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Abstract. We study nonlinear m-term approximation with regard to a redundant dictionary

D in a Banach space. It is known that in the case of Hilbert space H the Pure Greedy Algorithm
(or, more generally, the Weak Greedy Algorithm) provides for each f ∈ H and any dictionary

D an expansion into a series

f =
∞∑

j=1

cj(f)ϕj(f), ϕj(f) ∈ D, j = 1, 2, . . .

with the Parseval property: ‖f‖2 =
∑

j |cj(f)|2. The Orthogonal Greedy Algorithm (or, more

generally, the Weak Orthogonal Greedy Algorithm) has been introduced in order to enhance the

rate of convergence of greedy algorithms. Recently, we have studied analogues of the PGA and
WGA for a given finite number of functions f1, . . . , fN with a requirement that the dictionary

elements ϕj of these expansions are the same for all f i, i = 1, . . . , N . We have studied

convergence and rate of convergence of such expansions which we call simultaneous expansions.
The goal of this paper is twofold. First, we work in a Hilbert space and enhance the convergence

of the simultaneous greedy algorithms by introducing an analogue of the orthogonalization

process, and we give estimates on the rate of convergence. Then, we study simultaneous greedy
approximation in a more general setting, namely, in uniformly smooth Banach spaces.

1. Introduction and historical survey

In this paper we continue the investigation of simultaneous greedy approximation. Greedy-
type approximation is a vast area of research. We refer the reader to the following two sur-
veys [D], [T3] that contain discussions of greedy approximation with regard to a dictionary.
A new ingredient in the present paper, is a move from approximating a single element f to
the simultaneous approximation of a set of elements f1, . . . , fN . This step has already been
taken in the earlier papers [LuT], [LeT], and [T4], where the approximation in a Hilbert
space has been considered. The goal of this paper is twofold. First, we work in a Hilbert
space and enhance the convergence of the simultaneous greedy algorithms by introducing an
analogue of the orthogonalization process, and we give estimates on the rate of convergence.
Secondly, we study simultaneous greedy approximation in a more general setting, namely,
in uniformly smooth Banach spaces.

1This research was supported by the National Science Foundation Grant DMS 0200187.
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Two different approaches to the problem of simultaneous approximation have been de-
veloped in the papers [LuT], [LeT], [T4] in the case of Hilbert space. Here, we give general-
izations of both approaches in the case of Banach spaces. We begin with a brief discussion
of the two existing approaches.

First, recall some notations and definitions from the theory of approximation with regard
to redundant systems. Let H be a real Hilbert space with an inner product 〈·, ·〉 and the
norm ‖x‖ := 〈x, x〉1/2. We say a set D of functions (elements) from H is a dictionary if each
g ∈ D has norm one (‖g‖ = 1) and spanD = H. For a given dictionary D we can introduce
a norm associated with D as

‖f‖D := sup
g∈D

|〈f, g〉|.

The Weak Greedy Algorithm (see [T1]) is defined as follows. Let the sequence τ = {tk}∞k=1,
0 ≤ tk ≤ 1, be given.

Weak Greedy Algorithm (WGA). Let f τ
0 := f . Then for each m ≥ 1, we inductively

define:

1. Let ϕτ
m ∈ D be any element satisfying

|〈f τ
m−1, ϕ

τ
m〉| ≥ tm‖f τ

m−1‖D;

2.

f τ
m := f τ

m−1 − 〈f τ
m−1, ϕ

τ
m〉ϕτ

m;

3.

Gτ
m(f,D) :=

m∑
j=1

〈f τ
j−1, ϕ

τ
j 〉ϕτ

j .

We note that in a particular case tk = t, k = 1, 2, . . . , this algorithm was considered in [J],
and the special case where tk = 1, k = 1, 2, . . . , is the Pure Greedy Algorithm (PGA). Thus,
the WGA is a generalization of the PGA in the direction of making it easier to construct
an element ϕτ

m at the m-th greedy step. The term weak in the definition means that in step
1., we do not shoot for the optimal element of the dictionary which realizes the D-norm,
rather we are satisfied with a weaker property than being optimal. The obvious reason
for this is that, in general, we do not know that such an optimal element exists. Another
practical reason is that the weaker the assumption the easier it is to satisfy, and therefore
easier to realize in practice. Note that the WGA includes, in addition to the first (greedy)
step, a second step (see 2. and 3. in the above definition) where we update the approximant
by adding to it, the orthogonal projection of the residual f τ

m−1 onto ϕτ
m. It will become

apparent that for applications in simultaneous greedy approximation, it is important to
have a theory of weak greedy approximation with arbitrary weakness sequence τ . However,
we remark that in the case of the WGA we do not have a complete theory on the rate of
convergence.
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In order to formulate what is known on the rate of convergence, we define the class of
functions

Ao
1(D, M) := {f ∈ H : f =

∑
k∈Λ

ckwk, wk ∈ D, #Λ < ∞ and
∑
k∈Λ

|ck| ≤ M}

and A1(D, M) as the closure (in H) of Ao
1(D, M). We will also use a brief notation

A1(D) := A1(D, 1). The following result has been obtained in [T1] for nonincreasing weak-
ness sequences.

