we will
consider the corresponding modification of the WCGA and then the modification
of the AWCGA. These modifications are done in a style of the concept of depth
search from [Do].

We now consider a countable dictionary D = {±ψj}∞j=1. We denote D(N) :=
{±ψj}N

j=1. Let N := {Nj}∞j=1 be a sequence of natural numbers.

Restricted Weak Chebyshev Greedy Algorithm (RWCGA). We define
f0 := fc,τ,N

0 := f . Then for each m ≥ 1 we inductively define
1). ϕm := ϕc,τ,N

m ∈ D(Nm) is any satisfying

Ffm−1(ϕm) ≥ tm sup
g∈D(Nm)

Ffm−1(g).

2). Define
Φm := Φτ,N

m := span{ϕj}m
j=1,

and define Gm := Gc,τ,N
m to be the best approximant to f from Φm.

3). Denote
fm := fc,τ,N

m := f − Gm.

We present results on the behavior of the RWCGA in Section 2. In Section 3 we
give a definition of the Restricted Approximate Weak Chebyshev Greedy Algorithm
(RAWCGA) and give some convergence results for the RAWCGA.

2. Convergence and rate of approximation of the RWCGA

We consider here approximation in uniformly smooth Banach spaces. For a
Banach space X we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1
2
(‖x + uy‖ + ‖x − uy‖) − 1).

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

It is easy to see that for any Banach space X its modulus of smoothness ρ(u) is an
even convex function satisfying the inequalities

max(0, u − 1) ≤ ρ(u) ≤ u, u ∈ (0,∞).

We begin this section with a theorem from [T1] on convergence of the WCGA.
In the formulation of this theorem we need a special sequence which is defined for
a given modulus of smoothness ρ(u) and a given τ = {tk}∞k=1.
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Definition 2.1. Let ρ(u) be an even convex function on (−∞,∞) with the prop-
erty: ρ(2) ≥ 1 and

lim
u→0

ρ(u)/u = 0.

For any τ = {tk}∞k=1, 0 < tk ≤ 1, and 0 < θ ≤ 1/2 we define ξm := ξm(ρ, τ, θ) as a
number u satisfying the equation

(2.1) ρ(u) = θtmu.

Remark 2.1. Assumptions on ρ(u) imply that the function

ε(u) := ρ(u)/u, u �= 0, ε(0) = 0,

is a continuous increasing on [0,∞) function with ε(2) ≥ 1/2. Thus (2.1) has a
unique solution 0 < ξm ≤ 2.

Theorem 2.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness ρ(u). Assume that a sequence τ := {tk}∞k=1 satisfies the condition: for
any θ > 0 we have

∞∑
m=1

tmξm(ρ, τ, θ) = ∞.

Then for any f ∈ X we have

lim
m→∞

‖fc,τ
m ‖ = 0.

Corollary 2.1. Let a Banach space X have modulus of smoothness ρ(u) of power
type 1 < q ≤ 2; (ρ(u) ≤ γuq). Assume that

(2.2)
∞∑

m=1

tpm = ∞, p =
q

q − 1
.

Then the WCGA converges for any f ∈ X.

We prove here the following convergence result for the RWCGA.

Theorem 2.2. Let X be a uniformly smooth Banach space with the modulus of
smoothness ρ(u). Assume that a sequence τ := {tk}∞k=1 satisfies the condition: for
any θ > 0 we have

∞∑
m=1

tmξm(ρ, τ, θ) = ∞.

Suppose also that limm→∞ Nm = ∞. Then for any f ∈ X we have

lim
m→∞

‖fc,τ,N
m ‖ = 0.
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Corollary 2.2. Let a Banach space X have modulus of smoothness ρ(u) of power
type 1 < q ≤ 2; (ρ(u) ≤ γuq). Assume that limm→∞ Nm = ∞ and

(2.3)
∞∑

m=1

tpm = ∞, p =
q

q − 1
.

