

Industrial Mathematics Institute

2003:17

The volume estimates and their applications

B.S. Kashin and V.N. Temlyakov

IMI

Preprint Series
Department of Mathematics University of South Carolina

THE VOLUME ESTIMATES AND THEIR APPLICATIONS ${ }^{1}$

B.S. Kashin and V.N. Temlyakov

Abstract

We prove new estimates for the entropy numbers of classes of multivariate functions with bounded mixed derivative. It is known that the investigation of these classes requires development of new techniques comparing to the univariate classes. In this paper we continue to develop the technique based on estimates of volumes of sets of the Fourier coefficients of trigonometric polynomials with frequences in special regions. We obtain new volume estimates and use them to get right orders of decay of the entropy numbers of classes of functions of two variables with a mixed derivative bounded in the L_{1}-norm. This is the first such result for these classes. This result essentially completes the investigation of orders of decay of the entropy numbers of classes of functions of two variables with bounded mixed derivative. The case of similar classes of functions of more than two variables is still open.

This paper is dedicated to the 70th birthday of S.A. Telyakovskii

1. Introduction

We obtain in this paper new estimates of volumes of sets of the Fourier coefficients of trigonometric polynomials of two variables with frequences in a hyperbolic layer. Section 2 is devoted to this kind of estimates. Then, in Section 3 we use results of Section 2 to prove lower estimates for the entropy numbers of classes of functions with bounded mixed derivative. The new volume estimates from Section 2 allowed us to essentially complete the investigation of orders of decay of the entropy numbers $\epsilon_{m}\left(W_{q, \alpha}^{r}, L_{p}\right)$ for all $1 \leq q, p \leq \infty$ and large enough r in the case of classes of functions of two variables. In Section 4 we apply results of Section 2 to the following problem of discretization. We look for a set of points with a property: (E) the uniform norm on this set of points is equivalent to the uniform norm for any trigonometric polynomial with frequences from a given hyperbolic layer. We give in Section 4 other proof of the following surprizing result from [KT3], [KT4]: the cardinality of a set with the property (E) must grow at least as $N^{1+a}, a>0$, where N is the dimension of the corresponding subspace of trigonometric polynomials. The proof of the above result from [KT3], [KT4] made use of extremal properties of the multivariate normal distribution and an inequality for the trigonometric polynomials from [T2]. Later, other inequality for the trigonometric polynomials has been obtained in [T6]. Our proof in

[^0]this paper uses this new inequality and the volume estimates from Section 2. This allowed us to simplify the original proof (see [KT4]).

We now formulate the main results of the paper. Let $s=\left(s_{1}, \ldots, s_{d}\right)$ be a vector with nonnegative integer coordinates ($s \in \mathbb{Z}_{+}^{d}$) and

$$
\rho(s):=\left\{k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{Z}_{+}^{d}:\left[2^{s_{j}-1}\right] \leq\left|k_{j}\right|<2^{s_{j}}, \quad j=1, \ldots, d\right\}
$$

where $[a]$ denotes the integer part of a number a. Denote for a natural number n

$$
Q_{n}:=\cup_{\|s\|_{1} \leq n} \rho(s) ; \quad \Delta Q_{n}:=Q_{n} \backslash Q_{n-1}=\cup_{\|s\|_{1}=n} \rho(s)
$$

with $\|s\|_{1}=s_{1}+\cdots+s_{d}$ for $s \in \mathbb{Z}_{+}^{d}$. We call a set ΔQ_{n} hyperbolic layer. For a set $\Lambda \subset \mathbb{Z}^{d}$ denote

$$
\mathcal{T}(\Lambda):=\left\{f \in L_{1}: \hat{f}(k)=0, k \in \mathbb{Z} \backslash \Lambda\right\}, \quad \mathcal{T}_{R}(\Lambda):=\{f \in \mathcal{T}(\Lambda): \hat{f}(k) \in \mathbb{R}, k \in \Lambda\}
$$

For a finite set Λ we assign to each $f=\sum_{k \in \Lambda} \hat{f}(k) e^{i(k, x)} \in \mathcal{T}(\Lambda)$ a vector

$$
A(f):=\{(\operatorname{Re} \hat{f}(k), \operatorname{Im} \hat{f}(k)), \quad k \in \Lambda\} \in \mathbb{R}^{2|\Lambda|}
$$

where $|\Lambda|$ denotes the cardinality of Λ and define

$$
B_{\Lambda}\left(L_{p}\right):=\left\{A(f): f \in \mathcal{T}(\Lambda), \quad\|f\|_{p} \leq 1\right\}
$$

The volume estimates of the sets $B_{\Lambda}\left(L_{p}\right)$ and related questions have been studied in a number of papers of the authors of this paper: the case $\Lambda=[-n, n], p=\infty$ in [K1]; the case $\Lambda=\left[-N_{1}, N_{1}\right] \times \cdots \times\left[-N_{d}, N_{d}\right], p=\infty$ in [T2], [T3]; the case of arbitrary Λ and $p=1$ in [KT1]. In particular, the results of [KT1] imply (see Theorem 2.4 of this paper) for $d=2$ and $1 \leq p<\infty$ that

$$
\left(\operatorname{vol}\left(B_{\Delta Q_{n}}\left(L_{p}\right)\right)\right)^{\left(2\left|\Delta Q_{n}\right|\right)^{-1}} \asymp\left|\Delta Q_{n}\right|^{-1 / 2} \asymp\left(2^{n} n\right)^{-1 / 2}
$$

We will prove in Section 2 (see Theorem 2.5) that in the case $p=\infty$ the volume estimate is different:

$$
\left(\operatorname{vol}\left(B_{\Delta Q_{n}}\left(L_{\infty}\right)\right)\right)^{\left(2\left|\Delta Q_{n}\right|\right)^{-1}} \asymp\left(2^{n} n^{2}\right)^{-1 / 2}
$$

We note that in the case $\Lambda=\left[-N_{1}, N_{1}\right] \times \cdots \times\left[-N_{d}, N_{d}\right]$ the volume estimate is the same for all $1 \leq p \leq \infty$. We discuss this in more detail in Section 2 .

