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THE VOLUME ESTIMATES AND THEIR APPLICATIONS1

B.S. Kashin and V.N. Temlyakov

Abstract. We prove new estimates for the entropy numbers of classes of multivariate functions
with bounded mixed derivative. It is known that the investigation of these classes requires

development of new techniques comparing to the univariate classes. In this paper we continue

to develop the technique based on estimates of volumes of sets of the Fourier coefficients of
trigonometric polynomials with frequences in special regions. We obtain new volume estimates

and use them to get right orders of decay of the entropy numbers of classes of functions of
two variables with a mixed derivative bounded in the L1-norm. This is the first such result

for these classes. This result essentially completes the investigation of orders of decay of the

entropy numbers of classes of functions of two variables with bounded mixed derivative. The
case of similar classes of functions of more than two variables is still open.

This paper is dedicated to the 70th birthday of S.A. Telyakovskii

1. Introduction

We obtain in this paper new estimates of volumes of sets of the Fourier coefficients of
trigonometric polynomials of two variables with frequences in a hyperbolic layer. Section
2 is devoted to this kind of estimates. Then, in Section 3 we use results of Section 2 to
prove lower estimates for the entropy numbers of classes of functions with bounded mixed
derivative. The new volume estimates from Section 2 allowed us to essentially complete the
investigation of orders of decay of the entropy numbers εm(W r

q,α, Lp) for all 1 ≤ q, p ≤ ∞
and large enough r in the case of classes of functions of two variables. In Section 4 we
apply results of Section 2 to the following problem of discretization. We look for a set of
points with a property: (E) the uniform norm on this set of points is equivalent to the
uniform norm for any trigonometric polynomial with frequences from a given hyperbolic
layer. We give in Section 4 other proof of the following surprizing result from [KT3], [KT4]:
the cardinality of a set with the property (E) must grow at least as N1+a, a > 0, where
N is the dimension of the corresponding subspace of trigonometric polynomials. The proof
of the above result from [KT3], [KT4] made use of extremal properties of the multivariate
normal distribution and an inequality for the trigonometric polynomials from [T2]. Later,
other inequality for the trigonometric polynomials has been obtained in [T6]. Our proof in
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this paper uses this new inequality and the volume estimates from Section 2. This allowed
us to simplify the original proof (see [KT4]).

We now formulate the main results of the paper. Let s = (s1, . . . , sd) be a vector with
nonnegative integer coordinates (s ∈ Z

d
+) and

ρ(s) := {k = (k1, . . . , kd) ∈ Z
d
+ : [2sj−1] ≤ |kj | < 2sj , j = 1, . . . , d}

where [a] denotes the integer part of a number a. Denote for a natural number n

Qn := ∪‖s‖1≤nρ(s); ∆Qn := Qn \ Qn−1 = ∪‖s‖1=nρ(s)

with ‖s‖1 = s1 + · · ·+ sd for s ∈ Z
d
+. We call a set ∆Qn hyperbolic layer. For a set Λ ⊂ Z

d

denote

T (Λ) := {f ∈ L1 : f̂(k) = 0, k ∈ Z \ Λ}, TR(Λ) := {f ∈ T (Λ) : f̂(k) ∈ R, k ∈ Λ}.

For a finite set Λ we assign to each f =
∑

k∈Λ f̂(k)ei(k,x) ∈ T (Λ) a vector

A(f) := {(Ref̂(k), Imf̂(k)), k ∈ Λ} ∈ R
2|Λ|

where |Λ| denotes the cardinality of Λ and define

BΛ(Lp) := {A(f) : f ∈ T (Λ), ‖f‖p ≤ 1}.

The volume estimates of the sets BΛ(Lp) and related questions have been studied in a
number of papers of the authors of this paper: the case Λ = [−n, n], p = ∞ in [K1]; the case
Λ = [−N1, N1] × · · · × [−Nd, Nd], p = ∞ in [T2], [T3]; the case of arbitrary Λ and p = 1 in
[KT1]. In particular, the results of [KT1] imply (see Theorem 2.4 of this paper) for d = 2
and 1 ≤ p < ∞ that

(vol(B∆Qn
(Lp)))(2|∆Qn|)−1

� |∆Qn|−1/2 � (2nn)−1/2.