Then the RWCGA converges for any f ∈ X.

We now proceed to study the rate of convergence of the RWCGA. The following
theorem has been proved in [T1] for the WCGA. We denote the closure of the
convex hull of D by A1(D).

Theorem 2.3. Let X be a uniformly smooth Banach space with the modulus of
smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Then for a sequence τ := {tk}∞k=1, tk ≤ 1,
k = 1, 2, . . . , we have for any f ∈ A1(D) that

‖fc,τ
m ‖ ≤ C(q, γ)(1 +

m∑
k=1

tpk)−1/p, p :=
q

q − 1
,

with a constant C(q, γ) which may depend only on q and γ.

For b > 0, K > 0 we define the class

Ab
1(K,D) := {f : d(f,A1(D(n)) ≤ Kn−b, n = 1, 2, . . . }.

Here, A1(D(n)) is a convex hull of {±ψj}n
j=1 and for a compact set F

d(f, F ) := inf
φ∈F

‖f − φ‖.

Theorem 2.4. Let X be a uniformly smooth Banach space with the modulus of
smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Then for t ∈ (0, 1] there exist C1(t, γ, q,K),
C2(t, γ, q,K) such that for N with Nm ≥ C1(t, γ, q,K)mr/b, m = 1, 2, . . . we have
for any f ∈ Ab

1(K,D)

‖fc,τ,N
m ‖ ≤ C2(t, γ, q,K)m−r, τ = {t}, r := 1 − 1/q.

We note that we can choose an algorithm from Theorem 2.4 that satisfies the
polynomial depth search condition Nm ≤ Cma from [Do].

We will use the following two simple well known lemmas (see, for instance, [T1]).

Lemma 2.1. Let X be a uniformly smooth Banach space and L be a finite-dimensional
subspace of X. For any f ∈ X \L denote by fL the best approximant of f from L.
Then we have

Ff−fL
(φ) = 0

for any φ ∈ L.
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Lemma 2.2. For any bounded linear functional F and any set S of elements we
have

sup
g∈S

F (g) = sup
f∈A1(S)

F (f)

where A1(S) is the closure of the convex hull of S.

We will prove the following analog of Lemma 2.3 from [T1].

Lemma 2.3. Let X be a uniformly smooth Banach space with modulus of smooth-
ness ρ(u). Take a number ε ≥ 0 and two elements f , f ε from X such that

‖f − f ε‖ ≤ ε

and
f ε/A(ε) ∈ A1(D(N(ε))),

with some numbers A(ε), N(ε). Suppose limm→∞ Nm = ∞. Then there ixists m(ε)
such that we have for m ≥ m(ε)

‖fc,τ,N
m ‖ ≤ ‖fc,τ,N

m−1 ‖ inf
λ

(1 − λtmA(ε)−1(1 − ε

‖fc,τ,N
m−1 ‖

) + 2ρ(
λ

‖fc,τ,N
m−1 ‖

)).

Proof. Let m(ε) be such that Nm ≥ N(ε) for m ≥ m(ε). Consider m ≥ m(ε). We
have for any λ

(2.6) ‖fm−1 − λϕm‖ + ‖fm−1 + λϕm‖ ≤ 2‖fm−1‖(1 + ρ(
λ

‖fm−1‖
))

and by 1) from the definition of RWCGA and Lemma 2.2 we get

Ffm−1(ϕm) ≥ tm sup
g∈D(Nm)

Ffm−1(g) =

tm sup
φ∈A1(D(Nm))

Ffm−1(φ) ≥ tmA(ε)−1Ffm−1(f
ε).

By Lemma 2.1 we obtain

Ffm−1(f
ε) = Ffm−1(f + f ε − f) ≥ Ffm−1(f) − ε =

Ffm−1(fm−1) − ε = ‖fm−1‖ − ε.

