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Abstract
In the weighted space Ly, (B), where w(z) = 71 — |z|>)"Y2, B is
the unit disk in R%, a complete orthogonal system of ridge polynomials is
constructed. Ridge directions of the polynomials are condensed. Sufficient
conditions for uniform convergence and uniform summability of Fourier se-
ries with respect to this system are found. A ridge polynomial basis for C(B)
s constructed.

A function F(z - 6), where z,6 € R?, z - 6 is the inner product, F' is an
univariate function, is called a wave function (in z) with the wave direction 6.
Finite linear combinations of wave functions are called ridge functions. Ridge
approximation in Ly was actively studied for last years by V.E. Majorov|1],
K.I. Oskolkov[2, 3, 4], V.N. Temlyakov[5] and others. Many unexpected
phenomena were found. For example, it turned out that the equidistributed
ridge directions are not necessary optimal even for approximation of radial
functions. A pretty Fourier analysis on the unit disk was constructed in [2],
where the orthogonal basis consists of Chebyshev polynomial wave functions
with equidistributed wave directions. Approximation properties of this basis
in metrics different from Ly was not known. Moreover, there were no any
results on the ridge approximation in L,, p # 2, in particular, for p = oo.
The goal of this paper is to find ridge expansions in C.

The following notations will be used throughout the paper:

Ty =Ty + ...+ 2y, |2] = Tz for x,y € RY, 7w is the space of
polynomials in d variables of degree at most n, X,, denotes the n-th Legendre
normalized polynomial, S = {z € R¥*! : |z| = 1}. If f € C(A), A C R,
then w(f) denotes the modulus of continuity of f:

w(f,h) = sup [|f(z) = f(W)llow)-

z,yEA
lz—y|<h

Let B={z c®?: |z| <1}, w(z) = 7' (1 — |z|>)~"/2 for = € B, we consider
the weighted space L, of functions defined on B with the inner product

(f,9) nggw-



We now present an orthogonal system in L, consisting of ridge polyno-
mials. Set P, = span{X,(z - ¢),z € B, € S'} and prove that P, is the
orthogonal (in Ly ,,) compliment to 72_; in 2. It is proved in [2] that each
polynomial in two variables can be represented as a linear combination of
ridge polynomials of the same degree. By this fact, the orthogonality of P,
and 72 | follows from the following statement.

Lemma 1 Let Q € wl_,, ¢, € S*, then

/ Qz - 9)Xu(z - $)w(z) dz = 0. (1)

Proof. Without loss of generality one can consider ) = (1,0). The left
hand side of (1) can be rewritten as

1

\/lfx%
1 dx
—/dlen(xl) Z a () / x'fxé%
—\/l—z%

-1 L+k<n

The internal integral is a polynomial in z; of degree n — 1 because

Lo 0, if £ is odd,
3;’“3;5 d$2 _ 1, p (2)
R g - (1 — 22)422k [ 2222 if £ is even.

7\/@ 1A / 1—x§ ’
Since X, is orthogonal to 7!_,, the external integral vanishes. <
So, P, is orthogonal to 72 ;. On the other hand, for each p € 72 we have

n N

p(x) =Y au(z-pr) =Y D auXe(w-¢r) = Y anXal(z - pi) +p'(2),

k=1 ¢£=0 k=1

where p/ € 72_,. Thus, P, ® 72, = 72 in La,. The dimension of 72

coincides with the number of monomials which equals 3(n+1)(n+2). Hence
dim P,, = n+1. An orthogonal ridge basis can be constructed as follows. For
an arbitrary g we set Po(z) = X, (z-o). If Py, ..., Py are already found and
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k < n, then there exists ¢,; € S such that Py(z), ..., Pe(x), Xp(T - ©ri1)
are linear independent. Set

Pk+1($) = AOP()(.I') + ...+ AkPk(ll?) + Xn(.%‘ . Sok—{-l)a

where
1

Ay = —72/.P[($)Xn($ - pr1)w(x) de.
[[Pel[3..,
B
It is clear, that Py.1 # 0 and (P, Py) = 0.

