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Abstract

The function lattice, or generalized Boolean algebra, is the set of
�-tuples with the ith coordinate an integer between 0 and a bound
ni. Two �-tuples t-intersect if they have at least t common nonzero
coordinates. We prove a Hilton–Milner type theorem for systems of
t-intersecting �-tuples.
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1 Introduction

Let t, �, and n1 ≤ n2 ≤ · · · ≤ n� be positive integers. Denote by F�(n1, ..., n�)
the set of all �-tuples

{k = (k1, ..., k�) : 0 ≤ ki ≤ ni 1 ≤ i ≤ �} .

The support of an �-tuple k is the set of the non-zero coordinates: supp(k) =
{i : ki �= 0} . We can define a partial ordering on F�(n1, ..., n�) by j ≤ k if
supp(j) ⊂ supp(k) and for all i ∈ supp(j) we have ji = ki. This par-
tially ordered set is called the function lattice (see for example [5]). An-
other frequently used name is generalized Boolean algebra, because the case
n1 = n� = 1, i.e., when all ni are equal to 1, is just the case of (characteristic
vectors of) set systems on an �-element underlying set.

We say that two �-tuples j and k are t-intersecting if there are at least
t different integers i ∈ supp(j) ∩ supp(k) such that ji = ki, or, with other
words, if there is an �-tuple t with support of size t such that t ≤ k and t ≤ j.
Denote by mt(n1, ..., n�) the maximum cardinality of t-intersecting �-tuples
in F�(n1, ..., n�) and by Mt(n1, ..., n�) the set of all t-intersecting families with
this cardinality. The problems to determine the value mt(n1, ..., n�) and to
describe the structures of the families in Mt(n1, ..., n�), have a very long
and notable history even in the case n� > 1, and this is the case we are
concentrating on in this note.

We start with the history of the case t = 1. C. Berge (1974, [4]) de-
termined mt(n1, ..., n�) and Mt(n1, ..., n�) when all �-tuples have �-element
supports. Different proofs of Berge’s result were given by Hsieh (1975, [19]),
by Livingston (1979, [21]) in the case when n1 = n�. The first result for set
systems with uniform support size different from �, but with n1 = n�, is due
to Frankl (published in 1983, [9]). Moreover, Engel (1984, [10]) handled the
case with n1 = n�, when the supports of the �-tuples are arbitrary. In fact,
Engel proved a Bollobás-type inequality (in the spirit of [8]) for the set of
intersecting �-tuples; a simpler proof of this last result is due to P. L. Erdős,
U. Faigle and W. Kern (1992, [12]). In 2001 C. Bey gave a complete solution
to the t = 1 case, for arbitrary ni’s and any uniform support size (2001, [6]),
using his general weighted intersection theorem. This case shows interest-
ing connections to the complete intersection theorem of R. Ahlswede and L.
Khachatrian ([2]).

For arbitrary values of t, the first result is due to D. Kleitman (1966 [20])
in the case when n1 = n� = 2, and all supports are of size �. Then P. Frankl
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and Z. Füredi handled the case t ≥ 15, all supports are of size �, and n1 =
n� (1980, [14]), using Frankl’s version of the Erdős-Ko-Rado theorem (see
[11]). Later A. Moon generalized this result for cross t-intersecting families
(1982, [22]). The paper by Deza and Frankl (1983, [9]) also contains the
solution for the case when all supports are of the same size k and n1 =
n�, for � large enough as a function of k and t. H-D. Gronau proved the
first result for t-intersecting families with �-element supports in the case of
non-equal ni’s (1983, [16]). R. Ahlswede and L. Khachatrian (1998, [3]),
and independently P. Frankl and N. Tokushige (1998, [15]), solved the t-
intersecting problem for arbitrary t for �-tuples with full support, applying
Ahlswede and Khachatrian’s seminal complete intersection theorem for set
systems (1997, [2]). Finally C. Bey (1999, [5]) determined all parameters
�, k, t, n, for which “fixing t coordinates” yields the solution to the intersection
problem.