We will prove in Section 2 (see Theorem 2.5) that in the case p = ∞ the volume estimate
is different:

(vol(B∆Qn
(L∞)))(2|∆Qn|)−1

� (2nn2)−1/2.

We note that in the case Λ = [−N1, N1] × · · · × [−Nd, Nd] the volume estimate is the same
for all 1 ≤ p ≤ ∞. We discuss this in more detail in Section 2.

In Section 3 we apply the volume estimates to the problem of asymptotic behavior of
the entropy numbers of the classes W r

1,α. We now give the corresponding definitions. For a
natural number m and a compact set F in a Banach space X with the unit ball B(X) we
define the mth entropy number as

εm(F, X) := inf{ε : ∃f1, . . . , f2m ∈ X : F ⊂ ∪2m

j=1(fj + εB(X))}.
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Let r > 0 and α ∈ R. Define

Fr(t, α) := 1 + 2
∞∑

k=1

k−r cos(kt − απ/2), t ∈ [0, 2π].

We define for x = (x1, x2) and α = (α1, α2)

Fr(x, α) := Fr(x1, α1)Fr(x2, α2).

Finally, we define
W r

q,α := {f : f = Fr(·, α) ∗ ϕ, ‖ϕ‖q ≤ 1}

where ∗ means convolution. The problem of estimating εm(W r
q,α, Lp) has a long history.

We will mention some results only in the case d = 2. The first result on the right order
of εm(W r

q,α, Lp) in the case p = q = 2 has been obtained by S.A. Smolyak [Sm] in 1960.
Here is a list of further contributions: Dinh Dung [D], 1985, the case 1 < q = p < ∞; V.N.
Temlyakov [T1], [T2], 1988, the case 1 < q, p < ∞, r > 1 and the case p = 1, 1 < q < ∞;
E.S. Belinsky [B], 1990, the case p = 1, q = ∞, r > 1/2; B.S. Kashin, V.N. Temlyakov
[KT1], [KT2], 1994–1995, the case p = 1, q = ∞, r > 0; J. Kuelbs, W.V. Li [KL], 1993, the
case p = ∞, q = 2, r = 1; V.N. Temlyakov [T5], 1995, the case p = ∞, 1 < q < ∞; V.N.
Temlyakov [T6], 1998, the case p = ∞, q = ∞, r > 1/2.

In Section 3 we study the case left open: q = 1, 1 ≤ p ≤ ∞. We prove that (see Theorem
3.1):

(1.1) εm(W r
1,α, Lp) � m−r(log m)r+1/2, 1 ≤ p < ∞, r > max(1/2, 1 − 1/p)

and
εm(W r

1,0, L∞) � m−r(log m)r+1, r > 1.

It is interesting to compare these estimates with the case 1 < q, p < ∞ where we have

(1.2) εm(W r
q,α, Lp) � m−r(log m)r.

We note that when we turn from q > 1 to q = 1 the exponent for log m jumps from r in
(1.2) to r + 1/2 in (1.1).

2. The Volume Estimates

The main goal of this section is to prove new estimates of volumes of sets of the Fourier
coefficients of trigonometric polynomials of two variables (dimension d = 2) with frequences
in a hyperbolic layer. In some cases we will give estimates in the arbitrary dimension d. It is
well known (see [K1], [T2], [T4], [KT1]) that the volume estimates of the above mentioned
sets can be used in different problems of approximation theory including the problem of
estimating the entropy numbers of function classes. We use the notations T (Λ), A(f), and
BΛ(Lp) introduced in Section 1. In the case Λ = Π(N) := [−N1, N1] × · · · × [−Nd, Nd],
N := (N1, . . . , Nd), the volume estimates are known. We formulate it as a theorem.
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Theorem 2.1. For any 1 ≤ p ≤ ∞ we have

(vol(BΠ(N)(Lp)))(2|Π(N)|)−1 � |Π(N)|−1/2,

with constants in � that may depend only on d.