Theorem 1.1 ([T1]). Let D be an arbitrary dictionary in H. Assume τ := {tk}∞k=1 is a
nonincreasing sequence. Then for f ∈ A1(D) we have

(1.1) ‖f − Gτ
m(f,D)‖ ≤ (1 +

m∑
k=1

t2k)−tm/2(2+tm).

For a slightly modified WGA the Weak Orthogonal Greedy Algorithm (WOGA) we have
a much better developed general theory. The WOGA was introduced by the second author
(see [T1], and see [DT] for the Orthogonal Greedy Algorithm), in order to enhance the rate
of convergence of the algorithm. It is defined as follows.

Weak Orthogonal Greedy Algorithm (WOGA). Let fo,τ
0 := f . Then for each m ≥ 1,

we inductively define:

1. Let ϕo,τ
m ∈ D be any element satisfying

|〈fo,τ
m−1, ϕ

o,τ
m 〉| ≥ tm‖fo,τ

m−1‖D;

2.
Hτ

m(f) := span{ϕo,τ
1 , . . . , ϕo,τ

m };
3.

Go,τ
m (f,D) := PHτ

m(f)(f
o,τ
m−1),

where PHτ
m(f)(g) denotes the orthogonal projection of g ∈ H onto Hτ

m(f);
4.

fo,τ
m := fo,τ

m−1 − Go,τ
m (f,D).

It was proved in [T1] that
∞∑

k=1

t2k = ∞,

is sufficient in order that
lim

m→∞ ‖f − Go,τ
m (f,D)‖ = 0.

It also has been shown in [T1] that
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Theorem 1.2 ([T1]). For every f ∈ A1(D) we have

‖f − Go,τ
m (f,D)‖ ≤

(
1 +

m∑
k=1

t2k

)−1/2

.

The above result suggests the following straightforward coordinatewise strategy for si-
multaneous approximation. This strategy has been used in [LuT].

Vector Weak Orthogonal Greedy Algorithm (VWOGA). Let a vector of elements
f i ∈ H, i = 1, . . . , N , be given. We define f i,v,τ,o

0 := f i, i = 1, . . . , N . Then for each m ≥ 1
we inductively define:

1. im is such that
‖f im,v,τ,o

m−1 ‖ ≥ ‖f i,v,τ,o
m−1 ‖, i = 1, . . . , N,

2. ϕv,o,τ
m ∈ D is any element satisfying

|〈f im,v,τ,o
m−1 , ϕv,τ,o

m 〉| ≥ tm‖f im,v,τ,o
m−1 ‖D,

3.
Gv,o,τ

m (f i,D) := PHv,τ
m

(f i), where Hv,τ
m := span{ϕv,τ,o

1 , . . . , ϕv,τ,o
m },

4.
f i,v,τ,o

m := f i − Gv,τ,o
m (f i,D).

It is clear that for each coordinate element f i a realization of the VWOGA is the WOGA
with τ i = {tik}∞k=1 such that tik = tk if ik = i and tik = 0 otherwise. It was shown in [LuT]
that in this case Theorem 1.2 implies the following estimate.

Theorem 1.3 ([LuT]). Let D be an arbitrary dictionary in H and τ = {t}, 0 < t ≤ 1. If
f i ∈ A1(D), for all 1 ≤ i ≤ N , then we have

‖f i − Gv,o,τ
m (f i,D)‖ ≤ min(1,

(
N

mt2

)1/2

), i = 1, . . . , N.

It is clear that the restriction that τ is a nonincreasing weakness sequence in Theorem 1.1
prevents the use of coordinatewise strategy in the case of the WGA. In order to overcome
this difficulty the following two methods have been designed in [LuT] and [LeT].

Vector Weak Greedy Algorithm (VWGA). Let a vector of elements f i ∈ H, i =
1, . . . , N , be given. We write f i,v,τ

0 := f i, i = 1, . . . , N . Then for each m ≥ 1, we inductively
define:

1. Let ϕv,τ
m ∈ D be any element satisfying

max
i

|〈f i,v,τ
m−1, ϕ

v,τ
m 〉| ≥ tm max

i
‖f i,v,τ

m−1‖D,
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2.

f i,v,τ
m := f i,v,τ

m−1 − 〈f i,v,τ
m−1, ϕ

v,τ
m 〉ϕv,τ

m , i = 1, . . . , N,

3.

Gv,τ
m (f i,D) :=

m∑
j=1

〈f i,v,τ
j−1 , ϕv,τ

j 〉ϕv,τ
j , i = 1, . . . , N.

The following estimate of the rate of convergence of VWGA has been obtained in [LuT].

Theorem 1.4 ([LuT]). Let D be an arbitrary dictionary in H. Assume τ := {tk}∞k=1,
tk = t, k = 1, . . . , 0 < t < 1. Then for any vector of elements f1, . . . , fN , f i ∈ A1(D),
1 ≤ i ≤ N , we have

N∑
i=1

‖f i,v,τ
m ‖2 ≤

(
1 +

mt2

N

)−t/(2N+t)

N
2N+2t
2N+t .