All these results can be summarized in the following structural way: un-
der some conditions for the parameter values, the (often unique) optimal
t-intersecting family consists of all �-tuples that are greater or equal than
a fixed �-tuple t with support size t. In the literature such set systems are
called trivially t-intersecting families. As it is well known in the theory of t-
intersecting set systems, there is a long-standing effort to solve the nontrivial
t-intersection problem: what is the size and the structure of the maximum
t-intersecting families where the total intersection of the sets has less then
t elements. The first such result is due to A. J. H. Hilton and E. C. Mil-
ner (1967, [18]). The complete solution is again due to R. Ahlswede and L.
Khachatrian (1996, [1]).

As far as these authors are aware, the only t-intersection result known
for the function lattice F�(n1, ..., n�) is due to C. Bey and K. Engel (2000,
[7]) [Example 10, 11 and Lemma 18]: this is the complete solution to the
non-trivial t-intersection problem in the case of equal ni’s.

The goal of this paper is to prove a more general non-trivial t-intersection
result for the subset of the function lattice F�(n1, ..., n�) consisting of �-tuples
with a fixed size k of the support, for some parameter values t < k < �
and n1 ≤ n2 ≤ · · · ≤ n�. The result is based on a Hilton–Milner type
theorem for poset series, proved by the authors (2000, [13]). The proof of
this latter uses the so-called kernel method, introduced by A. Hajnal and
B. Rothschild (1973, [17]), therefore all of our results are valid only from
a threshold for the parameters. We note that, perhaps surprisingly, the
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application of [13] is not for the natural partial order of F�(n1, ..., n�). We
shall investigate families of intersecting chains in the natural partial order of
F�(n1, ..., n�) in a forthcoming paper. Of course, a direct application of the
kernel method may yield similar results, but citing [13] saves a lot of work.
We admit that the methods of [7] are likely to allow generalization to the
case of different ni’s.

In Section 2 we recall the necessary details from [13], while in Section 3
we reformulate the t-intersection problem of the function lattice and apply
for it the method described in Section 2.

2 Non-trivial t-intersection results for posets

A t-chain L in a poset P is a strict chain of elements L = (x1 < x2 < · · · <
xt). For a given t-chain L = (x1 < x2 < · · · < xt), let TP,k(x1, x2, . . . , xt)
denote the set of k-chains in P which contain L as a subset. Define TP,k(x1, x2,
. . . , xt) = |TP,k(x1, x2, . . . , xt)|. Sometimes we write T instead of TP,k, when
it does not cause ambiguity. Also define rt(P, k) = max TP,k(x1, x2, . . . , xt),
where the maximum is taken for t-chains x1 < x2 < · · · < xt in P . It follows
from the definition that

ri(P, k) ≥ ri+1(P, k). (1)

For a t-chain X ⊂ P and y /∈ X , let T (X , y) denote the number of k-
chains which contain X and y. For a t-chain X and a k-chain L in P , such
that |X ∪ L| = k + 1, let y∗

L ∈ L \ X such that T (X , y∗
L) minimize T (X , y)

for the elements y ∈ L \ X , and set

τ(X ,L) =
∑

y∈L\X , y �=y∗
L

T (X , y). (2)

Also define
Mτ (P, k) = max

X ,L
τ(X ,L), (3)

and
M∗

τ (P, k) = max
X ,L:

τ(X ,L)=Mτ (P,k)

T (X , y∗
L). (4)

Now the following Hilton-Milner type theorem holds:
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Theorem 1 For fixed 1 ≤ t < k, and a sequence of posets Pn, let us be
given a maximum sized family Fn of non-trivially t-intersecting k-chains in
Pn. Assume further that

lim
n→∞

rt+2(Pn, k)/M∗
τ (Pn, k) = 0. (5)

Then, for n sufficiently large, Fn has one of the following two descriptions:

(i) there exists a t-chain X and a (k+1−t)-chain Y, such that X∩Y = ∅;
and Fn is the following set of k-chains:

F(X ,Y) = {L : X ⊆ L and L ∩ Y �= ∅} ∪
∪ {L : Y ⊆ L and |L ∩ X | = t − 1}, (6)

where the second set of chains is non-empty;

(ii) there exists a (t+2)-chain Z, and Fn is the following set of k-chains:

F(Z) = {L : |L ∩ Z| ≥ t + 1}, (7)

and |
⋂

L∈Fn
L ∩ Z| ≤ t − 1.