To make this construction more explicit we discuss the choice of wave di-
rections ¢;. The most natural way is to use equidistant nodes on S*. Unfortu-
nately, such ¢, are not suitable, the corresponding functions
X, (z - @) are linear dependent. We will show that the equidistant nodes of
a small enough arc are suitable.

Lemma 2 For all ¢,7) € S!

/ Xo(z - @) Xn(z - 0)w(z) dz = W. (3)

Proof. Without loss of generality we can consider ¢» = (1,0). Define an
operator Pr,, on B by

Vi
Pro(f) =1 / F (@) (z) dey

™
—1/ lfx%

and note that Pr,, takes any polynomial to a polynomial in one variable z;
of the same degree. To check this fact one can consider a single monomial
and use (2). In particular, if f(z) = X, (z - ¢), then

Pro,(f) = a(¢)Xa(z1) + g(21), g€, 4. (4)

Since, due to Lemma 1,

/ Proy(f)g(ar)w(z) dz =

B



. dt d.’L‘Q
ﬁ/dmg(fﬂl) / X (101 +t¢2)\/ﬁ / — =
—22

/m&m

(¥

z-plw(z)dr =

and

/&mmmm@m=j&ummmm=a

B

we obtain g = 0. Passing to the limit as ; — 1 in (4) we have

Xa(p1)
o) =X 0

To prove (3) it remains to note that

/ Pro. ()Xo (@)w(z) do =

B

1 o d d
1 t T2
— [ dz1 X, X, tpy) ——— — =
R O e il v e
-1 —\/l—w% \/

and

/|Xn(x1)|2w(x) dz = /1|Xn(m1)|2dx1 ~1. ¢

Let m > 2n%,  we set ¢, = (cos %k,sin %“) and prove that the functions

Xn(z - pr), Kk =0,...,n, are linear independent. Consider the Gram deter-



minant for these functions. By Lemma 2, it looks as follows

X, (1) X, (cos %) e X, (cos %)
1 X, (cos %) X, (1) oo X (cos @)
(Xn(1)" : : :
X, (cos %) X, (cos W) e X, (1)

It is known (see, e.g. [6], p.36) that this determinant equals

B )i (-5)

We should prove that this value is not equal to zero. It is well known that
the Legendre polynomial takes its maximal value at the unique point x = 1.
So, it is remains to verify that

kZ:Xn <cos %) # 0. (5)

Apply to each term of this sum the following formula (see, e.g. [7], p.116).

o (@2n =1 (2n—3)I1
Xn(cosf) = 2 o)l Cosn9+2(2n_2)”2(:os(n 2)6 +
2n —5)I'13
ﬁazCOS(n—él)e‘i‘,

where the number of terms equals [n/2]. Since all the coefficients in this sum
are positive and cos ekﬁ > 0, whenever 0 < ¢ < n, 0 < k < n, the left hand
side of (5) is positive.

So, we described a construction of orthogonal basis for P,. The elements
of this basis are ridge polynomials with respect to n+ 1 wave directions. The
directions are condensed as n goes to the infinity. An orthogonal basis for
P, is not unique. Another construction was presented in [8].

Let { P, }}_, be an orthonormal basis for P,,. Then the entire collection
{Pyk }r,n constitute an orthonormal polynomial system in Lo ,,. Below it will



be shown that this system is complete in Ly ,,. For any appropriate function
f we can consider the Fourier expansion with respect to { Py }in:

n=0 k=0
We are interested in convergence and summability of this series. Set

n

N
Z f7 nk

n=0 k=0

The convergence of (6) in the space C'(B) is closely related to the behavior
of the Lebesgue constants

N n

Z Foi(t)

n=0 k

w(t) dt.