We note that the most difficult part of Theorem 2.1 is the lower estimate for p = ∞. The
corresponding estimate was proved in the case d = 1 in [K1] and in the general case in [T2]
and [T3]. The upper estimate for p = 1 in Theorem 2.1 can be easily reduced to the volume
estimate for an octahedron (see, for instance [T4]).

The results of [KT1] imply the following estimate.

Theorem 2.2. For any finite set Λ ⊂ Z
d and any 1 ≤ p ≤ 2 we have

vol(BΛ(Lp))(2|Λ|)−1 � |Λ|−1/2.

The following result of Bourgain-Milman [BM] plays an important role in the volume
estimates of finite dimensional bodies.

Theorem 2.3. For any convex centrally symmetric body K ⊂ R
n we have

(vol(K)vol(Ko))1/n � (vol(Bn
2 ))2/n � 1/n

where Ko is a polar for K, that is

Ko := {x ∈ R
n : sup

y∈K
(x, y) ≤ 1}.

Having in mind application of Theorem 2.3 we define some other than BΛ(Lp) sets. Let

E⊥
Λ (f)p := inf

g⊥T (Λ)
‖f − g‖p, E⊥

Λ,R(f)p := inf
g⊥T (Λ),ĝ(k)∈R

‖f − g‖p

and
B⊥

Λ (Lp) := {A(f) : f ∈ T (Λ), E⊥
Λ (f)p ≤ 1}.

It is clear that
BΛ(Lp) ⊆ B⊥

Λ (Lp).

Moreover, if the orthogonal projector PΛ onto T (Λ) is bounded as an operator from Lp to
Lp then we have

(2.1) vol(BΛ(Lp))(2|Λ|)−1 � vol(B⊥
Λ (Lp))(2|Λ|)−1

.

For example it is the case when Λ = ∪s∈Aρ(s). We also consider

BΛ,R(Lp) := {A(f) : ‖f‖p ≤ 1, f ∈ T (Λ), f̂(k) ∈ R}
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and
B⊥

Λ,R(Lp) := {A(f) : E⊥
Λ,R(f)p ≤ 1, f ∈ T (Λ), f̂(k) ∈ R}.

Using the Nikol’skii duality theorem and the basic properties of the de la Vallée Poussin
operators one can prove the following relation

(2.2) BΛ,R(Lp)o = B⊥
Λ,R(Lp′), p′ =

p

p − 1
.

Proof of (2.2). This proof uses standard ideas from the duality arguments. We will not give
all the details of the proof and, instead, we will outline the main steps of the proof.

First, we note that the relation

B⊥
Λ,R(Lp′) ⊆ BΛ,R(Lp)o

follows immediately from the inequality that holds for any f, g ∈ TR(Λ):

|
∑
k∈Λ

f̂(k)ĝ(k)| =
1
2π

|
∫ 2π

0

f ḡ| ≤ E⊥
Λ (f)p′‖g‖p.

Second, we prove the inverse inclusion

(2.2A) BΛ,R(Lp)o ⊆ B⊥
Λ,R(Lp′).

Let X denote the real Banach space

Lp,R := {f ∈ Lp : f̂(k) ∈ R}

with ‖f‖X := ‖f‖p. Then any u ∈ Lp′,R defines a continuous linear functional on X by the
formula

(u, f) :=
1
2π

|
∫ 2π

0

fū|.

For such a functional we have ‖u‖X∗ = ‖u‖p′ . Indeed, the inequality ‖u‖X∗ ≤ ‖u‖p′ follows
from the Hölder inequality and the opposite one ‖u‖X∗ ≥ ‖u‖p′ follows from the observation
that for any f ∈ Lp the function v(x) := 1

2 (f(x) + f̄(−x)) is from Lp,R and ‖v‖p ≤ ‖f‖p.
We continue the proof of (2.2A). Let f ∈ BΛ,R(Lp)o. Then from the definition of the

polar we get that for any g ∈ T (Λ), ĝ(k) ∈ R, ‖g‖p ≤ 1 the following inequality holds

|
∑
k∈Λ

f̂(k)ĝ(k)| = |(g, f)| ≤ 1.

