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Abstract� Theoretical greedy type algorithms are studied: a Weak Greedy Algo-
rithm, a Weak Orthogonal Greedy Algorithm, and a Weak Relaxed Greedy Algo-
rithm. These algorithms are defined by weaker assumptions than their analogs the
Pure Greedy Algorithm, an Orthogonal Greedy Algorithm, and a Relaxed Greedy
Algorithm. The weaker assumptions make these new algorithms more ready for prac-
tical implementation. We prove the convergence theorems and also give estimates for
the rate of approximation by means of these algorithms. The convergence and the
estimates apply to approximation from an arbitrary dictionary in a Hilbert space.

1. Introduction

We study nonlinear approximation in this paper. The basic idea behind nonlin-
ear approximation is that the elements used in the approximation do not come from
a fixed linear space but are allowed to depend on the function being approximated.
The standard problem in this ragard is the problem of m-term approximation where
one fixes a basis and looks to approximate a target function f by a linear combina-
tion of m terms of the basis. When the basis is a wavelet basis or a basis of other
waveforms, then this type of approximation is the starting point for compression
algorithms. An important feature of approximation using a basis Ψ := {ψk}∞k=1 of
a Banach space X is that each function f ∈ X has a unique representation

(1.1) f =
∞∑

k=1

ck(f)ψk

and we can identify f with the set of its Fourier coefficients {ck(f)}∞k=1. The prob-
lem of m-term approximation with regard to a basis has been studied thoroughly
and rather complete results have been established (see [2], [3], [5], [6], [8], [16], [17],
[20], [21], [22], [23]). In particular, it was established that the greedy type algorithm
which forms a sum of m terms with the largest ‖ck(f)ψk‖X out of expansion (1.1)
realizes in many cases almost the best m-term approximation for function classes
([6]) and even for individual functions ([21]).

Recently, there has emerged another more complicated form of nonlinear ap-
proximation which we call highly nonlinear approximation. It takes many forms
but has the basic ingredient that a basis is replaced by a larger system of func-
tions that is usually redundant. We call such systems dictionaries. Redundancy on
the one hand offers much promise for greater efficiency in terms of approximation
rate, but on the other hand gives rise to highly nontrivial theoretical and practical

1This research was supported by the National Science Foundation Grant DMS 9622925 and
by ONR Grant N00014-96-1-1003
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problems. The problem of characterizing approximation rate for a given function
or function class is now much more substantial and results are quite fragmentary.
However, such results are very important for understanding what this new type of
approximation offers. Perhaps the first example of this type was considered by E.
Schmidt in 1907 [19] who considered the approximation of functions f(x, y) of two
variables by bilinear forms

m∑
i=1

ui(x)vi(y)

in L2([0, 1]2). This problem is closely connected with properties of the integral
operator

Jf (g) :=
∫ 1

0

f(x, y)g(y)dy

with kernel f(x, y). E. Schmidt [19] gave an expansion (known as the Schmidt
expansion)

f(x, y) =
∞∑

j=1

sj(Jf )φj(x)ψj(y)

where {sj(Jf )} is a nonincreasing sequence of singular numbers of Jf , i.e. sj(Jf ) :=
λj(J∗

f Jf )1/2, {λj(A)} is a sequence of eigenvalues of an operator A, J∗
f is the

adjoint operator to Jf . The two sequences {φj(x)} and {ψj(y)} form orthonormal
sequences of eigenfunctions of the operators JfJ∗

f and J∗
f Jf respectively. He also

proved that

‖f(x, y)−
m∑

j=1

sj(Jf )φj(x)ψj(y)‖L2 = inf
uj ,vj∈L2, j=1,...,m

‖f(x, y)−
m∑

j=1

uj(x)vj(y)‖L2 .

It was understood later that the above best bilinear approximation can be realized
by the following greedy algorithm. Assume cj , uj(x), vj(y), ‖uj‖L2 = ‖vj‖L2 = 1,
j = 1, . . . , m − 1, have been constructed after m − 1 steps of algorithm. At the
m-th step we choose cm, um(x), vm(y), ‖um‖L2 = ‖vm‖L2 = 1, to minimize

‖f(x, y)−
m∑

j=1

cjuj(x)vj(y)‖L2.