Ly = ||8N||C( B)—C(B) = max/

Similarly, a summability is related to the behavior of the Lebesgue constants
of the corresponding linear means. We consider linear summation methods

of type
Z)\an f; nk:> nk
k=0

where A = {An,,N =0,1,..., n=0,..., N} is an infinite triangle matrix.
The corresponding Lebesgue constant is

Z)\anpnk

Ly = llsyllo-cm) = max w(t) dt.

We now suggest a simple method for study the growth of Lebesgue constants
for s (f). For this we need some axelary tools.
Let F' € C(S?), the Laplace series of F is

Fx—Qii\/:/ X, (¢t ) ds(#),



where z € S?. We denote the partial sum of this series by

«(F2) %Z\/:/ X, (- 7)dsf2),

Note the following properties of these operators (see, e.g., [9], §6)
1. oy is a linear operator on C(S?);
2. oy takes C'(S?) into 73;;
3. if P € 7%, than oy (P) = P;
4. if F € C(S?), P € 73, than

/ (F(t) — on(F, t))P(t) ds(t) = 0.

5‘2

For any f € C(B) we assign an associated function F defined on S? by:
F(xy,29,73) = f(z1,29) for all z € S2.

Theorem 3 Let f € C(B), F be the function associated with f, then

on(F,z) = sn(f,z1,2) (7)
for all x € S2.

Proof. First we show that the function oy (F,z) does not depend on z3.

Indeed, for x € S?,
Z\/n—i- / (x-t)ds(t) =
N
1 / 1 dt
2— Z n—+ —= /f(tl,tQ)Xn (CL’ltl + $2t2 + x3 1-— t% — t%) ﬁ—l-
B
/f(t t9) X <:1:t + Toty — w34/1 — t2> dt
1,02)A&n | T1ly 2la — I3 R
V91—t —t2
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It is clear that oy (F, z) is a polynomial in z1, s, z3 without odd powers of

z3. If k is even, then 2% = (1 — 22 — 22)*/2 that is a polynomial in zy, ;.



So on(F,x) = p(xy,3), where p € n%. Let ¢ € %, P and @ denote the
functions associated with p and ¢ respectively. Using properties 3 and 4 of
on we have

1
/(f(x) —p(a))a(2)w(z) de = o— [ (F(z) - P(2))Q(z) ds(z) =
B S2
1
o [ (F(@) — on(F2)Q() ds() =0
S2
Thus, (f — p,q) = 0 for all ¢ € 74. In particularly, (f, Pox) — (p, Pux) = 0
for all n = 0,...,N,k = 0,...,n. But the functions P,; constitute an

orthonormal basis for 7%, hence

p:ZZ<p’Pnk>Pnk =sn(f). ©

k=0 k=0

Corollary 4 Let A = {Ay,, N =0,1,..., n=0,...,N}, f € C(B) and let
F' be the function associated with f, then

LS aft L[ ROx o) - s ©
n=0 2

for any x € S2.

The proof follows immediately from (7), if we express both the left and
the right hand sides of (8) by the Abel transform respectively via o,(f) and
S[(f), [ :0,...,N.

Theorem 5 Let A = {Ayn,, N =0,1,..., n=0,...,N}, then

N n
sk llc)-cw) = max / > Awa > Pnk(t)Pnk(z)| w(t) dt <
faS] J "e0 o
L~
/ D An X (1) X (7)| dr. (9)
21 In=0




Proof. Let F' denote the function associated with f. By Corollary 4,

Isn(F)ller) < ||0'II:I(F)||C(S2)<

1
[Pl mass [ A nt L Xa(t-x)| ds(z). (10)
g2 In=0
We now prove that
L ZA n+1X(tx ds(t Z/\ (1)| d
o —~ Nn 2 Nn n n T
52 1=

for any z € S?. Fix a point € §% and chose a Descartes coordinate system
such that x = (0,0,1). We have

1 al 1
> > Ann n+ 5 Xo(ts)| ds(t) =
7'['52 n=0
1 2w ™
g/dnp/ ZANn 2(1) X, (cosf)|sinf df =
0 0 -
N
Z)\Nan(l)Xn(T) dr.
-~ n=0

;From this and (10), taking into account that ||F|[c(s2y = || fllc(m), we ob-
tain (9). <

Theorem 6 Let f € C(B), x € B, then

1)~ swl7. )] < AR (1.3 ) (1)

where A is an absolute constant. In particular, if f € Lipa, o > 1/2, then
its Fourier series (6) uniformly converges to f on B.