For N ∈ N denote

E⊥,N
Λ,R (f)p := inf

g⊥T (Λ),g∈T ([−N,N ]),ĝ(k)∈R

‖f − g‖p.
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Then obviously for any N

E⊥
Λ,R(f)p′ ≤ E⊥,N

Λ,R (f)p′.

Next, using the appropriate de la Vallée Poussin operators one can check that for any
g ∈ TR(Λ ∪ (Z \ [−N, N ])) with ‖g‖p ≤ 1 we have

‖gΛ‖p ≤ 1 + εN , εN → 0, N → ∞
where

gΛ :=
∑
k∈Λ

ĝ(k)eikx.

Therefore, by the Nikol’skii Duality Theorem we obtain

E⊥,N
Λ,R (f)p′ = sup

g∈TR(Λ∪(Z\[−N,N ])),‖g‖p≤1

|(f, g)| ≤ sup
gΛ:‖gΛ‖p≤1+εN ,gΛ∈TR(Λ)

|(f, g)| ≤ 1 + εN .

This completes the proof of (2.2A).

We will now show that the volumes of BΛ(Lp) ⊂ R
2|Λ| and BΛ,R(Lp) ⊂ R

|Λ| are closely
related. First of all if

‖
∑
k∈Λ

akei(k,x)‖p ≤ 1/2, ‖
∑
k∈Λ

bkei(k,x)‖p ≤ 1/2

then
‖

∑
k∈Λ

(ak + ibk)ei(k,x)‖p ≤ 1.

Therefore,

(2.3) (
1
2
BΛ,R(Lp)) ⊗ (

1
2
BΛ,R(Lp)) ⊆ BΛ(Lp).

Next, let
f(x) =

∑
k∈Λ

(ak + ibk)ei(k,x).

Then ∑
k∈Λ

akei(k,x) =
1
2
(f(x) + f̄(−x))

and
i
∑
k∈Λ

bkei(k,x) =
1
2
(f(x) − f̄(−x)).

This implies that

(2.4) BΛ(Lp) ⊆ BΛ,R(Lp) ⊗ BΛ,R(Lp).

We get from (2.3) and (2.4) that

(2.5) (vol(BΛ(Lp))(2|Λ|)−1 � (vol(BΛ,R(Lp))(|Λ|)−1
.

Similarly we get

(2.6) (vol(B⊥
Λ (Lp))(2|Λ|)−1 � (vol(B⊥

Λ,R(Lp))(|Λ|)−1
.

This observation, Theorems 2.2 and 2.3 combined with (2.1) imply the following statement.
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Theorem 2.4. Let Λ have the form Λ = ∪s∈Sρ(s), S ⊂ Z
d
+ is a finite set. Then for any

1 ≤ p < ∞ we have
vol(BΛ(Lp))(2|Λ|)−1 � |Λ|−1/2.

We now proceed to the main results of this section. Denote N := 2|∆Qn|.

Theorem 2.5. In the case d = 2 we have

(2.7) (vol(B∆Qn
(L∞)))1/N � (2nn2)−1/2;

(2.8) (vol(B⊥
∆Qn

(L1)))1/N � 2−n/2.

It is interesting to compare the first relation in Theorem 2.5 with the following estimate
for 1 ≤ p < ∞ that follows from Theorem 2.4

(2.9) (vol(B∆Qn
(Lp)))1/N � (2nn)−1/2.

We see that in the case Λ = ∆Qn unlike the case Λ = Π(N1, . . . , Nd) the estimate for p = ∞
is different from the estimate for 1 ≤ p < ∞.

Proof of Theorem 2.5. We begin with the proof of the lower estimate in (2.7). We will
formulate and prove it in a more general form.

Lemma 2.1. Let Λ ⊆ [−2n, 2n]d and N := 2|Λ|. Then

(vol(BΛ(L∞)))1/N ≥ C(d)(Nn)−1/2.

Proof. We use the following result of E. Gluskin [G].

Theorem 2.6. Let Y = {y1, . . . , yM} ⊂ R
N , ‖yi‖ = 1, i = 1, . . . , M and

W (Y ) := {x ∈ R
N : |(x, yi)| ≤ 1, i = 1, . . . , M}.