We call this type of algorithm the Pure Greedy Algorithm (see the general definition
below).

Remark 1. In this paper, we study only theoretical aspects of the efficiency of m-
term approximation and possible ways to realize this efficiency. The above defined
”greedy algorithm” gives a procedure to construct an approximant which turns out
to be a good approximant. The procedure of constructing a greedy approximant
is not a numerical algorithm ready for computational implementation. Therefore
it would be more precise to call this procedure a ”theoretical greedy algorithm” or
”stepwise optimizing process”. Keeping this remark in mind we, however, use term
”greedy algorithm” in this paper because it has been used in previous papers and
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has become a standard name for procedures like the above and for more general
procedures of this type (see for instance [5], [9]).

Another problem of this type which is well known in statistics is the projection
pursuit regression problem. We formulate the related results in the function theory
language. The problem is to approximate in L2 a given function f ∈ L2 by a sum
of ridge functions, i.e. by

m∑
j=1

rj(ωj · x), x, ωj ∈ R
d, j = 1, . . . , m,

where rj , j = 1, . . . , m, are univariate functions. The following greedy type al-
gorithm (projection pursuit) was proposed in [12] to solve this problem. Assume
functions r1, . . . , rm−1 and vectors ω1, . . . , ωm−1 have been determined after m− 1
steps of algorithm. Choose at m-th step a unit vector ωm and a function rm to
minimize the error

‖f(x)−
m∑

j=1

rj(ωj · x)‖L2 .

This is one more example of Pure Greedy Algorithm. The Pure Greedy Algorithm
and some other versions of greedy type algorithms have been intensively studied
recently (see [1], [4], [7], [9], [10], [11], [13], [14], [15], [24]). In this paper we propose
to study a modification of greedy type algorithms which makes them more ready
for implementation. We call this new type of greedy algorithms Weak Greedy
Algorithms.

In oder to orient the reader we remind some notations and definitions from the
theory of greedy algorithms. Let H be a real Hilbert space with an inner product
〈·, ·〉 and the norm ‖x‖ := 〈x, x〉1/2. We say a set D of functions (elements) from H
is a dictionary if each g ∈ D has norm one (‖g‖ = 1) and spanD = H. We studied
in [9] the following two greedy algorithms. If f ∈ H, we let g = g(f) ∈ D be the
element from D which maximizes |〈f, g〉| (we make an additional assumption that
a miximizer exists) and define

(1.2) G(f) := G(f,D) := 〈f, g〉g

and
R(f) := R(f,D) := f − G(f).

Pure Greedy Algorithm. We define R0(f) := R0(f,D) := f and G0(f) := 0.
Then, for each m ≥ 1, we inductively define

Gm(f) : = Gm(f,D) := Gm−1(f) + G(Rm−1(f))

Rm(f) : = Rm(f,D) := f − Gm(f) = R(Rm−1(f)).

If H0 is a finite dimensional subspace of H, we let PH0 be the orthogonal projector
from H onto H0. That is PH0(f) is the best approximation to f from H0.
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Orthogonal Greedy Algorithm. We define Ro
0(f) := Ro

0(f,D) := f and Go
0(f) :=

Go
0(f,D) := 0. Then for each m ≥ 1, we inductively define

Hm :=Hm(f) := span{g(Ro
0(f)), . . . , g(Ro

m−1(f))}
Go

m(f) :=Go
m(f,D) := PHm(f)

Ro
m(f) :=Ro

m(f,D) := f − Go
m(f).

We remark that for each f we have

(1.3) ‖f − Go
m(f,D)‖ ≤ ‖Ro

m−1(f) − G1(Ro
m−1(f),D)‖.

In sections 2,3,5 we study some modifications of the Pure Greedy Algorithm
(PGA) and the Orthogonal Greedy Algorithm (OGA) which we call respectively
Weak Greedy Algorithm (WGA) and Weak Orthogonal Greedy Algorithm (WOGA).
We give now the corresponding definitions. Let a sequence τ = {tk}∞k=1, 0 < tk < 1,
be given.