Using the inequality

‖fm−1 + λϕm‖ ≥ Ffm−1(fm−1 + λϕm) = ‖fm−1‖ + λFfm−1(ϕm)

we get from (2.6) and the above estimates

(2.7) ‖fm‖ ≤ inf
λ

‖fm−1 − λϕm‖ ≤
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‖fm−1‖ inf
λ

(1 − λtmA(ε)−1(1 − ε

‖fm−1‖
) + 2ρ(

λ

‖fm−1‖
))

what proves the lemma.

Proof of Theorem 2.2. The definition of RWCGA implies that {‖fm‖} is a nonin-
creasing sequence. Therefore we have

lim
m→∞

‖fm‖ = α.

We prove that α = 0 by contradiction. Assume the contrary that α > 0. Then for
any m we have

‖fm‖ ≥ α.

We set ε = α/2 and find f ε such that

‖f − f ε‖ ≤ ε and f ε/A(ε) ∈ A1(D(N(ε)))

with some A(ε), N(ε). Then by Lemma 2.3 we get for m ≥ m(ε)

‖fm‖ ≤ ‖fm−1‖ inf
λ

(1 − λtmA(ε)−1/2 + 2ρ(λ/α)).

Let us specify θ := α
8A(ε) and take λ = αξm(ρ, τ, θ). Then we obtain

‖fm‖ ≤ ‖fm−1‖(1 − 2θtmξm).

The assumption
∞∑

m=1

tmξm = ∞

implies that
‖fm‖ → 0 as m → ∞.

We got a contradiction which proves the theorem.

Proof of Theorem 2.4. By Lemma 2.3 with ε = KN−b
m and A(ε) = 1 we have for

f ∈ Ab
1(K,D) that

(2.8) ‖fm‖ ≤ ‖fm−1‖ inf
λ

(1 − λt(1 − KN−b
m

‖fm−1‖
) + 2γ(

λ

‖fm−1‖
)q).

First, we explain the idea of the proof and then we will give technical details. We
will specify C1(t, γ, q,K), Aq, and λ in such a way that the assumption

‖fm−1‖ ≥ A1/p
q t−1(m − 1)−r

will imply by (2.8) the estimate

‖fm‖ ≤ ‖fm−1‖(1 − 1/(m − 1)).

Then we will use the following lemma from [T3].
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Lemma 2.4. Let three positive numbers α < β ≤ 1, A > 1 be given and let a
sequence of positive numbers 1 ≥ a1 ≥ a2 ≥ . . . satisfy the condition: if for some
ν ∈ N we have

aν ≥ Aν−α

then
aν+1 ≤ aν(1 − β/ν).

Then there exists B = AC(α, β) such that for all n = 1, 2, . . . we have

an ≤ Bn−α.

We choose λ from the equation

1
4
λt = 2γ(

λ

‖fm−1‖
)q.

This implies that
λ = ‖fm−1‖

q
q−1 (8γ)−

1
q−1 t

1
q−1 .

We set
Aq := 4(8γ)

1
q−1 , p :=

q

q − 1
.

Now, if ‖fm−1‖ ≥ A
1/p
q /(t(m − 1)r) then we have for Nm ≥ ( 2Ktmr

A
1/p
q

)1/b that

KN−b
m

‖fm−1‖ ≤ 1
2 and we get from (2.8)

‖fm‖ ≤ ‖fm−1‖(1 − 1
4
λt) = ‖fm−1‖(1 − tp‖fm−1‖p/Aq) ≤ ‖fm−1‖(1 − 1/(m − 1)).

We use Lemma 2.4 and complete the proof.

We give an example of performance of the RWCGA. The problem concerns the
trigonometric m-term approximation in the Lp-norm. Let T (N) be the subspace
of real trigonometric polynomials of order N and let T be the real trigonometric
system

1
2
, sin x, cos x, sin 2x, cos 2x, . . . .