Comparing Theorem 1.1 with τ = {t} with Theorem 1.4 we see that the exponent t
2N+t

of decay is seriously affected by the number N of simultaneously approximated elements.
Also, simultaneous approximation brings an extra factor N

2N+2t
2N+t � N . In [LeT] we improve

the exponent of decay replacing t
2N+t by t

2N1/2+t
but we pay with a bigger constant N2

instead of N . Here is the corresponding theorem from [LeT].

Theorem 1.5 ([LeT]). Let D be an arbitrary dictionary in H. Assume τ := {tk}∞k=1

is a nonincreasing sequence. Then for any vector of elements f1, . . . , fN , f i ∈ A1(D),
1 ≤ i ≤ N , we have

(1.2)
N∑

i=1

‖f i,v,τ
m ‖2 ≤ N2(1 +

1
N

m∑
k=1

t2k)
−tm

2N1/2+tm .

Recently an estimate that improves the estimates in both Theorems 1.4 and 1.5, has been
obtained in [T4]. This estimate combines the good features of the estimates of Theorems
1.4 and 1.5. It has the exponent from Theorem 1.5, and the constant N as in Theorem 1.4.

Theorem 1.6 ([T4]). Let D be an arbitrary dictionary in H. Assume τ := {tk}∞k=1,
tk = t ∈ (0, 1], k = 1, 2, . . . . Then for any vector of elements f1, . . . , fN , f i ∈ A1(D),
1 ≤ i ≤ N , we have

N∑
i=1

‖f i,s,τ
m ‖2 ≤ N

(
1 +

mt2

N

) −t

2N1/2+t

.
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Theorem 1.7 ([T4]). Let D be an arbitrary dictionary in H. Assume τ := {tk}∞k=1

is a nonincreasing sequence. Then for any vector of elements f1, . . . , fN , f i ∈ A1(D),
1 ≤ i ≤ N , we have

N∑
i=1

‖f i,s,τ
m ‖2 ≤ CN(N +

m∑
k=1

t2k)
−tm

2N1/2+tm

with an absolute constant C = e2/e < 3.

We conclude this section with some comments on proofs of Theorems 1.4–1.7. The
proof of Theorem 1.4 of [LuT], is an adaptation of the proof of Theorem 1.1 of [T1] to the
vector case. This proof is independent of Theorem 1.1. The proof of Theorem 1.5 from
[LeT] directly uses Theorem 1.1. In [LeT] we interpret a simultaneous approximation of
f1, . . . , fN in H with respect to D, as an approximation of F = (f1, . . . , fN) in the Hilbert
space HN := H × · · · × H︸ ︷︷ ︸

N times

, with respect to a special dictionary DN ⊂ HN built from D.

The proof of Theorems 1.6 and 1.7 from [T4] is more like that of Theorem 1.4. It is a
modification of the proof of Theorem 1.1. Thus, we have two methods of analyzing the
efficiency of simultaneous approximation. In the first ([LuT], [T4]), we stay within the
space H with a dictionary D, and analyze the rate of convergence for each coordinate f i.
In the second ([LeT]), we consider a new Hilbert space HN with a new dictionary DN . In
the latter case we approximate the vector F = (f1, . . . , fN) ∈ HN . The above mentioned
results show that the two methods of analysis provide the same rate of convergence with
the former giving a better constant as a function on N . We have decided to present in this
paper the generalization of both methods to the case of Banach spaces. The new results are
formulated and proved in the coming sections.

2. Simultaneous approximation in Banach spaces

In this section we will present some results on simultaneous approximation in Banach
spaces. Results on simultaneous approximation will be obtained from the corresponding
results on approximation of a single element, that is, we follow the line of [LuT], [T4]. We
note that there are two natural generalizations of the Pure Greedy Algorithm to the case of
Banach space X : the X-Greedy Algorithm and the Dual Greedy Algorithm (see [T3, Section
1]). However, there are no general results on convergence and rate of convergence of the
above two algorithms, therefore we will not discuss these two algorithms here. Instead, we
will discuss two modifications of the Weak Greedy Algorithm the Weak Orthogonal Greedy
Algorithm and the Weak Relaxed Greedy Algorithm that have been successfully generalized
to the case of Banach spaces. It will be convenient for us to work in this section with
symmetrized dictionaries.

Let X be a Banach space with norm ‖ · ‖. We say that a set of elements (functions) D
from X is a dictionary if each g ∈ D has norm one (‖g‖ = 1),

g ∈ D implies − g ∈ D,

and spanD = X . Finally, we will use the same notation A1(D) := A1(D, 1), from the
introduction, this time for the Banach space X .
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We begin with the definitions of two types of greedy algorithms with regard to D. For
an element f ∈ X we denote by Ff a norming (peak) functional for f :

‖Ff‖ = 1, Ff (f) = ‖f‖.