Proof. For any f € C(B) there exists F' € C([—1,1]?) such that F|, = f
and w(f) = w(F) (see [10], Ch. IV, § 2). Let @y denote a polynomial

9



of best approximation for F. By the multivariate Jackson theorem (see,
e.g. [11], p. 293)

I7-Qull<cu(r5).

This and Theorem 5 yield

If =sn(Hl = IIf =@y —sn(f —Qn)ll <

+/ Xi(1)X(t)

>

dt w<f,%>

It remains to note that the integral in the right hand side is O(y/n) (see,
e.g. [13]). <

Theorem 7 Let ¢ be a continuous function on [0,1], (0) = 1, ¢(1) = 0,

00 1
/z/go JxJo(zz) dz| dz < oo,
o | 0

where Jy is the Bessel function. If A = {¢ (%) S N=1,2,...,,n=0,...,N},
then (6) is uniformly o’ -summable for any f € C(B). In particularly, the
uniform summability holds for the Hélder means p(u) = (1 —u)® and for the
Riesz-Bochner means ¢(u) = (1 — u?)® with o > 1/2.

The proof immediately follows from Theorem 5 and a similar statement
for the Legandre polynomials (see [12], Theorem 2).

Now it is clear that the system {P,x,n=1,2,...,k=0,...,n,} is com-
plete in the space C(B). Moreover it is complete in Lo ,,.

Theorem 8 Let a > 1/2. For any f € C(B), its Fourier series (6) is
uniformly (C, a)-summable on B.

The proof immediately follows from Theorem 5 and a similar statement
for the Legendre polynomials (see [14], p. 246). This theorem is not new.
In fact, it was proved in [8] where another orthogononal basis for P, was
studied.

10



Both Theorem 7 and Theorem 8 imply the uniform Fejér summability.
It follows that the Valle Poisson means

2N—-1 ¢ n

on(F0) = 3 S P P

{=N n=0 k=0

have uniformly bounded Lebesgue constants. The same arguments as that
for Theorem 6 yield:

@) —ox(fo) < o (1.5 (12)

where C' is an absolute constant.

Finely, we construct a ridge polynomial basis for C'(B). We shall use
the following approach based on the Peley-Wiener and the Krein-Milman-
Rutman theorems (see [15] for details). Let {ax}32, be a basis for a Banach
space H and let f, € H*, k = 0,1, ..., be coeflicient functionals for this basis.

If b, € H and
—k—2

o = nll < T = A
for all k =0,1,..., then the sequence {b;}%°, is a basis for H.

We start with finding an initial basis {a;} for C(B). In [16] it is con-
structed a polynomial basis {T}}52, for C([—1,1]*) with the following prop-
erties:

1. degT,, < Cin, where C is an absolute constant;

2. T, = t, ®t,, where t, is a real polynomial in one variable, v, u < n,
ltallee < C2v/A, Cy is an absolute constant;

dx
3. / To(z) T () \/(1 0 = Opm.-

[_171]2

Any function f € C ([—1,1]?) can be expanded with respect to this basis:

)= [ e Y T 1@ ()

=N (I=aD( -3

11



Define a map ® on B by: if x = (pcos g, psing), 0 < ¢ < 21,0 < p < 1, then
O(z) = (r(p)pcosp,r(p)psing), where r(p) is the length of the segment
{x € [-1,1* : z; = pcosp,z9 = psinp}. It is clear that ® takes B to
[—1,1]* one to one, ||fllc(=1,12) = [|f(®)|lc(s) and there exists an absolute
constant Cs such that

w(f(®),h) < Csw(f,h) (14)

for all f € C([-1,1]?). Tt follows from (13) that for each f € C(B) there
exists a unique expansion with respect to the functions a, := T,,(®). So,
{an}22, is a basis for C'(B) with the coefficient functionals defined by

dx
V=21 —a)