In Section 3 we apply the volume estimates to the problem of asymptotic behavior of the entropy numbers of the classes $W_{1, \alpha}^{r}$. We now give the corresponding definitions. For a natural number m and a compact set F in a Banach space X with the unit ball $B(X)$ we define the m th entropy number as

$$
\epsilon_{m}(F, X):=\inf \left\{\epsilon: \exists f_{1}, \ldots, f_{2^{m}} \in X: F \subset \cup_{j=1}^{2^{m}}\left(f_{j}+\epsilon B(X)\right)\right\}
$$

Let $r>0$ and $\alpha \in \mathbb{R}$. Define

$$
F_{r}(t, \alpha):=1+2 \sum_{k=1}^{\infty} k^{-r} \cos (k t-\alpha \pi / 2), \quad t \in[0,2 \pi] .
$$

We define for $x=\left(x_{1}, x_{2}\right)$ and $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$

$$
F_{r}(x, \alpha):=F_{r}\left(x_{1}, \alpha_{1}\right) F_{r}\left(x_{2}, \alpha_{2}\right) .
$$

Finally, we define

$$
W_{q, \alpha}^{r}:=\left\{f: f=F_{r}(\cdot, \alpha) * \varphi, \quad\|\varphi\|_{q} \leq 1\right\}
$$

where $*$ means convolution. The problem of estimating $\epsilon_{m}\left(W_{q, \alpha}^{r}, L_{p}\right)$ has a long history. We will mention some results only in the case $d=2$. The first result on the right order of $\epsilon_{m}\left(W_{q, \alpha}^{r}, L_{p}\right)$ in the case $p=q=2$ has been obtained by S.A. Smolyak [Sm] in 1960. Here is a list of further contributions: Dinh Dung [D], 1985, the case $1<q=p<\infty$; V.N. Temlyakov [T1], [T2], 1988, the case $1<q, p<\infty, r>1$ and the case $p=1,1<q<\infty$; E.S. Belinsky [B], 1990, the case $p=1, q=\infty, r>1 / 2$; B.S. Kashin, V.N. Temlyakov [KT1], [KT2], 1994-1995, the case $p=1, q=\infty, r>0$; J. Kuelbs, W.V. Li [KL], 1993, the case $p=\infty, q=2, r=1$; V.N. Temlyakov [T5], 1995, the case $p=\infty, 1<q<\infty$; V.N. Temlyakov [T6], 1998, the case $p=\infty, q=\infty, r>1 / 2$.

In Section 3 we study the case left open: $q=1,1 \leq p \leq \infty$. We prove that (see Theorem 3.1):

$$
\begin{equation*}
\epsilon_{m}\left(W_{1, \alpha}^{r}, L_{p}\right) \asymp m^{-r}(\log m)^{r+1 / 2}, \quad 1 \leq p<\infty, \quad r>\max (1 / 2,1-1 / p) \tag{1.1}
\end{equation*}
$$

and

$$
\epsilon_{m}\left(W_{1,0}^{r}, L_{\infty}\right) \asymp m^{-r}(\log m)^{r+1}, \quad r>1 .
$$

It is interesting to compare these estimates with the case $1<q, p<\infty$ where we have

$$
\begin{equation*}
\epsilon_{m}\left(W_{q, \alpha}^{r}, L_{p}\right) \asymp m^{-r}(\log m)^{r} . \tag{1.2}
\end{equation*}
$$

We note that when we turn from $q>1$ to $q=1$ the exponent for $\log m$ jumps from r in (1.2) to $r+1 / 2$ in (1.1).

2. The Volume Estimates

The main goal of this section is to prove new estimates of volumes of sets of the Fourier coefficients of trigonometric polynomials of two variables (dimension $d=2$) with frequences in a hyperbolic layer. In some cases we will give estimates in the arbitrary dimension d. It is well known (see [K1], [T2], [T4], [KT1]) that the volume estimates of the above mentioned sets can be used in different problems of approximation theory including the problem of estimating the entropy numbers of function classes. We use the notations $\mathcal{T}(\Lambda), A(f)$, and $B_{\Lambda}\left(L_{p}\right)$ introduced in Section 1. In the case $\Lambda=\Pi(N):=\left[-N_{1}, N_{1}\right] \times \cdots \times\left[-N_{d}, N_{d}\right]$, $N:=\left(N_{1}, \ldots, N_{d}\right)$, the volume estimates are known. We formulate it as a theorem.

Theorem 2.1. For any $1 \leq p \leq \infty$ we have

$$
\left(\operatorname{vol}\left(B_{\Pi(N)}\left(L_{p}\right)\right)\right)^{(2|\Pi(N)|)^{-1}} \asymp|\Pi(N)|^{-1 / 2},
$$

with constants in \asymp that may depend only on d.
We note that the most difficult part of Theorem 2.1 is the lower estimate for $p=\infty$. The corresponding estimate was proved in the case $d=1$ in [K1] and in the general case in [T2] and [T3]. The upper estimate for $p=1$ in Theorem 2.1 can be easily reduced to the volume estimate for an octahedron (see, for instance [T4]).

The results of [KT1] imply the following estimate.
Theorem 2.2. For any finite set $\Lambda \subset \mathbb{Z}^{d}$ and any $1 \leq p \leq 2$ we have

$$
\operatorname{vol}\left(B_{\Lambda}\left(L_{p}\right)\right)^{(2|\Lambda|)^{-1}} \asymp|\Lambda|^{-1 / 2} .
$$

The following result of Bourgain-Milman [BM] plays an important role in the volume estimates of finite dimensional bodies.

Theorem 2.3. For any convex centrally symmetric body $K \subset \mathbb{R}^{n}$ we have

$$
\left(\operatorname{vol}(K) \operatorname{vol}\left(K^{o}\right)\right)^{1 / n} \asymp\left(\operatorname{vol}\left(B_{2}^{n}\right)\right)^{2 / n} \asymp 1 / n
$$

where K^{o} is a polar for K, that is

$$
K^{o}:=\left\{x \in \mathbb{R}^{n}: \sup _{y \in K}(x, y) \leq 1\right\}
$$

Having in mind application of Theorem 2.3 we define some other than $B_{\Lambda}\left(L_{p}\right)$ sets. Let

$$
E_{\Lambda}^{\perp}(f)_{p}:=\inf _{g \perp \mathcal{T}(\Lambda)}\|f-g\|_{p}, \quad E_{\Lambda, R}^{\perp}(f)_{p}:=\inf _{g \perp \mathcal{T}(\Lambda), \hat{g}(k) \in \mathbb{R}}\|f-g\|_{p}
$$

and

$$
B_{\Lambda}^{\perp}\left(L_{p}\right):=\left\{A(f): f \in \mathcal{T}(\Lambda), \quad E_{\Lambda}^{\perp}(f)_{p} \leq 1\right\} .
$$

It is clear that

$$
B_{\Lambda}\left(L_{p}\right) \subseteq B_{\Lambda}^{\perp}\left(L_{p}\right)
$$

Moreover, if the orthogonal projector P_{Λ} onto $\mathcal{T}(\Lambda)$ is bounded as an operator from L_{p} to L_{p} then we have

$$
\begin{equation*}
\operatorname{vol}\left(B_{\Lambda}\left(L_{p}\right)\right)^{(2|\Lambda|)^{-1}} \asymp \operatorname{vol}\left(B_{\Lambda}^{\perp}\left(L_{p}\right)\right)^{(2|\Lambda|)^{-1}} . \tag{2.1}
\end{equation*}
$$

For example it is the case when $\Lambda=\cup_{s \in A} \rho(s)$. We also consider

$$
B_{\Lambda, R}\left(L_{p}\right):=\left\{A(f):\|f\|_{p} \leq 1, \quad f \in \mathcal{T}(\Lambda), \quad \hat{f}(k) \in \mathbb{R}\right\}
$$

and

$$
B_{\Lambda, R}^{\perp}\left(L_{p}\right):=\left\{A(f): E_{\Lambda, R}^{\perp}(f)_{p} \leq 1, \quad f \in \mathcal{T}(\Lambda), \quad \hat{f}(k) \in \mathbb{R}\right\}
$$

Using the Nikol'skii duality theorem and the basic properties of the de la Vallée Poussin operators one can prove the following relation

$$
\begin{equation*}
B_{\Lambda, R}\left(L_{p}\right)^{o}=B_{\Lambda, R}^{\perp}\left(L_{p^{\prime}}\right), \quad p^{\prime}=\frac{p}{p-1} . \tag{2.2}
\end{equation*}
$$

Proof of (2.2). This proof uses standard ideas from the duality arguments. We will not give all the details of the proof and, instead, we will outline the main steps of the proof.