The existence of such a functional is guaranteed by Hahn-Banach theorem. Let τ := {tk}∞k=1

be a given sequence of nonnegative numbers tk ≤ 1, k = 1, . . . . We first define the Weak
Chebyshev Greedy Algorithm (WCGA) which is a natural generalization of the Weak Or-
thogonal Greedy Algorithm, to Banach spaces (see [T2]).

Weak Chebyshev Greedy Algorithm (WCGA). Denote f c
0 := f c,τ

0 := f . Then for
each m ≥ 1, we inductively define

1. Let ϕc
m := ϕc,τ

m ∈ D be any element satisfying

Ffc
m−1

(ϕc
m) ≥ tm sup

g∈D
Ffc

m−1
(g).

2. Set
Φm := Φτ

m := span{ϕc
j}m

j=1,

and define Gc
m := Gc,τ

m to be the best approximant to f from Φm.
3. Denote

f c
m := f c,τ

m := f − Gc
m.

We also define the generalization to Banach spaces (see [T2]) of the Weak Relaxed Greedy
Algorithm that was studied in [T1] in the case of a Hilbert space. We refer the reader to
[B], [DGDS], [J1] for related algorithms.

Weak Relaxed Greedy Algorithm (WRGA). Let f r
0 := f r,τ

0 := f and Gr
0 := Gr,τ

0 := 0.
Then for each m ≥ 1, we inductively define

1. Let ϕr
m := ϕr,τ

m ∈ D be any element satisfying

Ffr
m−1

(ϕr
m − Gr

m−1) ≥ tm sup
g∈D

Ffr
m−1

(g − Gr
m−1).

2. Find 0 ≤ λm ≤ 1 such that

‖f − ((1 − λm)Gr
m−1 + λmϕr

m)‖ = inf
0≤λ≤1

‖f − ((1 − λ)Gr
m−1 + λϕr

m)‖

and define
Gr

m := Gr,τ
m := (1 − λm)Gr

m−1 + λmϕr
m.

3. Denote
f r

m := f r,τ
m := f − Gr

m.
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Remark 2.1. It follows from the definitions of WCGA and WRGA that the sequences {‖f c
m‖}

and {‖f r
m‖} are nonincreasing.

We repeat that the term weak in both definitions means that in step 1., we do not shoot
for the optimal element of the dictionary which realizes the corresponding sup, rather we
are satisfied with a weaker property than being optimal. Again, the obvious reason for
this is that, in general, we do not know that such an optimal element exists, and for the
practical reason that the weaker the assumption the easier it is to satisfy, and therefore
easier to realize in practice. Applications of the WCGA and of the WRGA in simultaneous
approximation provide further justification for studying the weak version instead of the pure
version, namely, τ = {1}, of greedy algorithms.

It is clear that in the case of WRGA, it is natural to assume that f belongs to the closure
of convex hull of D (in our notation A1(D)). It has been proved in [T1] that in the case of
a Hilbert space the WRGA yields, for the class A1(D), an approximation error of the order

(1 +
m∑

k=1

t2k)−1/2,

that is, just like the WOGA.
Following [T2] we consider here approximation in uniformly smooth Banach spaces. For

a Banach space X we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1
2
(‖x + uy‖ + ‖x − uy‖) − 1).

The Banach space is called uniformly smooth if

lim
u→0

ρ(u)/u = 0.

It is easy to see that the modulus of smoothness ρ(u) is an even convex function satisfying
the inequalities

max(0, u − 1) ≤ ρ(u) ≤ u, u ∈ (0,∞).

It has been established in [DGDS] that the approximation error of an algorithm analogous
to our WRGA with tk = 1, k = 1, 2, . . . , for the class A1(D) can be expressed in terms of the
modulus of smoothness, namely, if ρ(u) ≤ γuq, 1 < q ≤ 2, then the error is of O(m1/q−1).
The following rate of convergence of the WCGA and the WRGA has been established in
[T2].

Theorem 2.1 ([T2]). Let X be a uniformly smooth Banach space with a modulus of
smoothness ρ(u) ≤ γuq, 1 < q ≤ 2, and let τ := {tk}∞k=1, 0 ≤ tk ≤ 1, k = 1, 2, . . . , be
given. Then for any f ∈ A1(D) we have

‖f c,τ
m ‖ ≤ C(q, γ)

(
1 +

m∑
k=1

tpk

)−1/p

, p :=
q

q − 1
,
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‖f r,τ
m ‖ ≤ C(q, γ)

(
1 +

m∑
k=1

tpk

)−1/p

, p :=
q

q − 1
,

where the constant C(q, γ) may depend only on q and γ.

We first follow [LuT], and study two vector versions of the WCGA and the WRGA.

Vector Weak Chebyshev Greedy Algorithm (VWCGA). Given F := (f1, . . . , fN ),
we let f i,c

0 := f i,v,c,τ
0 := f i, i = 1, . . . , N . Then for each m ≥ 1, we inductively define

1. Let im be such that
‖f im,v,c,τ

m−1 ‖ = max
1≤i≤N

‖f i,v,c,τ
m−1 ‖,

2. Let ϕc
m := ϕv,c,τ

m ∈ D be any element satisfying

Ff im,c
m−1

(ϕc
m) ≥ tm sup

g∈D
Ff im,c

m−1
(g).