3 New results

Let t < k < � and n1 ≤ · · · ≤ n� be positive integers. We define two families
F1(t, k; n1, ..., n�) and F2(t, k; n1, ..., n�) of non-trivially t-intersecting families
in F�(n1, ..., n�) with support size k as follows.

(i) Let j1, j2, . . . , jk+1 be integers satisfying 1 ≤ ji ≤ ni for i ∈ [1, k + 1].
We define F1(t, k; n1, ..., n�) as the set of �-tuples k = (k1, ..., k�) with
support size k which belong to the set

{k : ki = ji for all i ∈ [1, t] and for at least one i ∈ [t + 1, k + 1]} ∪

{k : ki = ji for all i ∈ [t+1, k+1] and for t − 1 values i ∈ [1, t]}. (8)

(ii) Let j1, j2, . . . , jt+2 be integers satisfying 1 ≤ ji ≤ ni for i ∈ [1, t + 2].
We define F2(t, k; n1, ..., n�) as the set of �-tuples k = (k1, ..., k�) with
support size k which belong to the set

{k : ki = ji for at least t + 1 values i ∈ [1, t + 2]}. (9)
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Note that |F1(t, k; n1, ..., n�)| and |F2(t, k; n1, ..., n�)| do not depend on the
particular choices of the ji. Our goal is to give sufficient conditions for
the parameter values t, k, �, n1, . . . , n� which ensure that either F1 or F2 is
of maximum size among the non-trivially t-intersecting families of �-tuples
with support size k.

Given n1 ≤ · · · ≤ n�, we define a partially ordered set (P(n1, ..., n�),≺)
as follows. The underlying set is P(n1, ..., n�) := {(i, j) : 1 ≤ i ≤ �, 1 ≤
j ≤ ni}, and (i1, j1) ≺ (i2, j2) if and only if i1 < i2. The map k =
(k1, ..., k�) �→ {(i, ki) ∈ P(n1, ..., n�) : ki �= 0} is obviously a bijection between
F�(n1, ..., n�) and the chains in the poset (P(n1, ..., n�),≺), and �-tuples with
support size k are mapped to k-chains. Therefore, t-intersecting families of
�-tuples in F�(n1, ..., n�) with support size k correspond to t-intersecting k-
chains in (P(n1, ..., n�),≺). For a subset Y ⊆ P(n1, ..., n�), we define the
support of Y as the set of first coordinates of the elements of Y ; namely,
supp(Y) = {i ≤ � : ∃j ≤ ni (i, j) ∈ Y}. We start with the determination
of the quantities rt+2, Mτ , and M∗

τ defined in Section 2. Note that for any
m-chain L in P = (P(n1, ..., n�),≺), we have

TP,k(L) =
∑

A⊂[1,�]\supp(L):
|A|=k−m

∏
i∈A

ni. (10)

Proposition 2 Let t < k < �, let P = (P(n1, ..., n�),≺) and let L be an
m-chain in P. Suppose that (i, ki) ∈ L and j �∈ supp(L) with j < i, and let
L∗ = (L \ {(i, ki)}) ∪ {(j, kj)} for some kj ≤ nj. Then TP,k(L∗) ≥ TP,k(L),
with equality if and only if nj = nj+1 = · · · = ni.