Then
(vol(W (Y )))1/N ≥ C(log(M/N))−1/2.

Consider the following lattice on the T
d:

Gn := {x(l) = (l1, . . . , ld)π2−n−1, 1 ≤ lj ≤ 2n+2, lj ∈ N, j = 1, . . . , d}.

It is clear that |Gn| = 2d(n+2). It is well known that for any f ∈ T ([−2n, 2n]d) one has

‖f‖∞ ≤ C1(d) max
x∈Gn

|f(x)|.
7



Thus, for any Λ ⊆ [−2n, 2n]d we have

(2.10) {A(f) : f ∈ T (Λ), |f(x)| ≤ C1(d)−1, x ∈ Gn} ⊆ BΛ(L∞).

Further
|f(x)|2 = |

∑
k∈Λ

f̂(k)ei(k,x)|2 =

(
∑
k∈Λ

Ref̂(k) cos(k, x) − Imf̂(k) sin(k, x))2 + (
∑
k∈Λ

Ref̂(k) sin(k, x) + Imf̂(k) cos(k, x))2.

We associate with each point x ∈ Gn two vectors y1(x) and y2(x) from R
N :

y1(x) := {(cos(k, x),− sin(k, x)), k ∈ Λ},
y2(x) := {(sin(k, x), cos(k, x)), k ∈ Λ}.

Then
‖y1(x)‖2 = ‖y2(x)‖2 = |Λ|

and
|f(x)|2 = (A(f), y1(x))2 + (A(f), y2(x))2.

It is clear that the condition |f(x)| ≤ C1(d)−1 is satisfied if

|(A(f), yi(x))| ≤ 2−1/2C1(d)−1, i = 1, 2.

Let now
Y := {yi(x)/‖yi(x)‖, x ∈ Gn, i = 1, 2}.

Then M = 2d(n+2)+1 and by Theorem 2.6

(2.11) (vol(W (Y )))1/N � (log(M/N))−1/2 � n−1/2.

Using that the condition
|(A(f), yi(x))| ≤ 1

is equivalent to the condition

|(A(f), yi(x)/‖yi(x)‖)| ≤ (N/2)−1/2

we get from (2.10) and (2.11)

(vol(BΛ(L∞)))1/N � (Nn)−1/2.

This completes the proof of Lemma 2.1

Lemma 2.1 implies immediately the lower estimate in (2.7) because in this case |∆Qn| �
2nn. We emphasize that Lemma 2.1 shows that the lower estimate similar to (2.7) holds for
any Λ ⊆ [−2n, 2n]2 with |Λ| � |∆Qn| and therefore it does not depend on the geometry of
Λ.

We now proceed to the proof of the upper estimate in (2.7). This proof uses the geometry
of ∆Qn. Comparing the estimate (2.7) with Theorem 2.1 we conclude that the upper
estimate in (2.7) cannot be generalized for all Λ ⊆ [−2n, 2n]2 with |Λ| � |∆Qn|. We prove
first the lower estimate in (2.8). We will use the following lemma that follows directly from
Lemma 2.4 in [T6].
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Lemma 2.2. Let d = 2. For any f ∈ T (∆Qn) satisfying

‖δs(f)‖∞ ≤ 1, ‖s‖1 = n,

we have
E⊥

Qn
(f)1 ≤ C.

Denote
H∞(∆Qn) := {f ∈ T (∆Qn) : ‖δs(f)‖∞ ≤ 1}

and
A(H∞(∆Qn)) := {A(f) : f ∈ H∞(∆Qn)}.

Lemma 2.2 implies that (N = 2|∆Qn|)

(2.12) (vol(B⊥
∆Qn

(L1)))1/N � (vol(A(H∞(∆Qn))))1/N .

Using Theorem 2.1 we get

(2.13) (vol(A(H∞(∆Qn))))1/N = (
∏

‖s‖1=n

vol(A(T (ρ(s))∞)))1/N � 2−n/2,

where
T (ρ(s))∞ := {t ∈ T (ρ(s)) : ‖t‖∞ ≤ 1}.

The lower estimate in (2.8) follows from (2.12) and (2.13).
Using Theorem 2.3 and relations (2.2), (2.5), and (2.6) we complete the proof of Theorem

2.5.