3. Define
Φm := Φτ

m := span{ϕc
j}m

j=1,

and define Gi,c
m := Gi,c,τ

m to be the best approximant to f i from Φm, i = 1, . . . , N .
4. Denote

f i,c
m := f i,v,τ,c

m := f − Gi,c
m .

Vector Weak Relaxed Greedy Algorithm (VWRGA). Given F := (f1, . . . , fN), we
let f i,r

0 := f i,v,r,τ
0 := f i, and Gi,r

0 := Gi,v,τ,r
0 := 0, i = 1, . . . , N . Then for each m ≥ 1, we

inductively define

1. Let im be such that
‖f im,v,r,τ

m−1 ‖ = max
1≤i≤N

‖f i,v,r,τ
m−1 ‖,

2. Let ϕr
m := ϕv,r,τ

m ∈ D be any element satisfying

Ff im,r
m−1

(ϕr
m − Gim,r

m−1) ≥ tm sup
g∈D

Ff im,r
m−1

(g − Gim,r
m−1).

3. Find 0 ≤ λi
m ≤ 1 such that

‖f i − ((1 − λi
m)Gi,r

m−1 + λi
mϕr

m)‖ = inf
0≤λ≤1

‖f i − ((1 − λ)Gi,r
m−1 + λϕr

m)‖,

and define
Gi,r

m := Gi,v,τ,r
m := (1 − λi

m)Gi,r
m−1 + λi

mϕr
m, i = 1, . . . , N.

4. Denote
f i,r

m := f i,v,τ,r
m := f i − Gi,r

m .

We prove here the following rate of convergence of the VWCGA and the VWRGA.
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Theorem 2.2. Let X be a uniformly smooth Banach space with a modulus of smoothness
ρ(u) ≤ γuq, 1 < q ≤ 2. Then for a sequence τ := {tk}∞k=1, 0 ≤ tk ≤ 1, k = 1, 2, . . . , we
have for any f i ∈ A1(D), i = 1, . . . , N , that

(2.1) ‖f i,v,τ,b
m ‖ ≤ C(q, γ) min

⎧⎨
⎩1,

(
1
N

m∑
k=1

tpk

)−1/p
⎫⎬
⎭ , p :=

q

q − 1
,

with a constant C(q, γ) which may depend only on q and γ, and where b stands for either c
or r.

Note that in the special case where X is a Hilbert space, and the special weakness sequence
τ such that tk = t ∈ (0, 1], k = 1, 2, . . . , Theorem 2.2 for b = c is Theorem 1.3 which has
been proved in [LuT] with C(q, γ) = 1.

Proof. The inequality
‖f i,v,τ,b

m ‖ ≤ 1

readily follows by the assumption f i ∈ A1(D) and the trivial observation that the sequences
{‖f i,v,τ,b

m ‖}, 1 ≤ i ≤ N , are decreasing. Therefore we only have to prove the estimate

‖f i,v,τ,b
m ‖ ≤ C(q, γ)(

1
N

m∑
k=1

tpk)−1/p, i = 1, . . . , N.

To this end, let m be given. For each l ∈ [1, N ] denote El := {j | ij = l} ⊆ [1, m] (see
VWCGA 1., VWRGA 1., respectively). In other words,

‖f l,v,τ,b
j−1 ‖ = max

1≤i≤N
‖f i,v,τ,b

j−1 ‖, j ∈ El.

Evidently,
m∑

k=1

tpk =
N∑

i=1

∑
k∈Ei

tpk

whence there is an l0 ∈ [1, N ] such that

∑
k∈El0

tpk ≥ 1
N

m∑
k=1

tpk.

Let n0 := max{k | k ∈ El0}, and put E′
l0

:= El0 \ {n0}. Then we have

max
i

‖f i,v,τ,b
m ‖ ≤ max

i
‖f i,v,τ,b

n0−1 ‖ ≤ ‖f l0,v,τ,b
n0−1 ‖.
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If we restrict our attention to l0, we see that the VWCGA, respectively, the VWRGA,
are the application of the WCGA, respectively, the WRGA, with the weakness sequence
τ l0 := {tl0j }, given by

tl0j =
{

tj , if j ∈ El0

0, otherwise,

to f l0 . Therefore we conclude from Theorem 2.1, that

‖f l0
n0−1‖ ≤ C(q, γ)

⎛
⎜⎝1 +

∑
k∈E′

l0

tpk

⎞
⎟⎠

−1/p

≤ C(q, γ)

⎛
⎝1 +

∑
k∈El0

tpk − 1

⎞
⎠−1/p

≤ C(q, γ)

(
1
N

m∑
k=1

tpk

)−1/p

.

This completes the proof of Theorem 2.2.

Remark 2.2. It follows from the proof of Theorem 2.2 that the constant C(q, γ) in Theorem
2.2 is the same as the corresponding constant in Theorem 2.1. It is known (see [T1]) that
in the case of Hilbert space the corresponding constant in Theorem 2.1 is equal to 1 for the
WOGA and is equal to 2 for the WRGA. Therefore in Theorem 2.2 we may take C(q, γ) = 1
in the case of the VWOGA and C(q, γ) = 2 in the case of the VWRGA in a Hilbert space.