Weak Greedy Algorithm. We define fτ
0 := f . Then for each m ≥ 1, we induc-

tively define:
1). ϕτ

m ∈ D is any satisfying

|〈fτ
m−1, ϕ

τ
m〉| ≥ tm sup

g∈D
|〈fτ

m−1, g〉|;

2).
fτ

m := fτ
m−1 − 〈fτ

m−1, ϕ
τ
m〉ϕτ

m;

3).

Gτ
m(f,D) :=

m∑
j=1

〈fτ
j−1, ϕ

τ
j 〉ϕτ

j .

We note that in a particular case tk = t, k = 1, 2, . . . , this algorithm was
considered in [14].

Weak Orthogonal Greedy Algorithm. We define fo,τ
0 := f and fo,τ

1 := fτ
1 ;

ϕo,τ
1 := ϕτ

1 where fτ
1 , ϕτ

1 are from the above definition of WGA. Then for each
m ≥ 2 we inductively define:

1). ϕo,τ
m ∈ D is any satisfying

|〈fo,τ
m−1, ϕ

o,τ
m 〉| ≥ tm sup

g∈D
|〈fo,τ

m−1, g〉|;

2).
Go,τ

m (f,D) := PHτ
m

(f), where Hτ
m := span(ϕo,τ

1 , . . . , ϕo,τ
m );

3).
fo,τ

m := f − Go,τ
m (f,D).

It is clear that Gτ
m and Go,τ

m in the case tk = 1, k = 1, 2, . . . , coincide with PGA
Gm and OGA Go

m respectively. It is also clear that WGA and WOGA are more
ready for implementaion than PGA and OGA.

We turn first to formulate some theorems on convergence of WGA and WOGA.
We make first some historical remarks. The weak L2-convergence of projection
pursuit was established in [13] and the strong L2-convergence of it was proved in
[14]. The proof from [14] also works in the general problem of convergence of PGA
(see [18], [11]). For convergence of OGA see [11].
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Theorem 1. Assume

(1.4)
∞∑

k=1

tk
k

= ∞.

Then for any dictionary D and any f ∈ H we have

lim
m→∞

‖f − Gτ
m(f,D)‖ = 0.

Theorem 2. Assume

(1.5)
∞∑

k=1

t2k = ∞.

Then for any dictionary D and any f ∈ H we have

(1.6) lim
m→∞

‖f − Go,τ
m (f,D)‖ = 0.

Remark 2. It is easy to see that in the case D = B - orthonormal basis the assump-
tion (1.5) is also necessary for convergence (1.6) for all f .

There is one more greedy type algorithm which works well for functions from
the convex hull of 0 ∪ D±, where D± := {±g, g ∈ D}.

For a general dictionary D, we define the class of functions

A1(D, M) := {f ∈ H : f =
∞∑

k=1

ckwk, wk ∈ D, and
∞∑

k=1

|ck| ≤ M}

and for M = 1 we denote A1(D) := A1(D, 1).
There are several modifications of Relaxed Greedy Algorithm (see for instance

[1], [9]). Before giving the definition of Weak Relaxed Greedy Algorithm (WRGA)
we make one remark which helps to motivate the corresponding definition. Assume
Gm−1 ∈ A1(D) is an approximant to f ∈ A1(D) obtained at the (m − 1)-th step.
The major idea of relaxation in greedy algorithms is to look for an approximant at
the m-th step of the form Gm := (1− a)Gm−1 + ag, g ∈ D±, 0 ≤ a ≤ 1. This form
guarantees that Gm ∈ A1(D). Thus we are looking for co-convex approximant.
The best we can do at the m-th step is to achieve

δm := inf
g∈D±,0≤a≤1

‖f − ((1 − a)Gm−1 + ag)‖.