Proof. We obtain TP,k(L∗) from TP,k(L) by replacing each occurrence of nj

by ni in the sum in (10). Hence the inequalities nj ≤ nj+1 ≤ · · · ≤ ni imply
both assertions of the proposition. �

Let σi(x1, x2, ..., xm) denote the ith elementary symmetric polynomial in
variables x1, x2, ..., xm. We define σ0(x1, x2, ..., xm) = 1.

Lemma 3 Let t < k < � and let P = (P(n1, ..., n�),≺). Then

rt+2(P, k) =
∑

A⊂[t+3,�]:
|A|=k−t−2

∏
i∈A

ni = σk−t−2(nt+3, ..., n�). (11)
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Proof. Proposition 2 implies that for (t + 2)-chains L in P, the quantity
TP,k(L) is maximized when supp(L) = [1, t + 2]. �

Lemma 4 Let t < k < � and let P = (P(n1, ..., n�),≺). Then for any t-
chain X and k-chain L in P with |X∪L| = k+1, we have Mτ (P, k) = τ(X ,L)
if and only if the multiset relations {ni : i ∈ supp(X )} = {ni : 1 ≤ i ≤ t}
and {ni : i ∈ supp(L)} ⊇ {ni : t + 1 ≤ i ≤ k} hold.

Proof. We first note that the condition |X ∪L| = k+1 implies that X and L
have t−1 common elements and |L\X | = k− t+1. Moreover, since τ(X ,L)
is the sum of only k − t values T (X , y) with y ∈ L \X , it is possible that for
a fixed t-chain X , τ(X ,L) is maximized for some L even though T (X , y) = 0
for some y ∈ L \ X .

For a fixed t-chain X , Proposition 2 implies that τ(X ,L) is maximized
for a k-chain L whose support contains the k − t smallest elements of [1, �] \
supp(X ). Moreover, another application of Proposition 2 shows that if X ′

is obtained by replacing an element (i1, j1) ∈ X with some (i2, j2) satisfying
i2 < i1 and i2 the smallest number not in supp(X ) then τ(X ′,L′) ≥ τ(X ,L)
for an optimal L′ constructed in the way described in the previous sentence.
Hence Mτ (P, k) = τ(X ,L) for X , L with supp(X ) = [1, t] and supp(L) ⊇
[t + 1, k]. Finally, Proposition 2 also implies that if supp(X ′) �= [1, t] or
supp(L′) �⊇ [t + 1, k] then τ(X ′,L′) < Mτ (P, k), unless the condition about
the multiset of ni values described in the statement of the lemma holds. �

Lemma 5 Let t < k < � and let P = (P(n1, ..., n�),≺). Then

M∗
τ (P, k) =

∑
A⊂[t+1,�]\{k+1}:

|A|=k−t−1

∏
i∈A

ni = σk−t−1(nt+1, ..., n̂k+1, ..., n�). (12)

Proof. Let X be a t-chain and L be a k-chain with |X ∪ L| = k + 1 and
τ(X ,L) = Mτ (P, k). Then, by Lemma 4, we have the multiset relations
{ni : i ∈ supp(X )} = {ni : 1 ≤ i ≤ t} and {ni : i ∈ supp(L)} ⊇ {ni : t + 1 ≤
i ≤ k}. Also, we have k ≤ |supp(X ∪L)| ≤ k + 1. If |supp(X ∪L)| = k then
there exists y∗

L = (i, ki) ∈ L \ X with i ∈ supp(X ) and so T (X , y∗
L) = 0. If

|supp(X ∪L)| = k + 1 then Proposition 2 implies that T (X , y) is minimized
in L\X for the y∗

L = (i, ki) ∈ L\X with i = max supp(L\X ) and, in order to
maximize T (X , y∗

L), we have to choose max supp(L\X ) as small as possible.
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Combining these observations, we obtain that maxT (X , y∗
L) is achieved in

the case supp(X ) = [1, t], supp(L\X ) = [t+1, k+1], and supp(y∗
L) = {k+1},

leading to (12). �
The following two lemmas will be useful at the comparison of rt+2 and

M∗
τ .