Denote for f ∈ Lp(T)

σm(f, T )p := inf
c1,...,cm;φ1,...,φm∈T

‖f −
m∑

j=1

cjφj‖p

the best m-term trigonometric approximation of f in the Lp-norm. It is clear that
one can get an upper estimate for σ2m+1(f, T )p by approximating f by trigono-
metric polynomials of order m. Denote

Em(f, T )p := inf
u∈T (m)

‖f − u‖p.
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Let

A1 := A1(T ) := {f :
∞∑

k=0

(|ak(f)| + |bk(f)|) ≤ 1}

where ak(f), bk(f) are the corresponding Fourier coefficients. From the general
results on convergence rate of the WCGA (see Theorem 2.3 above) it follows that
for f ∈ A1, tk = t ∈ (0, 1), k = 1, 2, . . . ,

‖fc,τ
m ‖p ≤ C(p, t)m−1/2, 2 ≤ p < ∞.

Let us apply Theorem 2.4 in the same situation. Now, in addition to f ∈ A1 we
require

(2.9) En(f, T )p ≤ Dn−b, n = 1, 2, . . . ,

with some b > 0. Then it is easy to derive from Theorem 2.4 that there exist
two constants C1(p, t,D), C2(p, t,D) such that for τ = {t} and N with Nm ≥
C1(p, t,D)m−1/(2b), m = 1, 2, . . . we have for any f ∈ A1 satisfying (2.9) that

(2.10) ‖fc,τ,N
m ‖p ≤ C2(p, t,D)m−1/2.

We note that for the above class one cannot obtain an esimate better than (2.10)
(clearly, for b ≤ 1/2). Indeed, let m be given. Consider

f(x) := (2m)−1R(x), R(x) =
2m∑
k=1

± cos kx,

where R(x) is the Rudin-Shapiro polynomial such that

‖R‖∞ ≤ Cm1/2.

Then f ∈ A1 and
En(f, T )∞ ≤ Dn−1/2, n = 1, 2, . . . .

Also,
σm(f, T )2 ≥ m−1/2/2.

We now make some general remarks on m-term approximation with the depth
search constraint. The depth search constraint means that for a given m we restrict
ourselves to systems of elements (subdictionaries) containing at most N := N(m)
elements. Let X be a linear metric space and for a set D ⊂ X, let Lm(D) denote
the collection of all linear spaces spanned by m elements of D. For a linear space
L ⊂ X, the ε-neighborhood Uε(L) of L is the set of all x ∈ X which are at a
distance not exceeding ε from L (i.e. those x ∈ X which can be approximated to
an error not exceeding ε by the elements of L). For any compact set F ⊂ X and
any integers N,m ≥ 1, we define the (N,m)-entropy numbers (see [T4, p.94])

εN,m(F,X) := inf
#D=N

inf{ε : F ⊂ ∪L∈Lm(D)Uε(L)}.
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We can express σm(F,D) as

σm(F,D) = inf{ε : F ⊂ ∪L∈Lm(D)Uε(L)}.

It follows therefore that

inf
#D=N

σm(F,D) = εN,m(F,X).

In other words, finding best dictionaries consisting of N elements for m-term ap-
proximation of F is the same as finding sets D which attain the (N,m)-entropy
numbers εN,m(F,X). It is easy to see that εm,m(F,X) = dm(F,X) where dm(F,X)
is the Kolmogorov width of F in X. This establishes a connection between (N,m)-
entropy numbers and the Kolmogorov widths. One can find further discussion on
the nonlinear Kolmogorov (N,m)-widths and the entropy numbers in [T4].

3. Convergence and rate of convergence of the RAWCGA

We study here the following modification of the AWCGA. Let three sequences
τ = {tk}∞k=1, δ = {δk}∞k=0, η = {ηk}∞k=1 of numbers from [0, 1] be given. Let
N := {Nj}∞j=1 be a sequence of natural numbers.