3. Estimates of the ε-entropy

In this section we use the results from Section 2 for obtaining new lower estimates for
the ε-entropy of the classes W r

1,α in Lp, 1 ≤ p ≤ ∞. We confine ourselves to the case of
functions of two variables. We prove the following theorem here.

Theorem 3.1. The following relations hold

(3.1) εm(W r
1,α, Lp) � m−r(log m)r+1/2, 1 ≤ p < ∞, r > max(1/2, 1 − 1/p);

(3.2) εm(W r
1,0, L∞) � m−r(log m)r+1, r > 1.

Proof. We first prove the upper estimates. We will prove the estimates for a bigger class
Hr

1 . We remind the definition of this class. Let for positive integer l ∆l
tf(y), t, y ∈ [0, 2π]

denote the l-th difference of f with step t , and

∆l
(t1,t2)

f(x1, x2) = ∆l
t2

(∆l
t1

f(x1, x2))
9



be the mixed l-th difference with the step tj in the variable xj, j = 1, 2 . Define

Hr
1 = {f : ‖f‖1 ≤ 1, ‖∆l

t1f(·, x2)‖1 ≤ |t1|r, ‖∆l
t2f(x1, ·)‖1 ≤ |t2|r,

‖∆l
(t1,t2)

f(x1, x2)‖1 ≤ |t1t2|r},

with l = [r] + 1. For the embedding of classes W r
1 into Hr

1 see [Te].
It proved to be useful in studying approximation of functions with bounded mixed de-

rivative to consider along with the Lp-norms the Besov type norms. Let Vn(t) be the de la
Vallée-Poussin polynomials, t ∈ [0, 2π]. We define

A0(t) := 1, A1(t) := V1(t) − 1, An(t) := V2n−1(t) − V2n−2(t), n ≥ 2,

and for x = (x1, x2), s = (s1, s2)

As(x) := As1(x1)As2(x2).

Consider the convolution operator As with the kernel As(x),

As(f) := f ∗ As,

and define the Bp,θ-norm as follows

‖f‖Bp,θ
:= (

∑
s

‖As(f)‖θ
p)

1/θ, 1 ≤ θ < ∞.

It is proved in [T2] that

(3.3) εm(Hr
1 , B∞,2) � m−r(log m)r+1/2, r > 1.

The corresponding proof from [T2] implies also that

(3.4) εm(Hr
1 , B∞,1) � m−r(log m)r+1, r > 1.

Using the obvious estimate

(3.5) ‖f‖∞ ≤ ‖f‖B∞,1

we get the upper estimate in (3.2) from (3.4) and (3.5).
We now proceed to the upper estimate in (3.1). The proof in [T2] was based on the

following known estimate of the entropy numbers of octahedron Bn
1 in �n

∞ (see [H], [M]).

Lemma 3.1. The following estimates hold

εm(Bn
1 , �n

∞) �
{

m−1(log(n/m))2, 2m ≤ n,

n−12−m/n, 2m > n.

One can use instead of Lemma 3.1 the following result (see [S]).
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Lemma 3.2. The following estimates hold

εm(Bn
1 , �n

p ) �
{

m1/p−1(log(1 + n/m))1−1/p, m ≤ n,

n1/p−12−m/n, m > n.

Then similarly to the proof in [T2] one gets instead of (3.3) the estimate

(3.6) εm(Hr
1 , B∞,2) � m−r(log m)r+1/2, r > 1 − 1/p,

Next, we use the well known corollary of the Littlewood-Paley inequality (see, for instance
[Te])

(3.7) ‖f‖p � ‖f‖Bp,2 , 2 ≤ p < ∞.

The upper estimate in (3.1) for 2 ≤ p < ∞ follows from (3.6) and (3.7). The corresponding
upper estimate for 1 ≤ p < 2 follows from already considered case p = 2.

We now proceed to the lower estimates. We begin with the lower estimate in (3.1) for
p = 2. We use the following simple well known fact on a minimal ε-covering (see [P, p.57]).
Let a Banach space E be the R

d equipped with a norm ‖·‖E . Denote the corresponding unit
ball by BE . Let Nε(F, E) be the minimal number of balls of radius ε needed for covering
F . Then for any body F with existing vol(F ) we have

(3.8) Nε(F, E) ≥ ε−d vol(F )
vol(BE)

.