Denote fn := f − Gn, n = 1, . . . , m. It is clear that for a given g ∈ D± we have

inf
a
‖fm−1 − a(g − Gm−1)‖2 = ‖fm−1‖2 − 〈fm−1, g − Gm−1〉2‖g − Gm−1‖−2,

and this inf is attained for

a(g) = 〈fm−1, g − Gm−1〉‖g − Gm−1‖−2.
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Next, it is not difficult to derive from the definition of A1(D) that for any h ∈ H
and u ∈ A1(D) there exists g ∈ D± such that

(1.8) 〈h, g〉 ≥ 〈h, u〉.

Taking h = fm−1 and u = f we get from (1.8) that there exists gm ∈ D± such that

(1.9) 〈fm−1, gm − Gm−1〉 ≥ 〈fm−1, f − Gm−1〉 = ‖fm−1‖2.

This implies in particular that we get for gm

(1.10) ‖gm − Gm−1‖ ≥ ‖fm−1‖

and 0 ≤ a(gm) ≤ 1. Thus,

δ2
m ≤ ‖fm−1‖2 − 1

4
sup

g∈D±
〈fm−1, g − Gm−1〉2.

We give now the definition of two versions of WRGA.

Weak Relaxed Greedy Algorithms. We define fτ,i
0 := f and Gτ,i

0 := 0 for
i = 1, 2. Then for each m ≥ 1 we inductively define

1). ϕτ,1
m ∈ D± is any satisfying

(1.11) 〈fτ,1
m−1, ϕ

τ,1
m − Gτ,1

m−1〉 ≥ tm‖fτ,1
m−1‖2

and

(1.12) ‖ϕτ,1
m − Gτ,1

m−1‖ ≥ ‖fτ,1
m−1‖;

ϕτ,2
m ∈ D± is any satisfying

(1.13) 〈fτ,2
m−1, ϕ

τ,2
m − Gτ,2

m−1〉 ≥ tm‖fτ,2
m−1‖2.

2).
Gτ,1

m := Gτ,1
m (f,D) := (1 − αm)Gτ,1

m−1 + αmϕτ,1
m ,

αm := 〈fτ,1
m−1, ϕ

τ,1
m − Gτ,1

m−1〉‖ϕτ,1
m − Gτ,1

m−1‖−2;

Gτ,2
m := Gτ,2

m (f,D) := (1 − βm)Gτ,2
m−1 + βmϕτ,2

m ,

βm := tm(1 +
m∑

k=1

t2k)−1 for m ≥ 1.

3).
fτ,i

m := f − Gτ,i
m , i = 1, 2.

We formulate now some theorems on convergence rates of greedy type algorithms
WOGA and WRGA for functions from A1(D, M).
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Theorem 3. Let D be an arbitrary dictionary in H. Then for each f ∈ A1(D, M)
we have

‖f − Go,τ
m (f,D)‖ ≤ M(1 +

m∑
k=1

t2k)−1/2.

Theorem 4. Let D be an arbitrary dictionary in H. Then for each f ∈ A1(D) we
have

(1.14) ‖f − Gτ,1
m (f,D)‖ ≤ 2(1 +

m∑
k=1

t2k)−1/2;

(1.15) ‖f − Gτ,2
m (f,D)‖ ≤ 2(1 +

m∑
k=1

t2k)−1/2.

2. Proof of Theorem 1

The following two lemmas imply Theorem 1.

Lemma 2.1. Assume that (1.5) is satisfied. Then if {fτ
m}∞m=1 converges it con-

verges to zero.

Lemma 2.2. Assume (1.4) is satisfied. Then {fτ
m}∞m=1 converges.

Proof of Lemma 2.1. We prove this lemma by contradiction. Assume fτ
m → u 
= 0

as m → ∞. It is clear that
sup
g∈D

|〈u, g〉| ≥ 2δ

with some δ > 0. Therefore, there exists N such that for all m ≥ N we have

sup
g∈D

|〈fτ
m, g〉| ≥ δ.