Lemma 6 Let t, k, � satisfy k ≥ t + 2 and � ≥ 2k − t − 1, and let P =
(P(n1, ..., n�),≺). Then

rt+2(P, k) ≤
(
1 +

k − t − 2

� − 2k + t + 2

)
σk−t−2(nt+1, ..., n̂k+1, ..., n�).

Proof. On one hand, if A ⊆ [t + 1, �] satisfies |A| = k − t − 2 and k + 1 ∈ A
then ∏

i∈A

ni ≤
∑

s∈[k+2,�]\A ns

(� − k − 1) − (k − t − 3)

∏
i∈A\{k+1}

ni.

On the other hand, any (k − t − 2)-element subset B of [t + 1, �] \ {k + 1}
can be obtained at most k − t − 2 ways by replacing k + 1 by an element
j ≥ k + 2 of B. Hence Lemma 3 implies

rt+2(P, k) = σk−t−2(nt+3, ..., n�) ≤ σk−t−2(nt+1, ..., n�) ≤(
1 +

k − t − 2

� − 2k + t + 2

)
σk−t−2(nt+1, ..., n̂k+1, ..., n�).

�

Lemma 7 Let t, k, � satisfy k ≥ t + 2 and let P = (P(n1, ..., n�),≺). Then

M∗
τ (P, k) ≥ nt+1

� − k + 1

k − t − 1
σk−t−2(nt+1, ..., n̂k+1, ..., n�). (13)

Proof. Using that any (k − t− 2)-element subset B of [t + 1, �] \ {k + 1} can
be obtained (�− t− 1)− (k − t− 2) = �− k + 1 ways by deleting an element
different from k + 1 from a (k − t − 1)-element subset of [t + 1, �] \ {k + 1},
we have

(k − t − 1)σk−t−1(nt+1, ..., n̂k+1, ..., n�) =
�∑

s=t+1
s�=k+1

nsσk−t−2(nt+1, ..., n̂s, ..., n̂k+1, ..., n�) ≥

nt+1(� − k + 1)σk−t−2(nt+1, ..., n̂k+1, ..., n�).
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Hence Lemma 5 implies (13). �

Lemma 8 Let t < k < � and let P = (P(n1, ..., n�),≺). If X is a t-chain
and Y is a k+1−t-chain with X∩Y = ∅ then |F(X ,Y)| ≤ |F1(t, k; n1, ..., n�)|
for the families of chains defined in (6) and (8), respectively.

Proof. First note that |supp(X ) ∩ supp(Y)| ≤ 1, because otherwise there
is no k-chain containing Y and t − 1 elements of X as required in (6). If
|supp(X )∩supp(Y)| = 1, say (i, fi) ∈ X and (i, gi) ∈ Y for some fi �= gi, then
there exists exactly one k-chain in F(X ,Y) which contains (i, gi), namely,
(Y ∪X ) \ {(i, fi)}. Hence, if we define Y1 = (Y \ {(i, gi)})∪ {(j, 1)} for some
j �∈ supp(X ∪ Y) then |F(X ,Y)| ≤ |F(X ,Y1)|, because F(X ,Y1) contains
all but one chain from F(X ,Y) and it contains t chains not in F(X ,Y) (the
chains obtained by deleting an element of X from X ∪ Y). Therefore, it is
enough to prove that |F(X ,Y)| ≤ |F1(t, k; n1, ..., n�)| for chains X ,Y with
supp(X ) ∩ supp(Y) = ∅.