Since

dz

2 2 S
\/(1 —z7)(1 — x3)

dx
s T, (z)|? =,
/ i) V(1 —af)(1 - x3)

[71’1]2

nnw:/|nw|

[_171}2

we have Ay > 7127772, Chose a sequence of positive integers N, > v 2"n3
where 7 is a big enough constant, and set b, = Vy, (a,). By (12) and (14),

1
= bl < Cio (Tn, E) |

Due to property 1 of T,, and the Markov inequality,

1 n?
Tnv_ <C—Pn e
o Ty ) <GixIR

Hence, taking into account that, by property 2, || P,||oo < C2n, we have

C3CuCs

lan = bnlloo <

12



For v > 4rC3C,Cs, this yields ||a, — b,|| < Ap. Thus {b,}2, is a basis for
C(B).

Acknowledgments

The author is deeply thankful to professor K.Oskolkov for useful dis-

cussion on the topic of investigation during the author’s visit to USC in
April-May 2000.

References

1]

2]

[5]

8]

[9]

V.E.Majorov On best approximation by ridge functions Preprint. De-
partment of Mathematics, Technion, Haifa, Israel. 1997.

K.I. Oskolkov Ridge approzimation, Chebyshev-Fourier analysis and op-
timal quadrature formulas Preprint. Department of Mathematics, Uni-
versity of South Carolina. 1997.

K.I. Oskolkov Ridge approximation and Kolmogorov-Nikol’skii problem
Preprint. Department of Mathematics, University of South Carolina.
1998.

K.I. Oskolkov Non-linear versus linearity in ridge approximation
Preprint. Department of Mathematics, University of South Carolina.
1998.

V.N.Temlyakov On approzimation by ridge functions Preprint. Depart-
ment of Mathematics, University of South Carolina. 1996.

D.K. Faddeev and I.S. Sominskii A Collection of problems on higher
algebra (in Russian) Moscow: FM. 1961.

P.K. Suetin Classical orthogonal polynomials (in Russian) Moscow:
Nauka. 1979.

Y. Xu Summability of Fourier orthogonal series for Jacobi weight on a
ball in R?

LK. Daugavet Introduction in approzimation theory (in Russian)
Leningrad: Leningrad Univ. Press. 1977.

13



[10]

[11]

[12]

[13]

[14]

[15]

[16]

E.M.Stein Singular integrals and differntiability properties of functions.
Princeton Univ. Press. New Jersey. 1970.

A.F.Timan Theory of Approzimation of Function of Real Variable (in
Russian). Moscow: FM. 1960.

O.L.Vinogradov Limit of the Lebesque constants for Fourier-Legandre
series defined by a factor function. Zap. Nauchn. Seminarov POMI. 1999.
V. 262. P. 71-89.

S.A. Agakhanov and G.I. Natanson Lebesge function of Fourier-Jacobi
sums. Vestnik Leningr. Un-ta. Mat., Mekh, Astonom. 1968. N 1. P. 11-
23.

G. Szeg6 Orthogonal polynomials. AMS, New York. 1959.

C. Foias and 1. Singer Some remarks on strongly independent sequences
and bases in Banach spaces Revue de Mathematiques Pures et Ap-
pliqués. Acad. R.P.R. 1961. V. VI. N 3. P. 589=594.

J. Prestin and F. Sprengel An orthonormal bivariate algebraic polyno-
mial basis for C(I?) of low degree Mutivariate approximation. Recent
Trends and Results. Math. Research. 1997. V. 101. P.177-188.

Maria Skopina, Department of Applied Mathematics - Control Processes,
Saint-Petersburg State University, Russia
e-mail: skopina@sk.usr.lgu.spb.su

14