3. Simultaneous orthogonal greedy algorithms

In this section we study simultaneous greedy algorithms in Hilbert and Banach spaces,
along the lines of [LeT].
We begin with a Hilbert space H and define

Orthogonal Vector Weak Greedy Algorithm (OVWGA). Given F := (f1, . . . , fN ),
f i ∈ H, 1 ≤ i ≤ N , we let f i,v,o,τ

0 := f i, 1 ≤ i ≤ N . Then for each m ≥ 1, we inductively
define:

1. Let ϕv,o,τ
m ∈ D be any element satisfying

(3.1) max
i

|〈f i,v,o,τ
m−1 , ϕv,o,τ

m 〉| ≥ tm max
i

‖f i,v,o,τ
m−1 ‖D;

2.

(3.2) Hv,τ
m (F ) := span{ϕv,o,τ

1 , . . . , ϕv,o,τ
m };

3.
Gi,v,o,τ

m (F,D) := PHτ
m(F )(f i), i = 1, . . . , m,
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where PHv,τ
m (F )(g) denotes the orthogonal projection of g ∈ H onto Hv,τ

m (F );
4.

f i,v,o,τ
m := f i − Gi,v,o,τ

m (F,D),

As we have done in [LeT], we may modify Step 1 in the definition of the OVWGA to
in the following two ways. In the first step of the Weak Simultaneous Orthogonal Greedy
Algorithm 1 (WSOGA1) we take
1. ϕs1,o,τ

m ∈ D to be any element satisfying

(3.3)

(
N∑

i=1

|〈f i,s1,o,τ
m−1 , ϕs1,o,τ

m 〉|2
)1/2

≥ tm max
i

‖f i,s1,o,τ
m−1 ‖D,

and we define Hs1,τ
m (F ) in an analogous way to (3.2).

Similarly, in the first step of the Weak Simultaneous Orthogonal Greedy Algorithm 2
(WSOGA2) we take
1. ϕs2,o,τ

m ∈ D to be any element satisfying

(3.4)

(
N∑

i=1

|〈f i,s2,o,τ
m−1 , ϕs2,o,τ

m 〉|2
)1/2

≥ tm sup
g∈D

(
N∑

i=1

|〈f i,s2,o,τ
m−1 , g〉|2

)1/2

,

and again, we define Hs2,τ
m (F,D) in an analogous way to (3.2). Clearly, any ϕm satisfying

either (3.1) or (3.4) also satisfies (3.3).
We prove

Theorem 3.1. Let D be an arbitrary dictionary in H, and let τ := {tk}∞k=1 be a weakness
sequence. Then for any vector of elements f1, . . . , fN , f i ∈ A1(D), 1 ≤ i ≤ N , and for s
standing for either v or s1 or s2, we have

(3.5)
N∑

i=1

‖f i,s,o,τ
m ‖2 ≤ N2

(
1 +

1
N

m∑
k=1

t2k

)−1

.

Note that (3.5) provides an estimate on the rate of convergence which is significantly
better than (1.2), and without the assumption on the monotonicity of the weakness sequence
τ .

In particular for the weakness sequence where tk = t, k = 1, 2 . . . , we obtain as an
immediate consequence, the same order of the rate of convergence as [LuT, Theorem 10]
(see Theorem 1.3 of the present paper), namely,

Corollary 3.1. Let D be an arbitrary dictionary in H, and let τ := {tk}∞k=1, with tk = t,
k = 1, 2 . . . . Then for any vector of elements f1, . . . , fN , f i ∈ A1(D), i = 1, . . . , N , we have(

N∑
i=1

‖f i,v,o,τ
m ‖2

)1/2

≤ N

(
1 +

mt2

N

)−1/2

.
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As has been alluded to in the introduction, given are a Hilbert space H and a dictionary
D. For N ≥ 2, let HN := H × · · · × H︸ ︷︷ ︸

N times

, i.e., the general element in HN is F := (f1, . . . , fN ),

fk ∈ H. It is a Hilbert space with the inner product

〈F1, F2〉 :=
N∑

k=1

〈fk
1 , fk

2 〉.

Let DN be the collection

{(α1g1, . . . , αNgN ) | gk ∈ D,

N∑
k=1

α2
k = 1}.

Then it is easy to see that spanDN = HN . (Actually, HN is spanned even by linear
combinations of elements of the form (0, . . . , 0, g, 0, . . . , 0), where g ∈ D is arbitrary and is
in arbitrary position.) Also, all elements in DN are normalized. Finally,

(3.6) ‖F‖DN
= sup

α:=(α1,...,αN )
‖α‖2=1

g1,...,gN∈D

∣∣ N∑
i=1

〈f i, gi〉αi

∣∣ = ( N∑
i=1

‖f i‖2
D
)1/2

.