Suppose now that supp(X ) ∩ supp(Y) = ∅. There are exactly t chains
in F(X ,Y) containing Y and there are t chains in F1(t, k; n1, ..., n�) with
support containing [t + 1, k + 1]; hence it is enough to show that for the set
of chains

F∗(X ,Y) = {L : X ⊆ L and L ∩ Y �= ∅}
and

F∗
1 (t, k; n1, ..., n�) = {L ∈ F1(t, k; n1, ..., n�) : supp(L) ⊇ [1, t]}

we have |F∗(X ,Y)| ≤ |F∗
1 (t, k; n1, ..., n�)|. If supp(X ) �= [1, t] then we define

a new set of chains by the following shifting operation. Let i1 ∈ [1, t] be
the smallest number not in supp(X ) and let i2 ∈ supp(X ) with i2 > i1, say
(i2, ki2) ∈ X . For a k-chain L ∈ F∗(X ,Y), let

f(L) =

⎧⎨
⎩

(L \ {(i2, ki2)}) ∪ {(i1, 1)} if i1 �∈ supp(L),
(L \ {(i1, ki1), (i2, ki2)}) ∪ {(i1, 1), (i2, ki1)}

if (i1, ki1) ∈ L for some ki1 ≤ ni1 .
(14)

Moreover, define X ′ = (X \ {(i2, ki2)}) ∪ {(i1, 1)} and

Y ′ =

{
Y if i1 �∈ supp(Y),
(Y \ {(i1, ki1)}) ∪ {(i2, ki1)} if (i1, ki1) ∈ Y for some ki1 ≤ ni1 .

(15)
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Then it is clear that f is an injection from F∗(X ,Y) into F∗(X ′,Y ′), and
so |F∗(X ,Y)| ≤ |F∗(X ′,Y ′)| and |F(X ,Y)| ≤ |F(X ′,Y ′)|. Repeating this
procedure, we arrive to some t-chain X ′′ and (k + 1 − t)-chain Y ′′ such that
|F∗(X ,Y)| ≤ |F∗(X ′′,Y ′′)| and supp(X ′′) = [1, t] and supp(X ′′)∩supp(Y ′′) =
∅. It is enough to show that |F∗(X ′′,Y ′′)| ≤ |F∗

1 (t, k; n1, ..., n�)|.
If supp(Y ′′) �= [t+1, k+1] then let i1 ∈ [t+1, k+1] be the smallest number

not in supp(Y ′′) and let i2 ∈ supp(Y ′′) with i2 > i1, say (i2, ki2) ∈ Y ′′. By
renumbering the i2th coordinate, we may assume that ki2 ≤ ni1 . We apply
the following modification of the shifting operation described in the previous
paragraph. For a k-chain L ∈ F∗(X ′′,Y ′′), let

g(L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(L \ {(i2, j2)}) ∪ {(i1, j2)}
if i1 �∈ supp(L) and (i2, j2) ∈ L with j2 ≤ n1,

(L \ {(i1, j1)}) ∪ {(i2, j1)}
if i2 �∈ supp(L) and (i1, j1) ∈ L,

(L \ {(i1, j1), (i2, j2)}) ∪ {(i1, j2), (i2, j1)}
if (i1, j1), (i2, j2) ∈ L and j2 ≤ n1,

L otherwise.
(16)

Moreover, define Y ′′′ = (Y ′′ \ {(i2, ki2)}) ∪ {(i1, ki2)}. Then g is an injection
from F∗(X ′′,Y ′′) into F∗(X ′′′,Y ′′′), and so |F∗(X ′′,Y ′′)| ≤ |F∗(X ′′′,Y ′′′)|
and |F(X ′′,Y ′′)| ≤ |F(X ′′′,Y ′′′)|. Repeating this procedure, we arrive to a
member of the family F∗

1 (t, k; n1, ..., n�). �

Lemma 9 Let t < k < � and let P = (P(n1, ..., n�),≺). If Z is a (t + 2)-
chain then |F(Z)| ≤ |F2(t, k; n1, ..., n�)| for the families of chains defined in
(7) and (9), respectively.