From the definition of WGA we get for all m > N

‖fτ
m‖2 = ‖fτ

m−1‖2 − |〈fτ
m−1, ϕ

τ
m〉|2 ≤ ‖fτ

N‖2 − δ2
m∑

k=N+1

t2k,

what contradicts (1.5). �
Proof of Lemma 2.2. It is easy to derive from the definition of WGA the following
two relations

(2.1) fτ
m = f −

m∑
j=1

〈fτ
j−1, ϕ

τ
j 〉ϕτ

j ,

(2.2) ‖fτ
m‖2 = ‖f‖2 −

m∑
j=1

|〈fτ
j−1, ϕ

τ
j 〉|2.
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Denote aj := |〈fτ
j−1, ϕ

τ
j 〉|. We get from (2.2) that

(2.3)
∞∑

j=1

a2
j ≤ ‖f‖2.

We take any two indecies n < m and consider

‖fτ
n − fτ

m‖2 = ‖fτ
n‖2 − ‖fτ

m‖2 − 2〈fτ
n − fτ

m, fτ
m〉.

Denote
θτ

n,m := |〈fτ
n − fτ

m, fτ
m〉|.

Using (2.1) and the definition of the WGA we get for all n < m that

(2.4) θτ
n,m ≤

m∑
j=n+1

|〈fτ
j−1, ϕ

τ
j 〉||〈fτ

m, ϕτ
j 〉| ≤

am+1

tm+1

m+1∑
j=1

aj.

We need now a property of the l2-sequences.

Lemma 2.3 (V.T. and S.V. Konyagin). Assume yj ≥ 0, j = 1, 2, . . . ,and

∞∑
k=1

tk
k

= ∞,
∞∑

j=1

y2
j < ∞.

Then

lim
n→∞

yn

tn

n∑
j=1

yj = 0.

Proof. Consider a series

(2.5)
∞∑

n=1

tn
n

yn

tn

n∑
j=1

yj .

We shall prove that this series converges. It is clear that convergence of this series
together with the assumption

∑∞
k=1 tk/k = ∞ imply the statement of Lemma 2.3.

We use the following known fact. If {yj}∞j=1 ∈ l2 then {n−1
∑n

j=1 yj}∞n=1 ∈ l2
(see [25,Ch.1,S.9]). We have by Cauchy inequality

∞∑
n=1

tn
n

yn

tn

n∑
j=1

yj ≤ (
∞∑

n=1

y2
n)1/2(

∞∑
n=1

(n−1
n∑

j=1

yj)2)1/2 < ∞.

This completes the proof of Lemma 2.3. �
The relation (2.4) and Lemma 2.3 imply that

lim
m→∞

max
n<m

θτ
n,m = 0.

It remains to use the following simple lemma.
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Lemma 2.4. Let in a Banach space X a sequence {xn}∞n=1 be given. Assume that
for any k, l we have

‖xk − xl‖2 = yk − yl + θk,l,

with {yn}∞n=1 is a convergent sequence of real numbers and θk,l satisfying the prop-
erty

lim
l→∞

max
k<l

θk,l = 0.

Then {xn}∞n=1 converges.

3. Convergence and rate of approximation of WOGA

We begin this section with the proof of Theorem 2. Let f ∈ H and ϕo,τ
1 , ϕo,τ

2 , . . .
are from the definition of WOGA. Denote

Hn := Hτ
n = span(ϕo,τ

1 , . . . , ϕo,τ
n ).

It is clear that Hn ⊂ Hn+1 and therefore {PHn(f)} converges to some function
v. We prove that v = f . Assume the contrary v 
= f . Denote u := f − v. Then
similarly to the proof of Lemma 2.1 there exist δ > 0 and N such that for all m ≥ N
we have

sup
g∈D

|〈fo,τ
m , g〉| ≥ δ.

Next, alike (1.3) we have

‖fo,τ
m ‖2 ≤ ‖fo,τ

m−1‖2 − t2m(sup
g∈D

|〈fo,τ
m−1, g〉|)2 ≤ ‖fo,τ

N ‖2 − δ2
m∑

k=N+1

t2k

what contradicts divergence of
∑

k t2k. �
We proceed now to the proof of Theorem 3.