Restricted Approximate Weak Chebyshev Greedy Algorithm (RAWCGA).
We define f0 := fτ,δ,η,N

0 := f . Then for each m ≥ 1 we inductively define
1). Fm−1 is a functional with properties

‖Fm−1‖ ≤ 1, Fm−1(fm−1) ≥ ‖fm−1‖(1 − δm−1);

and ϕm := ϕτ,δ,η,N
m ∈ D(Nm) is any satisfying

Fm−1(ϕm) ≥ tm sup
g∈D(Nm)

Fm−1(g).

2). Define
Φm := span{ϕj}m

j=1,

and denote
Em(f) := inf

ϕ∈Φm

‖f − ϕ‖.

Let Gm ∈ Φm be such that

‖f − Gm‖ ≤ Em(f)(1 + ηm).

3). Denote
fm := fτ,δ,η,N

m := f − Gm.

We begin with the convergence theorem. The following convergence theorem for
the AWCGA and its corollaries have been proved in [T5].
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Theorem 3.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness ρ(u). Assume that sequences τ , δ, η satisfy the conditions: for any
θ > 0 we have

∞∑
m=1

tmξm(ρ, τ, θ) = ∞

and
δm = o(tmξm(ρ, τ, θ)), ηm = o(tmξm(ρ, τ, θ)).

Then for any f ∈ X we have

lim
m→∞

‖fτ,δ,η
m ‖ = 0.

Corollary 3.1. Let a Banach space X have modulus of smoothness ρ(u) of power
type 1 < q ≤ 2; (ρ(u) ≤ γuq). Assume that

∞∑
m=1

tpm = ∞, p =
q

q − 1
;

and
δm = o(tpm), ηm = o(tpm).

Then the AWCGA converges for any f ∈ X.

Corollary 3.2. Let X be a uniformly smooth Banach space. Assume that τ =
{t}, t ∈ (0, 1]. Then for any two sequences δ, η ∈ c0 the corresponding AWCGA
converges for any f ∈ X.

We prove here the following convergence result for the RAWCGA.

Theorem 3.2. Let X be a uniformly smooth Banach space with the modulus of
smoothness ρ(u). Assume that sequences τ , δ, η satisfy the conditions: for any
θ > 0 we have

∞∑
m=1

tmξm(ρ, τ, θ) = ∞

and
δm = o(tmξm(ρ, τ, θ)), ηm = o(tmξm(ρ, τ, θ)).

Suppose also that limm→∞ Nm = ∞. Then for any f ∈ X we have

lim
m→∞

‖fτ,δ,η,N
m ‖ = 0.
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Corollary 3.3. Let a Banach space X have modulus of smoothness ρ(u) of power
type 1 < q ≤ 2; (ρ(u) ≤ γuq). Assume that limm→∞ Nm = ∞,

∞∑
m=1

tpm = ∞, p =
q

q − 1
,

and
δm = o(tpm), ηm = o(tpm).

Then the RAWCGA converges for any f ∈ X.

Corollary 3.4. Let X be a uniformly smooth Banach space. Assume that τ = {t},
t ∈ (0, 1]. Then for any two sequences δ, η ∈ c0 the corresponding RAWCGA
converges for any f ∈ X provided limm→∞ Nm = ∞.

The proof of Theorem 3.2 is similar to that of Theorem 2.2. Instead of Lemma
2.1 we use the following one from [T5,Lemma 2.1].

Lemma 3.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness ρ(u). For a finite-dimensional subspace L of X and an element f ∈ X
denote

EL(f) := inf
l∈L

‖f − l‖.

Assume that an element g ∈ L and a functional F satisfy the following conditions

0 < ‖fL‖ ≤ EL(f)(1 + a), fL := f − g, a ∈ [0, 1];

F (fL) ≥ ‖fL‖(1 − b), ‖F‖ ≤ 1, b ∈ [0, 1].

Then
|F (g)| ≤ inf

v≥0
(a + b + 2ρ(3v‖f‖))/v.

We also replace Lemma 2.3 by the following lemma that is an analog of Lemma
2.3 from [T5] modified in a style of Lemma 2.3 from Section 2.