Proof. Given F(Z), if supp(Z) �= [1, t + 2] then we can apply the shifting
procedure described in (16), not decreasing the size of F(Z), and eventually
arriving to a set of chains in the family F2(t, k; n1, ..., n�). �

Lemma 10 For F1 and F2 from (8) and (9),

|F1| = σk−t(nt+1, ..., n�) − σk−t(nt+1 − 1, ..., nk+1 − 1, nk+2, ..., n�) + t

|F2| =
t+2∑
i=1

σk−t−1(ni, nt+3, ..., n�) − (t + 1)σk−t−2(nt+3, ..., n�).
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Proof. Explanation for |F1|. The second line of (8) yields the term t, and
the cardinality arising from the first line of (8) is obtained as a difference,
counting all functions k with ki = ji for all i ∈ [1, t], and subtracting the
number of functions k with ki = ji for all i ∈ [1, t] that have no i ∈ [t +
1, k + 1] with ki = ji.
Explanation for |F2|. Fix a (t + 2)-chain Z with support [1, t + 2]. For
i ∈ [1, t+2], the number of k-chains intersecting Z in coordinates 1, 2, . . . , i−
1, i + 1, . . . , t + 2 is σk−t−1(ni, nt+3, ..., n�). Adding these expressions for all
i ∈ [1, t + 2], the k-chains intersecting Z in exactly t + 1 coordinates are
counted once, and the k-chains intersecting Z in t+2 coordinates are counted
t + 2 times. The negative term reduces the multiplicity of the latter ones to
one. �

In order to apply Theorem 1, we have to find values of the parameters
t, k, �, n1, ..., n� such that the hypothesis of the theorem is satisfied.

Theorem 11 Let t < k < � be fixed. Then there exists a bound n(t, k, �)
such that if n > n(t, k, �) then for any non-trivially t-intersecting family F
of �-tuples with support k in F�(n, ..., n) we have

|F| ≤ max{|F1(t, k; n, ..., n)|, |F2(t, k; n, ..., n)|}.

Moreover, if k > 2t + 1 then for large enough n we have |F1(t, k; n, ..., n)| >
|F2(t, k; n, ..., n)| and if t + 1 < k ≤ 2t + 1 then for large enough n we have
|F1(t, k; n, ..., n)| < |F2(t, k; n, ..., n)|.

Proof. Let Pn = (P(n, ..., n),≺). By Lemmas 3 and 5, we have rt+2(Pn, k) =(
l−t−2
k−t−2

)
nk−t−2 and M∗

τ (Pn, k) =
(

l−t−1
k−t−1

)
nk−t−1. Hence

lim
n→∞

rt+2(Pn, k)

M∗
τ (Pn, k)

= lim
n→∞

k − t − 1

l − t − 1
· 1

n
= 0 (17)

and so Theorem 1, together with Lemmas 8 and 9, implies that for large
enough n one of the maximum sized families of t-intersecting �-tuples with
support k in F�(n, ..., n) is F1 = F1(t, k; n, ..., n) or F2 = F2(t, k; n, ..., n).

Our final task is to compare |F1(t, k; n, ..., n)| and |F2(t, k; n, ..., n)|. From
Lemma 10 we have

|F1| = t +

(
l − t

k − t

)
nk−t −

k−t∑
i=0

(
k + 1 − t

i

)(
l − k − 1

k − t − i

)
(n − 1)ink−t−i (18)
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and

|F2| = (t + 2)

(
l − t − 1

k − t − 1

)
nk−t−1 − (t + 1)

(
l − t − 2

k − t − 2

)
nk−t−2. (19)

Suppose now that t+2 ≤ k. For fixed t, k, �, as n → ∞, we expand (18) and
(19) as polynomials of n. There is nothing to do with (19), as it is already
written in polynomial form. In (18), the coefficient of nk−t in |F1| is

(
l − t

k − t

)
−

k−t∑
i=0

(
k + 1 − t

i

)(
l − k − 1

k − t − i

)
= 0,

the coefficient of nk−t−1 in |F1| is

k−t∑
i=1

i

(
k + 1 − t

i

)(
l − k − 1

k − t − i

)
=

k−t∑
i=1

(k + 1 − t)

(
k − t

i − 1

)(
l − k − 1

k − t − i

)
= (k + 1 − t)

(
l − t − 1

k − t − 1

)
,

and similarly the coefficient of nk−t−2 in |F1| is

−
k−t∑
i=1

(
i

2

)(
k + 1 − t

i

)(
l − k − 1

k − t − i

)
= −(k + 1 − t)(k − t)

2

(
l − t − 2

k − t − 2

)
.