First, we note that the relation

$$
B_{\Lambda, R}^{\perp}\left(L_{p^{\prime}}\right) \subseteq B_{\Lambda, R}\left(L_{p}\right)^{o}
$$

follows immediately from the inequality that holds for any $f, g \in \mathcal{T}_{R}(\Lambda)$:

$$
\left|\sum_{k \in \Lambda} \hat{f}(k) \hat{g}(k)\right|=\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} f \bar{g}\right| \leq E_{\Lambda}^{\perp}(f)_{p^{\prime}}\|g\|_{p}
$$

Second, we prove the inverse inclusion

$$
\begin{equation*}
B_{\Lambda, R}\left(L_{p}\right)^{o} \subseteq B_{\Lambda, R}^{\perp}\left(L_{p^{\prime}}\right) \tag{2.2~A}
\end{equation*}
$$

Let X denote the real Banach space

$$
L_{p, R}:=\left\{f \in L_{p}: \hat{f}(k) \in \mathbb{R}\right\}
$$

with $\|f\|_{X}:=\|f\|_{p}$. Then any $u \in L_{p^{\prime}, R}$ defines a continuous linear functional on X by the formula

$$
(u, f):=\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} f \bar{u}\right| .
$$

For such a functional we have $\|u\|_{X^{*}}=\|u\|_{p^{\prime}}$. Indeed, the inequality $\|u\|_{X^{*}} \leq\|u\|_{p^{\prime}}$ follows from the Hölder inequality and the opposite one $\|u\|_{X^{*}} \geq\|u\|_{p^{\prime}}$ follows from the observation that for any $f \in L_{p}$ the function $v(x):=\frac{1}{2}(f(x)+\bar{f}(-x))$ is from $L_{p, R}$ and $\|v\|_{p} \leq\|f\|_{p}$.

We continue the proof of $(2.2 \mathrm{~A})$. Let $f \in B_{\Lambda, R}\left(L_{p}\right)^{o}$. Then from the definition of the polar we get that for any $g \in \mathcal{T}(\Lambda), \hat{g}(k) \in \mathbb{R},\|g\|_{p} \leq 1$ the following inequality holds

$$
\left|\sum_{k \in \Lambda} \hat{f}(k) \hat{g}(k)\right|=|(g, f)| \leq 1 .
$$

For $N \in \mathbb{N}$ denote

$$
E_{\Lambda, R}^{\perp, N}(f)_{p}:=\inf _{g \perp \mathcal{T}(\Lambda), g \in \mathcal{T}([-N, N]), \hat{g}(k) \in \mathbb{R}}^{5} \mid\|f-g\|_{p} .
$$

Then obviously for any N

$$
E_{\Lambda, R}^{\perp}(f)_{p^{\prime}} \leq E_{\Lambda, R}^{\perp, N}(f)_{p^{\prime}}
$$

Next, using the appropriate de la Vallée Poussin operators one can check that for any $g \in \mathcal{T}_{R}(\Lambda \cup(\mathbb{Z} \backslash[-N, N]))$ with $\|g\|_{p} \leq 1$ we have

$$
\left\|g_{\Lambda}\right\|_{p} \leq 1+\epsilon_{N}, \quad \epsilon_{N} \rightarrow 0, \quad N \rightarrow \infty
$$

where

$$
g_{\Lambda}:=\sum_{k \in \Lambda} \hat{g}(k) e^{i k x}
$$

Therefore, by the Nikol'skii Duality Theorem we obtain

$$
E_{\Lambda, R}^{\perp, N}(f)_{p^{\prime}}=\sup _{g \in \mathcal{T}_{R}(\Lambda \cup(\mathbb{Z} \backslash[-N, N])),\|g\|_{p} \leq 1}|(f, g)| \leq \sup _{g_{\Lambda}:\left\|g_{\Lambda}\right\|_{p} \leq 1+\epsilon_{N}, g_{\Lambda} \in \mathcal{T}_{R}(\Lambda)}|(f, g)| \leq 1+\epsilon_{N}
$$

This completes the proof of $(2.2 \mathrm{~A})$.
We will now show that the volumes of $B_{\Lambda}\left(L_{p}\right) \subset \mathbb{R}^{2|\Lambda|}$ and $B_{\Lambda, R}\left(L_{p}\right) \subset \mathbb{R}^{|\Lambda|}$ are closely related. First of all if

$$
\left\|\sum_{k \in \Lambda} a_{k} e^{i(k, x)}\right\|_{p} \leq 1 / 2, \quad\left\|\sum_{k \in \Lambda} b_{k} e^{i(k, x)}\right\|_{p} \leq 1 / 2
$$

then

$$
\left\|\sum_{k \in \Lambda}\left(a_{k}+i b_{k}\right) e^{i(k, x)}\right\|_{p} \leq 1
$$

Therefore,

$$
\begin{equation*}
\left(\frac{1}{2} B_{\Lambda, R}\left(L_{p}\right)\right) \otimes\left(\frac{1}{2} B_{\Lambda, R}\left(L_{p}\right)\right) \subseteq B_{\Lambda}\left(L_{p}\right) \tag{2.3}
\end{equation*}
$$

Next, let

$$
f(x)=\sum_{k \in \Lambda}\left(a_{k}+i b_{k}\right) e^{i(k, x)}
$$

Then

$$
\sum_{k \in \Lambda} a_{k} e^{i(k, x)}=\frac{1}{2}(f(x)+\bar{f}(-x))
$$

and

$$
i \sum_{k \in \Lambda} b_{k} e^{i(k, x)}=\frac{1}{2}(f(x)-\bar{f}(-x))
$$

This implies that

$$
\begin{equation*}
B_{\Lambda}\left(L_{p}\right) \subseteq B_{\Lambda, R}\left(L_{p}\right) \otimes B_{\Lambda, R}\left(L_{p}\right) \tag{2.4}
\end{equation*}
$$

We get from (2.3) and (2.4) that

$$
\begin{equation*}
\left(\operatorname { v o l } (B _ { \Lambda } (L _ { p })) ^ { (2 | \Lambda |) ^ { - 1 } } \asymp \left(\operatorname{vol}\left(B_{\Lambda, R}\left(L_{p}\right)\right)^{(|\Lambda|)^{-1}}\right.\right. \tag{2.5}
\end{equation*}
$$

Similarly we get

$$
\begin{equation*}
\left(\operatorname { v o l } (B _ { \Lambda } ^ { \perp } (L _ { p })) ^ { (2 | \Lambda |) ^ { - 1 } } \asymp \left(\operatorname{vol}\left(B_{\Lambda, R}^{\perp}\left(L_{p}\right)\right)^{(|\Lambda|)^{-1}}\right.\right. \tag{2.6}
\end{equation*}
$$

This observation, Theorems 2.2 and 2.3 combined with (2.1) imply the following statement.