For a fixed natural number n we consider the orthogonal projector S∆Qn
onto T (∆Qn).

Then for any m

(3.9) εm(W r
1,α, L2) ≥ εm(S∆Qn

(W r
1,α), L2 ∩ T (∆Qn)).

Next, it is easy to understand that

S∆Qn
(W r

1,α) = {f ∈ T (∆Qn) : f = Fr(·, α) ∗ ϕ(·), ϕ ∈ T (∆Qn), E⊥
∆Qn

(ϕ)1 ≤ 1}.

We observe that the operator of convolution with F0(x, α) defined on T (∆Qn) induces an
orthogonal operator in the space R

2|∆Qn| of Fourier coefficients A(f). Therefore,

vol({A(f) : f ∈ S∆Qn
(W r

1,α)})(2|∆Qn|)−1 � 2−rn(vol((B⊥
∆Qn

(L1)))(2|∆Qn|)−1
.

Applying Theorem 2.5 we get

(3.10) vol({A(f) : f ∈ S∆Qn
(W r

1,α)})(2|∆Qn|)−1 � 2−n(r+1/2).
11



Further,

(3.11) (vol{A(f) : f ∈ T (∆Qn), ‖f‖2 ≤ 1})(2|∆Qn|)−1
� (2nn)−1/2.

Thus, the relations (3.8)–(3.11) imply

(3.12) Nε(W r
1,α, L2)(2|∆Qn|)−1 � ε−12−rnn1/2.

Specifying m = 2|∆Qn| we get from (3.12)

εm � 2−rnn1/2 � m−r(log m)r+1/2.

It is clear that the case of general m follows from the special case m = 2|∆Qn|, n ∈ N which
has been considered above. So, we have established the lower estimate in (3.1) for p = 2. It
implies the corresponding lower estimate for all p ≥ 2.

Let us prove the lower estimate in (3.1) for p = 1. We use the following interpolation
inequality for the entropy numbers (see [Pi])

(3.13) ε2m−1(W r
1,α, L2) ≤ 2εm(W r

1,α, L1)
p−2

2(p−1) εm(W r
1,α, Lp)

p
2(p−1)

with p > 2 such that 1−1/p < r. The lower estimate for the left hand side of (3.13) and the
upper estimate for εm(W r

1,α, Lp), r > 1−1/p, have already been proved above. Substituting
these estimates into (3.13) we obtain the required lower estimate for the εm(W r

1,α, L1). This
completes the proof of the lower estimate in (3.1).

We now proceed to the lower estimate in (3.2). Let Mε(F, E) denote the maximal number
of points xi ∈ F such that ‖xi − xj‖E ≥ ε, i �= j. The following simple inequality is well
known

(3.14) Nε(F, E) ≤ Mε(F, E) ≤ Nε/2(F, E).

Alike the above case we will carry out the proof for m of a special form: m = 2|∆Qn|. Using
Theorem 2.5 and the relation (3.8) we will get the following analog of (3.12):

(3.15) Nε(T (∆Qn)⊥1 , L2)(2|∆Qn|)−1 � ε−1n1/2,

where
T (∆Qn)⊥1 = {f ∈ T (∆Qn) : E⊥

∆Qn
(f)1 ≤ 1}.

By (3.14) and (3.15) we conclude that there are 2m polynomials {tj}2m

j=1 from T (∆Qn) such
that

(3.16) E⊥
∆Qn

(tj)1 ≤ 1, j = 1, . . . , 2m;

(3.17) ‖ti − tj‖2
2 � n, i �= j.

12



Let t⊥j ∈ T (∆Qn)⊥, j = 1, . . . , 2m, be such that

(3.18) ‖tj − t⊥j ‖1 ≤ 2.

Consider the following collection of functions

ϕj := (tj − t⊥j )/2, fj := Fr(·, 0) ∗ ϕj(·), j = 1, . . . , 2m.