Proof of Theorem 3. We assume for simplicity M = 1. From the definition of
WOGA we have
(3.1) ‖fo,τ

m ‖2 ≤ ‖fo,τ
m−1 − 〈fo,τ

m−1, ϕ
o,τ
m 〉ϕo,τ

m ‖2 =

‖fo,τ
m−1‖2 − 〈fo,τ

m−1, ϕ
o,τ
m 〉2 ≤ ‖fo,τ

m−1‖2 − t2m sup
g∈D

|〈fo,τ
m−1, g〉|2.

Using (1.8) we get

(3.2) sup
g∈D

|〈fo,τ
m−1, g〉| ≥ 〈fo,τ

m−1, f〉 = ‖fo,τ
m−1‖2.

Combining (3.1) with (3.2) we obtain

(3.3) ‖fo,τ
m ‖2 ≤ ‖fo,τ

m−1‖2(1 − t2m‖fo,τ
m−1‖2).

It remains to use the following lemma.

Lemma 3.1. Let {am}∞m=0 be a sequence of nonnegative numbers satisfying the
inequalities

a0 ≤ A, am ≤ am−1(1 − t2mam−1/A), m = 1, 2, . . . .

Then we have for each m

am ≤ A(1 +
m∑

k=1

t2k)−1.

Proof of this lemma repeats the proof of Lemma 3.4 from [9].
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4. Proof of Theorem 4 and some comments

We begin with consideration of the first type of WRGA. From its definition we
obtain

‖fτ,1
m ‖2 = ‖fτ,1

m−1‖2 − 〈fτ,1
m−1, ϕ

τ,1
m − Gτ,1

m−1〉2‖ϕτ,1
m − Gτ,1

m−1‖−2 ≤

≤ ‖fτ,1
m−1‖2 − 1

4
〈fτ,1

m−1, ϕ
τ,1
m − Gτ,1

m−1〉2 ≤

≤ ‖fτ,1
m−1‖2(1 − t2m

4
‖fτ,1

m−1‖2).

Using Lemma 3.1 we get from here

‖fτ,1
m ‖2 ≤ 4(1 +

m∑
k=1

t2k)−1.

The property (1.12) guarantees that 0 ≤ αm ≤ 1 and Gτ,1
m ∈ A1(D).

We proceed now to the second variant of WRGA. First of all it is clear from the
definition of βm that 0 ≤ βm ≤ 1 and hence Gτ,2

m ∈ A1(D) for all m. We estimate
now ‖fτ,2

m ‖2. We use the abbreviated notations:

fm := fτ,2
m ; Gm := Gτ,2

m (f,D); ϕm := ϕτ,2
m .

Then we have

(4.1) ‖fm‖2 = ‖fm−1 − βm(ϕm − Gm−1)‖2 =

= ‖fm−1‖2 − 2βm〈fm−1, ϕm − Gm−1〉 + β2
m‖ϕm − Gm−1‖2 ≤

≤ ‖fm−1‖2 − 2βmtm‖fm−1‖2 + 4β2
m.

We complete the proof of (1.15) by induction. For m = 0 it is trivial. For m = 1 it
can be checked directly similarly to (4.1) that ‖f1‖ ≤ 1. Denote Tm := 1+

∑m
k=1 t2k

and assume for m ≥ 2
‖fm−1‖2 ≤ 4T−1

m−1.

Taking into account that βm = tm/Tm and 1 − 2βmtm ≥ 0 we get from (4.1)

‖fm‖2Tm ≤ 4(1 − 2βmtm)Tm/Tm−1 + 4β2
mTm =

= 4(1 − t2m/Tm−1 + t2m/Tm) ≤ 4.

This completes the proof of Theorem 4. �
We note that the generality of a sequence τ := {tk}∞k=1 in WRGA allows us to

design a simple algorithm, which does not require solving optimization problems
and gives a bound for its error of approximation.
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Co-convex Algorithm. Take f ∈ A1(D).
Step 1. Find ϕ1 ∈ D± such that 〈f, ϕ1〉 > 0 and define

t1 := min{1, 〈f, ϕ1〉‖f‖−2}; G1 := β1ϕ1; f1 := f − G1; β1 = t1(1 + t21)
−1.