Theorem 2.4. Let Λ have the form $\Lambda=\cup_{s \in S} \rho(s), S \subset \mathbb{Z}_{+}^{d}$ is a finite set. Then for any $1 \leq p<\infty$ we have

$$
\operatorname{vol}\left(B_{\Lambda}\left(L_{p}\right)\right)^{(2|\Lambda|)^{-1}} \asymp|\Lambda|^{-1 / 2} .
$$

We now proceed to the main results of this section. Denote $N:=2\left|\Delta Q_{n}\right|$.
Theorem 2.5. In the case $d=2$ we have

$$
\begin{align*}
& \left(\operatorname{vol}\left(B_{\Delta Q_{n}}\left(L_{\infty}\right)\right)\right)^{1 / N} \asymp\left(2^{n} n^{2}\right)^{-1 / 2} \tag{2.7}\\
& \quad\left(\operatorname{vol}\left(B_{\Delta Q_{n}}^{\perp}\left(L_{1}\right)\right)\right)^{1 / N} \asymp 2^{-n / 2}
\end{align*}
$$

It is interesting to compare the first relation in Theorem 2.5 with the following estimate for $1 \leq p<\infty$ that follows from Theorem 2.4

$$
\begin{equation*}
\left(\operatorname{vol}\left(B_{\Delta Q_{n}}\left(L_{p}\right)\right)\right)^{1 / N} \asymp\left(2^{n} n\right)^{-1 / 2} \tag{2.9}
\end{equation*}
$$

We see that in the case $\Lambda=\Delta Q_{n}$ unlike the case $\Lambda=\Pi\left(N_{1}, \ldots, N_{d}\right)$ the estimate for $p=\infty$ is different from the estimate for $1 \leq p<\infty$.
Proof of Theorem 2.5. We begin with the proof of the lower estimate in (2.7). We will formulate and prove it in a more general form.
Lemma 2.1. Let $\Lambda \subseteq\left[-2^{n}, 2^{n}\right]^{d}$ and $N:=2|\Lambda|$. Then

$$
\left(\operatorname{vol}\left(B_{\Lambda}\left(L_{\infty}\right)\right)\right)^{1 / N} \geq C(d)(N n)^{-1 / 2}
$$

Proof. We use the following result of E. Gluskin [G].
Theorem 2.6. Let $Y=\left\{y_{1}, \ldots, y_{M}\right\} \subset \mathbb{R}^{N},\left\|y_{i}\right\|=1, i=1, \ldots, M$ and

$$
W(Y):=\left\{x \in \mathbb{R}^{N}:\left|\left(x, y_{i}\right)\right| \leq 1, \quad i=1, \ldots, M\right\}
$$

Then

$$
(\operatorname{vol}(W(Y)))^{1 / N} \geq C(\log (M / N))^{-1 / 2}
$$

Consider the following lattice on the \mathbb{T}^{d} :

$$
G_{n}:=\left\{x(l)=\left(l_{1}, \ldots, l_{d}\right) \pi 2^{-n-1}, \quad 1 \leq l_{j} \leq 2^{n+2}, \quad l_{j} \in \mathbb{N}, \quad j=1, \ldots, d\right\} .
$$

It is clear that $\left|G_{n}\right|=2^{d(n+2)}$. It is well known that for any $f \in \mathcal{T}\left(\left[-2^{n}, 2^{n}\right]^{d}\right)$ one has

$$
\|f\|_{\infty} \leq C_{1}(d) \max _{x \in G_{n}}|f(x)| .
$$

Thus, for any $\Lambda \subseteq\left[-2^{n}, 2^{n}\right]^{d}$ we have

$$
\begin{equation*}
\left\{A(f): f \in \mathcal{T}(\Lambda), \quad|f(x)| \leq C_{1}(d)^{-1}, \quad x \in G_{n}\right\} \subseteq B_{\Lambda}\left(L_{\infty}\right) \tag{2.10}
\end{equation*}
$$

Further

$$
|f(x)|^{2}=\left|\sum_{k \in \Lambda} \hat{f}(k) e^{i(k, x)}\right|^{2}=
$$

$$
\left(\sum_{k \in \Lambda} \operatorname{Re} \hat{f}(k) \cos (k, x)-\operatorname{Im} \hat{f}(k) \sin (k, x)\right)^{2}+\left(\sum_{k \in \Lambda} \operatorname{Re} \hat{f}(k) \sin (k, x)+\operatorname{Im} \hat{f}(k) \cos (k, x)\right)^{2} .
$$

We associate with each point $x \in G_{n}$ two vectors $y^{1}(x)$ and $y^{2}(x)$ from \mathbb{R}^{N} :

$$
\begin{aligned}
y^{1}(x) & :=\{(\cos (k, x),-\sin (k, x)), \quad k \in \Lambda\}, \\
y^{2}(x) & :=\{(\sin (k, x), \cos (k, x)), \quad k \in \Lambda\} .
\end{aligned}
$$

Then

$$
\left\|y^{1}(x)\right\|^{2}=\left\|y^{2}(x)\right\|^{2}=|\Lambda|
$$

and

$$
|f(x)|^{2}=\left(A(f), y^{1}(x)\right)^{2}+\left(A(f), y^{2}(x)\right)^{2} .
$$

It is clear that the condition $|f(x)| \leq C_{1}(d)^{-1}$ is satisfied if

$$
\left|\left(A(f), y^{i}(x)\right)\right| \leq 2^{-1 / 2} C_{1}(d)^{-1}, \quad i=1,2
$$

Let now

$$
Y:=\left\{y^{i}(x) /\left\|y^{i}(x)\right\|, \quad x \in G_{n}, \quad i=1,2\right\} .
$$

Then $M=2^{d(n+2)+1}$ and by Theorem 2.6

$$
\begin{equation*}
(\operatorname{vol}(W(Y)))^{1 / N} \gg(\log (M / N))^{-1 / 2} \gg n^{-1 / 2} \tag{2.11}
\end{equation*}
$$

Using that the condition

$$
\left|\left(A(f), y^{i}(x)\right)\right| \leq 1
$$

is equivalent to the condition

$$
\left|\left(A(f), y^{i}(x) /\left\|y^{i}(x)\right\|\right)\right| \leq(N / 2)^{-1 / 2}
$$

we get from (2.10) and (2.11)

$$
\left(\operatorname{vol}\left(B_{\Lambda}\left(L_{\infty}\right)\right)\right)^{1 / N} \gg(N n)^{-1 / 2}
$$

This completes the proof of Lemma 2.1
Lemma 2.1 implies immediately the lower estimate in (2.7) because in this case $\left|\Delta Q_{n}\right| \asymp$ $2^{n} n$. We emphasize that Lemma 2.1 shows that the lower estimate similar to (2.7) holds for any $\Lambda \subseteq\left[-2^{n}, 2^{n}\right]^{2}$ with $|\Lambda| \asymp\left|\Delta Q_{n}\right|$ and therefore it does not depend on the geometry of Λ.