Lemma 3.2. Let X be a uniformly smooth Banach space with modulus of smooth-
ness ρ(u). Take a number ε ≥ 0 and two elements f , f ε from X such that

‖f − f ε‖ ≤ ε

and
f ε/A(ε) ∈ A1(D(N(ε))),

with some numbers A(ε), N(ε). Then for the RAWCGA with τ , δ, η and N such
that limm→∞ Nm = ∞ there exists m(ε) such that we have for m ≥ m(ε)

Em(f) ≤ ‖fm−1‖ inf
λ

(1 + δm−1 −λtmA(ε)−1(1− δm−1 −
βm−1 + ε

‖fm−1‖
) + 2ρ(

λ

‖fm−1‖
)),

provided ‖fm−1‖ > 0, where

βm−1 := inf
v≥0

(δm−1 + ηm−1 + 2ρ(3v‖f‖))/v.

We obtain here the rate of convergence for an adaptive RAWCGA where adaptive
means that sequences δ and η are determined by the RAWCGA applied to a given
element f ∈ Ab

1(K,D).
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Theorem 3.3. Let X be a uniformly smooth Banach space with the modulus of
smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Let t ∈ (0, 1]. There exist C1(t, γ, q,K),
C2(t, γ, q,K) such that if for a given f ∈ Ab

1(K,D) we apply the RAWCGA with
τ = {t}, Nm ≥ C1(t, γ, q,K)mr/b, r := 1 − 1/q,

δm−1 := tp‖fm−1‖p3−p(16Aq)−1, m = 1, 2, . . . ,

ηm−1 := tpEm−1(f)p3−p(16Aq)−1, m = 2, . . . , p :=
q

q − 1
,

where
Aq := 4(8γ)

1
q−1 ,

then we obtain
‖fτ,δ,η,N

m ‖ ≤ C2(t, γ, q,K)m−r.

Proof. By Lemma 3.2 with ε = KN−b
m and A(ε) = 1 we have for f ∈ Ab

1(K,D) that
(3.1) Em(f) ≤

‖fm−1‖ inf
λ

(
1 + δm−1 − λt(1 − δm−1 − (βm−1 + ε)/‖fm−1‖) + 2γ

( λ

‖fm−1‖
)q)

.

We estimate βm−1 by choosing

v = ‖fm−1‖
1

q−1 3−p/Aq.

We have

βm−1 ≤ (δm−1 + ηm−1)/v + 2γ3qvq−1 ≤ (1/16 + 1/16 + 1/4)‖fm−1‖ =
3
8
‖fm−1‖.

Assume Em−1(f) ≥ A
1/p
q /(t(m − 1)r). Using δm−1 ≤ 1/16 we get from (3.1) for

Nm ≥ (32KtmrA
−1/p
q )1/b

(3.2) Em(f) ≤ ‖fm−1‖ inf
λ

(
1 + δm−1 −

17
32

λt + 2γ
( λ

‖fm−1‖
)q)

.

We choose λ from the equation
1
4
λt = 2γ

( λ

‖fm−1‖
)q

what implies that

λ = ‖fm−1‖
q

q−1 (8γ)−
1

q−1 t
1

q−1 = 4t
1

q−1 ‖fm−1‖p/Aq.

With this λ using the notation p := q
q−1 we get from (3.2)

Em(f) ≤ ‖fm−1‖(1 + δm−1 −
9
32

λt) ≤ ‖fm−1‖(1 − tp‖fm−1‖p/Aq) ≤

Em−1(f)(1 + tpEm−1(f)p/(4Aq))(1 − tp‖fm−1‖p/Aq) ≤

Em−1(f)(1 − 3tpEm−1(f)p/(4Aq)) ≤ Em−1(f)(1 − 3
4
(m − 1)−1).

By Lemma 2.4 we get
Em(f) ≤ C ′

2m
−r

what implies
‖fm‖ ≤ C2m

−r.

Theorem 3.3 is proved now.
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