Step 2. Find ϕ2 ∈ D± such that 〈f1, ϕ2 − G1〉 > 0 and define

t2 := min{1, 〈f1, ϕ2 − G1〉‖f1‖−2}; β2 := t2(1 + t21 + t22)
−1;

G2 := (1 − β2)G1 + β2ϕ2; f2 := f − G2.

. . .

Step m. Find ϕm ∈ D± such that 〈fm−1, ϕm − Gm−1〉 > 0 and define

tm := min{1, 〈fm−1, ϕm − Gm−1〉‖fm−1‖−2}; βm := tm(1 +
m∑

k=1

t2k)−1;

Gm := (1 − βm)Gm−1 + βmϕm; fm := f − Gm.

After m steps we have the following error bound

(4.2) ‖fm‖ ≤ 2(1 +
m∑

k=1

t2k)−1/2.

The estimate (4.2) follows from the observation that the Co-convex Algorithm
is WRGA of the second type with τ = {tk}∞k=1 and from Theorem 4. The above
defined algorithm does not contain an optimization part. However, it is clear that
the bigger 〈fj−1, ϕj − Gj−1〉, j = 1, . . . , m, the better the error estimate.

5. Rate of approximation for WGA

We prove in this section the following theorem.

Theorem 5.1. Let D be an arbitrary dictionary in H. Assume τ := {tk}∞k=1 is a
nonincreasing sequence. Then for f ∈ A1(D, M) we have

(5.1) ‖f − Gτ
m(f,D)‖ ≤ M(1 +

m∑
k=1

t2k)−tm/2(2+tm).

Proof. It is clear from rescaling argument that it is sufficient to prove the theorem
for M = 1. We introduce new notations:

am := ‖fτ
m‖2, ym := |〈fτ

m−1, ϕ
τ
m〉|, m = 1, 2, . . . , y0 := 0,

and consider the sequence {bn} defined as follows

b0 := 1, bm := bm−1 + ym, m = 1, 2, . . . .
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It is clear that fτ
n ∈ A1(D, bn). By Lemma 3.5 from [9] we get

(5.2) sup
g∈D

|〈fτ
m−1, g〉| ≥ ‖fτ

m−1‖2/bm−1.

From here and from the equality (see (2.2))

‖fτ
m‖2 = ‖fτ

m−1‖2 − 〈fτ
m−1, ϕ

τ
m〉2

we obtain the following relations

(5.3) am = am−1 − y2
m,

(5.4) bm = bm−1 + ym,

(5.5) ym ≥ tmam−1/bm−1.

From (5.3) and (5.5) we get

am ≤ am−1(1 − t2mam−1b
−2
m−1).

Using that bm−1 ≤ bm we derive from here

amb−2
m ≤ am−1b

−2
m−1(1 − t2mam−1b

−2
m−1).

By Lemma 3.1 with A = 1 we obtain

(5.6) amb−2
m ≤ (1 +

m∑
k=1

t2k)−1.

The relations (5.3) and (5.5) imply

(5.7) am ≤ am−1 − ymtmam−1/bm−1 = am−1(1 − tmym/bm−1).

Rewriting (5.4) in the form

(5.8) bm = bm−1(1 + ym/bm−1),

and using the inequality

(1 + x)α ≤ 1 + αx, 0 ≤ α ≤ 1, x ≥ 0,

we get from (5.7) and (5.8) that

ambtm
m ≤ am−1b

tm
m−1.
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Next, bm−1 ≥ 1 and tm ≤ tm−1. Therefore

btm
m−1 ≤ b

tm−1
m−1

and

(5.9) ambtm
m ≤ am−1b

tm−1
m−1 ≤ · · · ≤ a0 ≤ 1.

Combining (5.6) and (5.9) we obtain

a2+tm
m ≤ (1 +

m∑
k=1

t2k)−tm ,

what completes the proof. �
Example. In a particular case t1 = 1, tk = (log2 k)−s, k = 2, 3, . . . , 0 < s < 1,

we have

1 +
m∑

k=1

t2k ≥ m(log2 m)−2s

and
‖fm‖ ≤ 2−C(log2 m)1−s

with an absolute constant C > 0.
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