Proof of Theorem 3.1. Given F = (f1, . . . , fN ), f i ∈ A1(D), we see that F ∈ A1(DN , N).
We let s stand for either v or s1 or s2, and we set f i,s,o,τ

0 := f i, i = 1, . . . , N and F s,o,τ
0 := F .

At stage m ≥ 1 we select ϕs,o,τ
m satisfying (3.1), or (3.3), or (3.4), as the case may be, and

we set
Φs,o,τ

m := (β1ϕ
s,o,τ
m , . . . , βNϕs,o,τ

m ),

where

βi := 〈f i,s,o,τ
m−1 , ϕs,o,τ

m 〉( N∑
j=1

|〈f j,s,o,τ
m−1 , ϕs,o,τ

m 〉|2)−1/2
, i = 1, . . . , N.

Then with F s,o,τ
m−1 :=

(
f1,s,o,τ

m−1 , . . . , fN,s,o,τ
m−1

)
, it was proved in [LeT, (3.2) and the proof of

Lemma 3.1] that

(3.7) 〈F s,o,τ
m−1 , Φs,o,τ

m 〉 ≥ tmN−1/2‖F s,o,τ
m−1 ‖DN

.

Next we write
Gs,o,τ

m (F,DN) :=
(
G1,s,o,τ

m (F,D), . . . , GN,s,o,τ
m (F,D)

)
,

and we observe that

F s,o,τ
m :=F s,o,τ

m−1 − Gs,o,τ
m (F,DN)

=
(
f1 − G1,s,o,τ

m (F,D), . . . , fN − GN,s,o,τ
m (F,D)

)
,
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is perpendicular to Hs,τ
m (F,D)× · · · × Hs,τ

m (F,D)︸ ︷︷ ︸
N times

. Hence, in particular, it is perpendicular

to

Hs,τ
m (F,DN) := span {Φs,o,τ

1 , . . . , Φs,o,τ
m }

⊆ Hs,τ
m (F,D)× · · · × Hs,τ

m (F,D),

and we conclude that

‖F s,o,τ
m ‖ ≤ ‖F s,o,τ

m−1 − PHs,τ
m (F,DN )(F

s,o,τ
m−1 )‖.

Thus, by virtue of Theorem 1.2 we obtain by (3.7),

‖F − Gs,o,τ
m (F,DN )‖ = ‖F s,o,τ

m ‖ ≤ N(1 +
m∑

k=1

t2k/N)−1/2,

and (3.5) is proven. �
Remark 3.1. For the OVWGA case, one can give a simpler proof of Theorem 3.1, using a
simpler Φs,o,τ

m , so that one does not have to rely on [LeT]. This proof generalizes to more
general Banach spaces (see below). We give the separate proof for Hilbert spaces as it
crystalizes the ideas.

Proof of Theorem 3.1 for the case s = v. As above, given F = (f1, . . . , fN), f i ∈ A1(D),
we have that F ∈ A1(DN , N). We set f i,v,o,τ

0 := f i, i = 1, . . . , N and F v,o,τ
0 := F . At stage

m ≥ 1 we select ϕv,o,τ
m satisfying (3.1), and for an appropriate 1 ≤ im ≤ N such that

(3.8) |〈f im,v,o,τ
m−1 , ϕv,o,τ

m 〉| = max
i

|〈f i,v,o,τ
m−1 , ϕv,o,τ

m 〉|,

we set
Φv,o,τ

m := (0, . . . , 0, ϕv,o,τ
m , 0 . . . , 0︸ ︷︷ ︸
N

),

where the nonzero entry is at the imth place.
Then, with F v,o,τ

m−1 :=
(
f1,v,o,τ

m−1 , . . . , fN,v,o,τ
m−1

)
, it readily follows by (3.8) that

(3.9)

|〈F v,o,τ
m−1 , Φv,o,τ

m 〉| = |〈f im,v,o,τ
m−1 , ϕv,o,τ

m 〉|
≥ tm max

i
‖f i,v,o,τ

m−1 ‖D
≥ tmN−1/2‖F v,o,τ

m−1 ‖DN
.

As before, we write

Gv,o,τ
m (F,DN) :=

(
G1,v,o,τ

m (F,D), . . . , GN,v,o,τ
m (F,D)

)
,
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and we observe that
F v,o,τ

m := F v,o,τ
m−1 − Gv,o,τ

m (F,DN),

is perpendicular to Hv,τ
m (F,D)× · · · × Hv,τ

m (F,D)︸ ︷︷ ︸
N times

. Hence, in particular, it is perpendicular

to
Hv,τ

m (F,DN ) := span {Φv,o,τ
1 , . . . , Φv,o,τ

m }.
Thus, again by virtue of Theorem 1.2 we obtain by (3.9),

‖F − Gv,o,τ
m (F,DN )‖ = ‖F v,o,τ

m ‖ ≤ N(1 +
m∑

k=1

t2k/N)−1/2,

and (3.5) is established. �
We now approach the question of simultaneous approximation in a uniformly smooth

Banach space X with the norm ‖ · ‖X , and ρ(u) ≤ γuq, 1 < q ≤ 2. We consider the N -tuple
V := (x1, . . . , xN ), xi ∈ X , as an element of the space �2(X), namely, equipped with the
norm

‖V ‖ :=

(
N∑

i=1

‖xi‖2
X

)1/2

.