We now proceed to the proof of the upper estimate in (2.7). This proof uses the geometry of ΔQ_{n}. Comparing the estimate (2.7) with Theorem 2.1 we conclude that the upper estimate in (2.7) cannot be generalized for all $\Lambda \subseteq\left[-2^{n}, 2^{n}\right]^{2}$ with $|\Lambda| \asymp\left|\Delta Q_{n}\right|$. We prove first the lower estimate in (2.8). We will use the following lemma that follows directly from Lemma 2.4 in [T6].

Lemma 2.2. Let $d=2$. For any $f \in \mathcal{T}\left(\Delta Q_{n}\right)$ satisfying

$$
\left\|\delta_{s}(f)\right\|_{\infty} \leq 1, \quad\|s\|_{1}=n
$$

we have

$$
E_{Q_{n}}^{\perp}(f)_{1} \leq C
$$

Denote

$$
H_{\infty}\left(\Delta Q_{n}\right):=\left\{f \in \mathcal{T}\left(\Delta Q_{n}\right):\left\|\delta_{s}(f)\right\|_{\infty} \leq 1\right\}
$$

and

$$
A\left(H_{\infty}\left(\Delta Q_{n}\right)\right):=\left\{A(f): f \in H_{\infty}\left(\Delta Q_{n}\right)\right\}
$$

Lemma 2.2 implies that $\left(N=2\left|\Delta Q_{n}\right|\right)$

$$
\begin{equation*}
\left(\operatorname{vol}\left(B_{\Delta Q_{n}}^{\perp}\left(L_{1}\right)\right)\right)^{1 / N} \gg\left(\operatorname{vol}\left(A\left(H_{\infty}\left(\Delta Q_{n}\right)\right)\right)\right)^{1 / N} \tag{2.12}
\end{equation*}
$$

Using Theorem 2.1 we get

$$
\begin{equation*}
\left(\operatorname{vol}\left(A\left(H_{\infty}\left(\Delta Q_{n}\right)\right)\right)\right)^{1 / N}=\left(\prod_{\|s\|_{1}=n} \operatorname{vol}\left(A\left(\mathcal{T}(\rho(s))_{\infty}\right)\right)\right)^{1 / N} \gg 2^{-n / 2} \tag{2.13}
\end{equation*}
$$

where

$$
\mathcal{T}(\rho(s))_{\infty}:=\left\{t \in \mathcal{T}(\rho(s)):\|t\|_{\infty} \leq 1\right\}
$$

The lower estimate in (2.8) follows from (2.12) and (2.13).
Using Theorem 2.3 and relations (2.2), (2.5), and (2.6) we complete the proof of Theorem 2.5.

3. Estimates of the ϵ-Entropy

In this section we use the results from Section 2 for obtaining new lower estimates for the ϵ-entropy of the classes $W_{1, \alpha}^{r}$ in $L_{p}, 1 \leq p \leq \infty$. We confine ourselves to the case of functions of two variables. We prove the following theorem here.

Theorem 3.1. The following relations hold

$$
\begin{equation*}
\epsilon_{m}\left(W_{1, \alpha}^{r}, L_{p}\right) \asymp m^{-r}(\log m)^{r+1 / 2}, \quad 1 \leq p<\infty, \quad r>\max (1 / 2,1-1 / p) ; \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\epsilon_{m}\left(W_{1,0}^{r}, L_{\infty}\right) \asymp m^{-r}(\log m)^{r+1}, \quad r>1 . \tag{3.2}
\end{equation*}
$$

Proof. We first prove the upper estimates. We will prove the estimates for a bigger class H_{1}^{r}. We remind the definition of this class. Let for positive integer $l \Delta_{t}^{l} f(y), t, y \in[0,2 \pi]$ denote the l-th difference of f with step t, and

$$
\Delta_{\left(t_{1}, t_{2}\right)}^{l} f\left(x_{1}, x_{2}\right)=\Delta_{t_{2}}^{l}\left(\Delta_{t_{1}}^{l} f\left(x_{1}, x_{2}\right)\right)
$$

be the mixed l-th difference with the step t_{j} in the variable $x_{j}, j=1,2$. Define

$$
\begin{array}{r}
H_{1}^{r}=\left\{f:\|f\|_{1} \leq 1,\left\|\Delta_{t_{1}}^{l} f\left(\cdot, x_{2}\right)\right\|_{1} \leq\left|t_{1}\right|^{r},\left\|\Delta_{t_{2}}^{l} f\left(x_{1}, \cdot\right)\right\|_{1} \leq\left|t_{2}\right|^{r},\right. \\
\left.\left\|\Delta_{\left(t_{1}, t_{2}\right)}^{l} f\left(x_{1}, x_{2}\right)\right\|_{1} \leq\left|t_{1} t_{2}\right|^{r}\right\},
\end{array}
$$

with $l=[r]+1$. For the embedding of classes W_{1}^{r} into H_{1}^{r} see $[\mathrm{Te}]$.
It proved to be useful in studying approximation of functions with bounded mixed derivative to consider along with the L_{p}-norms the Besov type norms. Let $V_{n}(t)$ be the de la Vallée-Poussin polynomials, $t \in[0,2 \pi]$. We define

$$
\mathcal{A}_{0}(t):=1, \quad \mathcal{A}_{1}(t):=V_{1}(t)-1, \quad \mathcal{A}_{n}(t):=V_{2^{n-1}}(t)-V_{2^{n-2}}(t), \quad n \geq 2,
$$

and for $x=\left(x_{1}, x_{2}\right), s=\left(s_{1}, s_{2}\right)$

$$
\mathcal{A}_{s}(x):=\mathcal{A}_{s_{1}}\left(x_{1}\right) \mathcal{A}_{s_{2}}\left(x_{2}\right)
$$

Consider the convolution operator A_{s} with the kernel $\mathcal{A}_{s}(x)$,

$$
A_{s}(f):=f * \mathcal{A}_{s}
$$

and define the $B_{p, \theta}$-norm as follows

$$
\|f\|_{B_{p, \theta}}:=\left(\sum_{s}\left\|A_{s}(f)\right\|_{p}^{\theta}\right)^{1 / \theta}, \quad 1 \leq \theta<\infty
$$

It is proved in [T2] that

$$
\begin{equation*}
\epsilon_{m}\left(H_{1}^{r}, B_{\infty, 2}\right) \ll m^{-r}(\log m)^{r+1 / 2}, \quad r>1 \tag{3.3}
\end{equation*}
$$

The corresponding proof from [T2] implies also that

$$
\begin{equation*}
\epsilon_{m}\left(H_{1}^{r}, B_{\infty, 1}\right) \ll m^{-r}(\log m)^{r+1}, \quad r>1 \tag{3.4}
\end{equation*}
$$

Using the obvious estimate

$$
\begin{equation*}
\|f\|_{\infty} \leq\|f\|_{B_{\infty, 1}} \tag{3.5}
\end{equation*}
$$

we get the upper estimate in (3.2) from (3.4) and (3.5).
We now proceed to the upper estimate in (3.1). The proof in [T2] was based on the following known estimate of the entropy numbers of octahedron B_{1}^{n} in $\ell_{\infty}^{n}(\operatorname{see}[\mathrm{H}],[\mathrm{M}])$.
Lemma 3.1. The following estimates hold

$$
\epsilon_{m}\left(B_{1}^{n}, \ell_{\infty}^{n}\right) \ll \begin{cases}m^{-1}(\log (n / m))^{2}, & 2 m \leq n \\ n^{-1} 2^{-m / n}, & 2 m>n .\end{cases}
$$

One can use instead of Lemma 3.1 the following result (see $[\mathrm{S}]$).