Then
fj ∈ W r

1,0, j = 1, . . . , 2m.

We now estimate from below the quantities ‖fi−fj‖∞ for i �= j. Consider the inner products

aij := 〈fi − fj, ϕi − ϕj〉.
On the one hand by (3.18) we have

(3.19) aij ≤ 2‖fi − fj‖∞.

On the other hand

(3.20) aij =
∑

k

F̂r(k, 0)|ϕ̂i(k) − ϕ̂j(k)|2 � 2−rn‖ti − tj‖2
2.

Thus by (3.17), (3.19), and (3.20) we get

‖fi − fj‖∞ � 2−rnn, i �= j.

Therefore,
εm(W r

1,0, L∞) � 2−rnn � m−r(log m)r+1.

This comletes the proof of Theorem 3.1.

4. The discrete L∞-norm for polynomials from T (Λ)

We begin with the following conditional statement.

Theorem 4.1. Assume that a finite set Λ ⊂ Z
d has the following properties:

(4.1) (vol(BΛ(L∞)))1/N ≤ K1N
−1/2, N := 2|Λ|,

and a set Ω = {x1, . . . , xM} satisfies the condition

(4.2) ∀f ∈ T (Λ) ‖f‖∞ ≤ K2‖f‖∞,Ω, ‖f‖∞,Ω := max
x∈Ω

|f(x)|.

Then there exists an absolute constant C > 0 such that

M ≥ NeC(K1K2)
−2

.

Proof. Using the assumption (4.2) we derive from Theorem 2.6 in the same way as we proved
Lemma 2.1 the following volume estimate

(4.3) (vol(BΛ(L∞)))1/N ≥ C1K
−1
2 (N log(M/N))−1/2

with an absolute constant C1 > 0. Comparing (4.3) with the assumption (4.1) we get

M ≥ NeC(K1K2)
−2

, C = C2
1 .

Theorem 4.1 is proved.

We now give some corollaries from Theorem 4.1.
13



Theorem 4.2. Assume a finite set Ω ⊂ T
2 has the following property:

(4.4) ∀t ∈ T (∆Qn) ‖t‖∞ ≤ K2‖t‖∞,Ω.

Then
|Ω| ≥ 2|∆Qn|eCn/K2

2

with an absolute constant C > 0.

Proof. By Theorem 2.5 (see (2.7)) we have

(vol(B∆Qn
(L∞)))1/N ≤ C(2nn2)−1/2 ≤ Cn−1/2N−1/2

with an absolute constant C > 0. Using Theorem 4.1 we obtain

|Ω| ≥ 2|∆Qn|eCn/K2
2 .

This proves Theorem 4.2.

Remark 4.1. In a particular case K2 = bnα, 0 ≤ α ≤ 1/2, Theorem 4.2 gives

|Ω| ≥ 2|∆Qn|eCb−2n1−2α

.

Corollary 4.1. Let a set Ω ⊂ T
d have a property:

∀t ∈ T (∆Qn) ‖t‖∞ ≤ bnα‖t‖∞,Ω

with some 0 ≤ α < 1/2. Then

|Ω| ≥ C32nneCb−2n1−2α ≥ C1(b, d, α)|Qn|eC2(b,d,α)n1−2α

.

Corollary 4.2. Let a set Ω ⊂ T
2 be such that |Ω| ≤ C5|Qn|. Then

sup
f∈T (Qn)

‖f‖∞/‖f‖∞,Ω ≥ Cn1/2.

Proof. Denote
K2 := sup

f∈T (Qn)

‖f‖∞/‖f‖∞,Ω.

Then the condition (4.4) of Theorem 4.2 is satisfied with this K2. Therefore, by Theorem
4.2

2|∆Qn|eCn/K2
2 ≤ |Ω| ≤ C5|Qn|.

This implies that
K2 � n1/2.

Remark 4.2. One can derive from the known results on recovery of functions from the
classes W r

∞ (see [T7], [T8]) that for any n there is a set Ωn ⊂ T
d such that |Ωn| ≤ C|Qn|

and
sup

f∈T (Qn)

(‖f‖∞/‖f‖∞,Ωn
) � nd−1.

14
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