We compare |F1| and |F2| for large n. The leading term in both is nk−t−1,
with coefficients (k+1−t)

(
l−t−1
k−t−1

)
and (t+2)

(
l−t−1
k−t−1

)
. Therefore, if k+1−t >

t + 2, i.e. k > 2t + 1, then for large enough n we have |F1| > |F2| and if
k < 2t + 1 then for large enough n we have |F1| < |F2|. If k − t − 1 = t + 2,
i.e. k = 2t + 1, then the main terms have equal coefficients. We compare
the coefficients of the next term, nk−t−2 = nt−1 in |F1| and |F2|, which are

− (t+2)(t+1)
2

(
l−t−2
t−1

)
and −(t + 1)

(
l−t−2
t−1

)
, respectively. We have |F1| < |F2|. �

Theorem 12 Let t < k be fixed. Then there exists a bound �(t, k) such that
if � > �(t, k) then for any non-trivially t-intersecting family F of �-tuples
with support k in F�(n1, ..., n�) we have

|F| ≤ max{|F1(t, k; n1, ..., n�)|, |F2(t, k; n1, ..., n�)|}.
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Proof. Let P� = (P(n1, ..., n�),≺). If k = t + 1 then rt+2(P�, k) = 0 and
M∗

τ (P�, k) > 0. If k ≥ t + 2 then by Lemmas 6 and 7, for � ≥ 2k − t − 1 we
have

rt+2(P�, k)

M∗
τ (P�, k)

≤
(
1 +

k − t − 2

� − 2k + t + 2

)
· 1

nt+1
· k − t − 1

� − k + 1
(20)

and therefore

lim
�→∞

rt+2(P�, k)

M∗
τ (P�, k)

= 0.

So Theorem 1, together with Lemmas 8 and 9, implies that for large enough
� one of the maximum sized families of t-intersecting �-tuples with support
k in F�(n1, ..., n�) is F1 = F1(t, k; n1, ..., n�) or F2 = F2(t, k; n1, ..., n�). �

Theorem 13 Let t < k < � be fixed, satisfying � ≥ 2k − t − 1. Then
there exists a bound n(t, k, �) such that if nt+1 > n(t, k, �) then for any non-
trivially t-intersecting family F of �-tuples with support k in F�(n1, ..., n�) we
have |F| ≤ max{|F1(t, k; n1, ..., n�)|, |F2(t, k; n1, ..., n�)|}.

Proof. Let Pnt+1 = (P(n1, ..., nt+1, ..., n�),≺). If k = t+1 then rt+2(Pnt+1, k) =
0 and M∗

τ (Pnt+1, k) > 0. If k ≥ t + 2 then, analogously to (20) in the proof
of Theorem 12,

rt+2(Pnt+1, k)

M∗
τ (Pnt+1 , k)

≤
(
1 +

k − t − 2

� − 2k + t + 2

)
· 1

nt+1
· k − t − 1

� − k + 1
(21)

and therefore

lim
nt+1→∞

rt+2(Pnt+1 , k)

M∗
τ (Pnt+1, k)

= 0.

So Theorem 1, together with Lemmas 8 and 9, implies that for large enough
nt+1 one of the maximum sized families of t-intersecting �-tuples with support
k in F�(n1, ..., n�) is F1 = F1(t, k; n1, ..., n�) or F2 = F2(t, k; n1, ..., n�). �
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problem via AK-methods. Althöfer, Ingo (ed.) et al., Numbers, Informa-
tion and Complexity. Dordrecht: Kluwer Academic Publishers. (2000)
45–74.

8. B. Bollobás: Sperner systems consisting of pairs of complementary sub-
sets. J. Comb. Theory (A) 15 (1973), 363–366.
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