Lemma 3.2. The following estimates hold

$$
\epsilon_{m}\left(B_{1}^{n}, \ell_{p}^{n}\right) \ll \begin{cases}m^{1 / p-1}(\log (1+n / m))^{1-1 / p}, & m \leq n \\ n^{1 / p-1} 2^{-m / n}, & m>n\end{cases}
$$

Then similarly to the proof in [T2] one gets instead of (3.3) the estimate

$$
\begin{equation*}
\epsilon_{m}\left(H_{1}^{r}, B_{\infty, 2}\right) \ll m^{-r}(\log m)^{r+1 / 2}, \quad r>1-1 / p \tag{3.6}
\end{equation*}
$$

Next, we use the well known corollary of the Littlewood-Paley inequality (see, for instance [Te])

$$
\begin{equation*}
\|f\|_{p} \ll\|f\|_{B_{p, 2}}, \quad 2 \leq p<\infty \tag{3.7}
\end{equation*}
$$

The upper estimate in (3.1) for $2 \leq p<\infty$ follows from (3.6) and (3.7). The corresponding upper estimate for $1 \leq p<2$ follows from already considered case $p=2$.

We now proceed to the lower estimates. We begin with the lower estimate in (3.1) for $p=2$. We use the following simple well known fact on a minimal ϵ-covering (see [$\mathrm{P}, \mathrm{p} .57]$). Let a Banach space E be the \mathbb{R}^{d} equipped with a norm $\|\cdot\|_{E}$. Denote the corresponding unit ball by B_{E}. Let $N_{\epsilon}(F, E)$ be the minimal number of balls of radius ϵ needed for covering F. Then for any body F with existing $\operatorname{vol}(F)$ we have

$$
\begin{equation*}
N_{\epsilon}(F, E) \geq \epsilon^{-d} \frac{\operatorname{vol}(F)}{\operatorname{vol}\left(B_{E}\right)} . \tag{3.8}
\end{equation*}
$$

For a fixed natural number n we consider the orthogonal projector $S_{\Delta Q_{n}}$ onto $\mathcal{T}\left(\Delta Q_{n}\right)$. Then for any m

$$
\begin{equation*}
\epsilon_{m}\left(W_{1, \alpha}^{r}, L_{2}\right) \geq \epsilon_{m}\left(S_{\Delta Q_{n}}\left(W_{1, \alpha}^{r}\right), L_{2} \cap \mathcal{T}\left(\Delta Q_{n}\right)\right) \tag{3.9}
\end{equation*}
$$

Next, it is easy to understand that

$$
S_{\Delta Q_{n}}\left(W_{1, \alpha}^{r}\right)=\left\{f \in \mathcal{T}\left(\Delta Q_{n}\right): f=F_{r}(\cdot, \alpha) * \varphi(\cdot), \quad \varphi \in \mathcal{T}\left(\Delta Q_{n}\right), \quad E_{\Delta Q_{n}}^{\perp}(\varphi)_{1} \leq 1\right\} .
$$

We observe that the operator of convolution with $F_{0}(x, \alpha)$ defined on $\mathcal{T}\left(\Delta Q_{n}\right)$ induces an orthogonal operator in the space $\mathbb{R}^{2\left|\Delta Q_{n}\right|}$ of Fourier coefficients $A(f)$. Therefore,

$$
\operatorname{vol}\left(\left\{A(f): f \in S_{\Delta Q_{n}}\left(W_{1, \alpha}^{r}\right)\right\}\right)^{\left(2\left|\Delta Q_{n}\right|\right)^{-1}} \gg 2^{-r n}\left(\operatorname{vol}\left(\left(B_{\Delta Q_{n}}^{\perp}\left(L_{1}\right)\right)\right)^{\left(2\left|\Delta Q_{n}\right|\right)^{-1}} .\right.
$$

Applying Theorem 2.5 we get

$$
\begin{equation*}
\operatorname{vol}\left(\left\{A(f): f \in S_{\Delta Q_{n}}\left(W_{1, \alpha}^{r}\right)\right\}\right)^{\left(2\left|\Delta Q_{n}\right|\right)^{-1}} \gg 2^{-n(r+1 / 2)} \tag{3.10}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\left(\operatorname{vol}\left\{A(f): f \in \mathcal{T}\left(\Delta Q_{n}\right), \quad\|f\|_{2} \leq 1\right\}\right)^{\left(2\left|\Delta Q_{n}\right|\right)^{-1}} \ll\left(2^{n} n\right)^{-1 / 2} \tag{3.11}
\end{equation*}
$$

Thus, the relations (3.8)-(3.11) imply

$$
\begin{equation*}
N_{\epsilon}\left(W_{1, \alpha}^{r}, L_{2}\right)^{\left(2\left|\Delta Q_{n}\right|\right)^{-1}} \gg \epsilon^{-1} 2^{-r n} n^{1 / 2} \tag{3.12}
\end{equation*}
$$

Specifying $m=2\left|\Delta Q_{n}\right|$ we get from (3.12)

$$
\epsilon_{m} \gg 2^{-r n} n^{1 / 2} \asymp m^{-r}(\log m)^{r+1 / 2} .
$$

It is clear that the case of general m follows from the special case $m=2\left|\Delta Q_{n}\right|, n \in \mathbb{N}$ which has been considered above. So, we have established the lower estimate in (3.1) for $p=2$. It implies the corresponding lower estimate for all $p \geq 2$.

Let us prove the lower estimate in (3.1) for $p=1$. We use the following interpolation inequality for the entropy numbers (see $[\mathrm{Pi}]$)

$$
\begin{equation*}
\epsilon_{2 m-1}\left(W_{1, \alpha}^{r}, L_{2}\right) \leq 2 \epsilon_{m}\left(W_{1, \alpha}^{r}, L_{1}\right)^{\frac{p-2}{2(p-1)}} \epsilon_{m}\left(W_{1, \alpha}^{r}, L_{p}\right)^{\frac{p}{2(p-1)}} \tag{3.13}
\end{equation*}
$$

with $p>2$ such that $1-1 / p<r$. The lower estimate for the left hand side of (3.13) and the upper estimate for $\epsilon_{m}\left(W_{1, \alpha}^{r}, L_{p}\right), r>1-1 / p$, have already been proved above. Substituting these estimates into (3.13) we obtain the required lower estimate for the $\epsilon_{m}\left(W_{1, \alpha}^{r}, L_{1}\right)$. This completes the proof of the lower estimate in (3.1).