A functional F , on �2(X), has the representation

F := (F1, . . . , FN ),

where Fi ∈ X∗, and F(V ) :=
∑N

i=1 Fi(xi). Evidently

‖F‖ =

(
N∑

i=1

‖Fi‖2
X∗

)1/2

,

and the norming functional FV , of V �= 0, is given by

FV = (α1Fx1 , . . . , αNFxN ),

where Fxi is the norming functional of xi, and αi = ‖xi‖X/‖V ‖. Clearly, ‖FV ‖ = 1. Also
we put F0 = 0 since it may appear.

We define the vector analogue of the WCGA, denoted by CVWGA, as follows

Chebyshev Vector Weak Greedy Algorithm (CVWGA). Given F := (f1, . . . , fN ),
we let fv,i

0 := fv,i,τ
0 := f i, i = 1, . . . , N . Then for each m ≥ 1, we inductively define

1. Let ϕv
m := ϕv,τ

m ∈ D be any element such that

(3.10) max
1≤i≤N

|Ff i
m−1

(‖f i
m−1‖ϕv

m)| ≥ tm max
1≤i≤N

sup
g∈D

|Ff i
m−1

(‖f i
m−1‖g)|,
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where in the case f i
m−1 = 0 for all 1 ≤ i ≤ N , the process stops.

2. Let im be such that

|Ff im
m−1

(‖f im
m−1‖ϕv

m)| = max
1≤i≤N

|Ff i
m−1

(‖f i
m−1‖ϕv

m)|,

and set
Φv

m := Φv,τ
m := (0, . . . , 0, ϕv,τ

m , 0 . . . , 0︸ ︷︷ ︸
N

),

where the nonzero entry is at the imth place.
3. Let Gv

m := Gv,τ
m be the best approximation to F from span {Φv

1 , . . . , Φ
v
m}. Denote

(f1,v,τ
m , . . . , fN,v,τ

m ) := F − Gv
m.

Theorem 3.3. Let X be a uniformly smooth Banach space with a modulus of smoothness
ρ(u) ≤ γuq, 1 < q ≤ 2. Then for a sequence τ := {tk}∞k=1, 0 ≤ tk ≤ 1, k = 1, 2, . . . , we
have for any f i ∈ A1(D), i = 1, . . . , N , that

(3.11)
( N∑

i=1

‖f i,v,τ
m ‖2

)1/2 ≤ C(q, γ)N min

⎧⎨
⎩1,

(
1

Np/2

m∑
k=1

tpk

)−1/p
⎫⎬
⎭ , p :=

q

q − 1
,

with a constant C(q, γ) which may depend only on q and γ.

Remark 3.2. Note that this greedy process is somewhat more simultaneous (vector) than
the VWCGA, that we have defined in Section 2, but we pay a price in that we have a factor
N instead of the (smaller) factor N1/p (compare with (2.1)).

Proof of Theorem 3.3. By a theorem of Figiel (see [P, Theorem 2.1]), we know that the
space Y := �2(X) is a uniformly smooth Banach space with ρY (u) ≤ C(q, γ)uq. We perform
a WCGA, with weakness sequence τN := {tk/N1/2}∞k=1, with respect to the dictionary DN

(see the beginning of this section with H replaced by X) in Y , beginning with the initial
data F ∈ A1(DN , N).
Denote the result at step m by

F v
m := F v,τ

m := (f1,v,τ
m , . . . , fN,v,τ

m ).

If F v
m−1 �= 0, then

(3.12) FF v
m−1

(Φv
m) =

‖f im
m−1‖X

‖F v
m−1‖

Ff im
m−1

(ϕv
m).
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Take V ∈ DN , then V = (α1g
1, . . . , αNgN ), where gi ∈ D and

∑N
i=1 α2

i = 1. Hence, by
(3.10) and (3.12),

tm|FF v
m−1

(V )| ≤ tm

N∑
i=1

‖f i
m−1‖X

‖F v
m−1‖

|αi||Ff i
m−1

(gi)|

≤ 1
‖F v

m−1‖
N∑

i=1

|αi|tm|Ff i
m−1

(‖f i
m−1‖Xgi)|

≤ 1
‖F v

m−1‖
|Ff im

m−1
(‖f im

m−1‖Xϕv
m)|

N∑
i=1

|αi|

≤ N1/2 ‖f im
m−1‖X

‖F v
m−1‖

|Ff im
m−1

(ϕv
m)|

= N1/2|FF v
m−1

(Φv
m)|,

where we applied the inequality

N∑
i=1

|αi| ≤ N1/2
N∑

i=1

α2
i = N1/2.

Therefore we conclude by Theorem 2.1 that

‖F v
m‖ ≤ C(q, γ)N min

⎧⎨
⎩1,

(
m∑

k=1

(tk/N1/2)p

)−1/p
⎫⎬
⎭ ,

which implies (3.11). �
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