We now proceed to the lower estimate in (3.2). Let $M_{\epsilon}(F, E)$ denote the maximal number of points $x_{i} \in F$ such that $\left\|x_{i}-x_{j}\right\|_{E} \geq \epsilon, i \neq j$. The following simple inequality is well known

$$
\begin{equation*}
N_{\epsilon}(F, E) \leq M_{\epsilon}(F, E) \leq N_{\epsilon / 2}(F, E) \tag{3.14}
\end{equation*}
$$

Alike the above case we will carry out the proof for m of a special form: $m=2\left|\Delta Q_{n}\right|$. Using Theorem 2.5 and the relation (3.8) we will get the following analog of (3.12):

$$
\begin{equation*}
N_{\epsilon}\left(\mathcal{T}\left(\Delta Q_{n}\right)_{1}^{\perp}, L_{2}\right)^{\left(2\left|\Delta Q_{n}\right|\right)^{-1} \gg \epsilon^{-1} n^{1 / 2}, . .2} \tag{3.15}
\end{equation*}
$$

where

$$
\mathcal{T}\left(\Delta Q_{n}\right)_{1}^{\perp}=\left\{f \in \mathcal{T}\left(\Delta Q_{n}\right): E_{\Delta Q_{n}}^{\perp}(f)_{1} \leq 1\right\}
$$

By (3.14) and (3.15) we conclude that there are 2^{m} polynomials $\left\{t_{j}\right\}_{j=1}^{2^{m}}$ from $\mathcal{T}\left(\Delta Q_{n}\right)$ such that

$$
\begin{equation*}
E_{\Delta Q_{n}}^{\perp}\left(t_{j}\right)_{1} \leq 1, \quad j=1, \ldots, 2^{m} \tag{3.16}
\end{equation*}
$$

$$
\begin{gather*}
\left\|t_{i}-t_{j}\right\|_{2}^{2} \gg n, \quad i \neq j . \tag{3.17}\\
12
\end{gather*}
$$

Let $t_{j}^{\perp} \in \mathcal{T}\left(\Delta Q_{n}\right)^{\perp}, j=1, \ldots, 2^{m}$, be such that

$$
\begin{equation*}
\left\|t_{j}-t_{j}^{\perp}\right\|_{1} \leq 2 \tag{3.18}
\end{equation*}
$$

Consider the following collection of functions

$$
\varphi_{j}:=\left(t_{j}-t_{j}^{\perp}\right) / 2, \quad f_{j}:=F_{r}(\cdot, 0) * \varphi_{j}(\cdot), \quad j=1, \ldots, 2^{m} .
$$

Then

$$
f_{j} \in W_{1,0}^{r}, \quad j=1, \ldots, 2^{m}
$$

We now estimate from below the quantities $\left\|f_{i}-f_{j}\right\|_{\infty}$ for $i \neq j$. Consider the inner products

$$
a_{i j}:=\left\langle f_{i}-f_{j}, \varphi_{i}-\varphi_{j}\right\rangle
$$

On the one hand by (3.18) we have

$$
\begin{equation*}
a_{i j} \leq 2\left\|f_{i}-f_{j}\right\|_{\infty} \tag{3.19}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
a_{i j}=\sum_{k} \hat{F}_{r}(k, 0)\left|\hat{\varphi}_{i}(k)-\hat{\varphi}_{j}(k)\right|^{2} \gg 2^{-r n}\left\|t_{i}-t_{j}\right\|_{2}^{2} \tag{3.20}
\end{equation*}
$$

Thus by (3.17), (3.19), and (3.20) we get

$$
\left\|f_{i}-f_{j}\right\|_{\infty} \gg 2^{-r n} n, \quad i \neq j
$$

Therefore,

$$
\epsilon_{m}\left(W_{1,0}^{r}, L_{\infty}\right) \gg 2^{-r n} n \asymp m^{-r}(\log m)^{r+1}
$$

This comletes the proof of Theorem 3.1.

4. The discrete L_{∞}-NORM FOR POLYNOMIALS FROM $\mathcal{T}(\Lambda)$

We begin with the following conditional statement.
Theorem 4.1. Assume that a finite set $\Lambda \subset \mathbb{Z}^{d}$ has the following properties:

$$
\begin{equation*}
\left(\operatorname{vol}\left(B_{\Lambda}\left(L_{\infty}\right)\right)\right)^{1 / N} \leq K_{1} N^{-1 / 2}, \quad N:=2|\Lambda|, \tag{4.1}
\end{equation*}
$$

and a set $\Omega=\left\{x^{1}, \ldots, x^{M}\right\}$ satisfies the condition

$$
\begin{equation*}
\forall f \in \mathcal{T}(\Lambda) \quad\|f\|_{\infty} \leq K_{2}\|f\|_{\infty, \Omega}, \quad\|f\|_{\infty, \Omega}:=\max _{x \in \Omega}|f(x)| . \tag{4.2}
\end{equation*}
$$

Then there exists an absolute constant $C>0$ such that

$$
M \geq N e^{C\left(K_{1} K_{2}\right)^{-2}}
$$

Proof. Using the assumption (4.2) we derive from Theorem 2.6 in the same way as we proved Lemma 2.1 the following volume estimate

$$
\begin{equation*}
\left(\operatorname{vol}\left(B_{\Lambda}\left(L_{\infty}\right)\right)\right)^{1 / N} \geq C_{1} K_{2}^{-1}(N \log (M / N))^{-1 / 2} \tag{4.3}
\end{equation*}
$$

with an absolute constant $C_{1}>0$. Comparing (4.3) with the assumption (4.1) we get

$$
M \geq N e^{C\left(K_{1} K_{2}\right)^{-2}}, \quad C=C_{1}^{2} .
$$

Theorem 4.1 is proved.
We now give some corollaries from Theorem 4.1.

Theorem 4.2. Assume a finite set $\Omega \subset \mathbb{T}^{2}$ has the following property:

$$
\begin{equation*}
\forall t \in \mathcal{T}\left(\Delta Q_{n}\right) \quad\|t\|_{\infty} \leq K_{2}\|t\|_{\infty, \Omega} \tag{4.4}
\end{equation*}
$$

Then

$$
|\Omega| \geq 2\left|\Delta Q_{n}\right| e^{C n / K_{2}^{2}}
$$

with an absolute constant $C>0$.
Proof. By Theorem 2.5 (see (2.7)) we have

$$
\left(\operatorname{vol}\left(B_{\Delta Q_{n}}\left(L_{\infty}\right)\right)\right)^{1 / N} \leq C\left(2^{n} n^{2}\right)^{-1 / 2} \leq C n^{-1 / 2} N^{-1 / 2}
$$

with an absolute constant $C>0$. Using Theorem 4.1 we obtain

$$
|\Omega| \geq 2\left|\Delta Q_{n}\right| e^{C n / K_{2}^{2}}
$$

This proves Theorem 4.2.
Remark 4.1. In a particular case $K_{2}=b n^{\alpha}, 0 \leq \alpha \leq 1 / 2$, Theorem 4.2 gives

$$
|\Omega| \geq 2\left|\Delta Q_{n}\right| e^{C b^{-2} n^{1-2 \alpha}}
$$

Corollary 4.1. Let a set $\Omega \subset \mathbb{T}^{d}$ have a property:

$$
\forall t \in \mathcal{T}\left(\Delta Q_{n}\right) \quad\|t\|_{\infty} \leq b n^{\alpha}\|t\|_{\infty, \Omega}
$$

with some $0 \leq \alpha<1 / 2$. Then

$$
|\Omega| \geq C_{3} 2^{n} n e^{C b^{-2} n^{1-2 \alpha}} \geq C_{1}(b, d, \alpha)\left|Q_{n}\right| e^{C_{2}(b, d, \alpha) n^{1-2 \alpha}}
$$

Corollary 4.2. Let a set $\Omega \subset \mathbb{T}^{2}$ be such that $|\Omega| \leq C_{5}\left|Q_{n}\right|$. Then

$$
\sup _{f \in \mathcal{T}\left(Q_{n}\right)}\|f\|_{\infty} /\|f\|_{\infty, \Omega} \geq C n^{1 / 2}
$$

Proof. Denote

$$
K_{2}:=\sup _{f \in \mathcal{T}\left(Q_{n}\right)}\|f\|_{\infty} /\|f\|_{\infty, \Omega}
$$

Then the condition (4.4) of Theorem 4.2 is satisfied with this K_{2}. Therefore, by Theorem 4.2

$$
2\left|\Delta Q_{n}\right| e^{C n / K_{2}^{2}} \leq|\Omega| \leq C_{5}\left|Q_{n}\right|
$$

This implies that

$$
K_{2} \gg n^{1 / 2}
$$

Remark 4.2. One can derive from the known results on recovery of functions from the classes W_{∞}^{r} (see [T7], [T8]) that for any n there is a set $\Omega_{n} \subset \mathbb{T}^{d}$ such that $\left|\Omega_{n}\right| \leq C\left|Q_{n}\right|$ and

$$
\sup _{f \in \mathcal{T}\left(Q_{n}\right)}\left(\|f\|_{\infty} /\|f\|_{\infty, \Omega_{n}}\right) \ll n^{d-1}
$$

References

[B] E.S. Belinskii, The asymptotic characteristics of classes of functions with restrictions on the mixed derivative (mixed difference), Investigations in the theory of functions on several real variables, Yaroslavskii Univ. (1990), 22-37. (Russian)
[BM] J. Bourgain and V.D. Milman, New volume ratio properties for convex symmetric bodies in \mathbb{R}^{n}, Invent. Math. 88 (1987), 319-340.
[D] Dinh Dung, Approximation of multivariate functions by means of harmonic analysis, Hab. Dissert., Moscow, MGU, 1985.
[G] E.D. Gluskin, Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces, Mat. Sb. 136 (1988), 85-96.
$[\mathrm{H}] \quad$ K. Höllig, Diameters of classes of smooth functions, in Quantitative Approximation, Academic Press, New York, 1980, 163-176.
[K1] B.S. Kashin, On certain properties of the space of trigonometric polynomials with the uniform norm, Trudy Mat. Inst. Steklov 145 (1980), 111-116; English transl. in Proc. Steklov Inst. Math. 145 (1981), no. 1.
[KL] J. Kuelbs and W. V. Li, Metric entropy and the small ball problem for Gaussian measures, Preprint (1993), 1-33.
[KT1] B. S. Kashin and V. N. Temlyakov, On best m-terms approximations and the entropy of sets in the space L^{1}, Mat. Zametki 56 (1994), 57-86; English transl. in Math. Notes 56 (1994), 1137-1157.
[KT2] B.S. Kashin and V.N. Temlyakov, On estimating approximative characteristics of classes of functions with bounded mixed derivative, Mat. Zametki 58 (1995), 922-925; English transl. in Math. Notes 58 (1995).
[KT3] B.S. Kashin and V.N. Temlyakov, On a norm and related applications, Mat. Zametki 64 (1998), 637-640.
[KT4] B.S. Kashin and V.N. Temlyakov, On a norm and approximation characteristics of classes of functions of several variables, Metric theory of functions and related problems in analysis, Izd. NauchnoIssled. Aktuarno-Finans. Tsentra (AFTs), Moscow, 1999, 69-99.
[M] V.E. Maiorov, On various widths of the class H_{p}^{r} in the space L_{q}, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 773-788; English transl. in Math. USSR-Izv. 13 (1979).
[P] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge University Press, 1989.
[Pi] A. Pietsch, Operator Ideals, VEB, Berlin, 1978.
[S] C. Schütt, Entropy numbres of diagonal operators between symmetric Banach spaces, J. Approx. Theory 40 (1984), 121-128.
$[\mathrm{Sm}]$ S.A. Smolyak, The ϵ-entropy of the classes $E_{s}^{\alpha k}(B)$ and $W_{s}^{\alpha}(B)$ in the metric L_{2}, Dokl. Acad. Nauk. SSSR 131 (1960), 30-33.
[Te] V. N. Temlyakov, Approximation of functions with bounded mixed derivative, Trudy MIAN $\mathbf{1 7 8}$ (1986); English transl. in Proc. Steklov Inst. Math. (1989), no. 1.
[T1] V. N. Temlyakov, On estimates of ϵ-entropy and widths of classes of functions with a bounded mixed derivative or difference, Dokl. Akad. Nauk SSSR 301 (1988), 288-291.
[T2] V. Temlyakov, Estimates of the asymptotic characterisitics of classes of functions with bounded mixed derivative or difference, Trudy Mat. Inst. Steklov 189 (1989), 138-168; English transl. in Proc. Steklov Inst. Math. (1990), no. 4, 161-197.
[T3] V.N. Temlyakov, Bilinear Approximation and Related Questions, Trudy Mat. Inst. Steklov 194 (1992), 229-248; English transl. in Proc. Steklov Inst. of Math. 4 (1993), 245-265.
[T4] V.N. Temlyakov, Estimates of Best Bilinear Approximations of Functions and Approximation Numbers of Integral Operators, Mat. Zametki 51 (1992), 125-134; English transl. in Math. Notes 51 (1992), 510-517.
[T5] V.N. Temlyakov, An inequality for trigonometric polynomials and its application for estimating the entropy numbers, J. Complexity 11 (1995), 293-307.
[T6] V.N. Temlyakov, On two problems in the multivariate approximation, East J. Approx. 4 (1998), 505-514.
[T7] V.N Temlyakov, Approximate reconstruction of periodic functions of several variables, Mat. Sb. (N.S.) 128(170) (1985), 256-268; English transl. in Math. USSR Sbornik 56 (1987), 249-261.
[T8] V.N. Temlyakov, On approximate recovery of functions with bounded mixed derivative, J. Complexity 9 (1993), 41-59.

[^0]: ${ }^{1}$ The second author was supported by the National Science Foundation Grant DMS 0200187 and by ONR Grant N00014-96-1-1003

