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Abstract

In this paper we study how to invert random functions under different
criteria. The motivation for this study is phylogeny reconstruction, since
the evolution of biomolecular sequences may be considered as a random
function from the set of possible phylogenetic trees to the set of collections
of biomolecular sequences of observed species. Our results may effect how
we think about the maximum likelihood estimation (MLE) in phylogeny.
MLE is optimal to invert random functions under a first criterion, al-
though it is not optimal under another, at least equally natural but more
conservative second criterion. It turns out that MLE has to be used in a
different way as it is used in the phylogeny literature, if we have a prior
distribution on trees and mutation mechanisms and want to keep MLE
optimal under the same first criterion. Some of the results of this paper
have been known in the setting of statistical decision theory, but have
never been discussed in the context of phylogeny.
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1 Introduction

For two finite sets, A and U , let us be given a U -valued random variable ξa for
every a ∈ A. We call the vector of random variables (ξa : a ∈ A) a random
function Ξ : A → U . Ordinary functions are specific instances of random
functions. Given another random function, Γ, from U to V , we can speak about
the composition of Γ and Ξ, Γ ◦ Ξ : A → V , which is the vector variable
(γξa : a ∈ A). In this paper we are concerned with inverting random functions.
In other words, we look for random functions Γ : U → A in order to obtain the
best approximations of the identity function ı : A → A by Γ ◦ Ξ. We always
assume that Ξ and Γ are independent. The reader may think that this is not
the only or not the right definition of random functions. For example, a natural
alternative is to consider all the |U ||A| ordinary functions from A to U , and pick
one of them according to a certain probability distribution (second definition of
random function). It is clear that this second definition of a random function
yields the unique distribution of the vector variable (ξa : a ∈ A). On the other
hand, consider a Ξ according to the first definition. Consider a fixed ordering
of the elements of A, A = {a1, a2, ..., a|A|}. For any sequence (u1, u2, ..., u|A|)
(ui ∈ U) find the probability

p(u1, u2, ..., u|A|) = IP[ξai = ui for all i = 1, 2, ..., |A|].

Now we see that Ξ can be seen as a random function according to the second
definition, such that the ordinary function ai �→ ui for all i = 1, 2, ..., |A| is
selected with probability p(u1, u2, ..., u|A|).

We might have used as well a “weaker” definition for random functions,
namely, just a collection of distributions the U -valued random variables for all
a ∈ A, i.e. a collection of probability distributions but no joint distribution. In
case of this weaker definition, a random function may have different represen-
tations as picking ordinary functions according to a probability distribution on
ordinary functions. Requiring only that every ξa is independent of every γu, the
results of this paper still would go through with this definition.

Our motivation for the study of random functions came from phylogeny
reconstruction. Stochastic models define how biomolecular sequences develop
along the edges of phylogenetic trees. If all possible binary trees on n leaves
come equipped with a model for generating biomolecular sequences of length k,
then we have a random function from the set of binary trees with n leaves to the
ordered n-tuples of biomolecular sequences of length k. Phylogeny reconstruction
is a random function from the set of ordered n-tuples of biomolecular sequences
of length k to the set of binary trees with n leaves. It is a natural assumption
that random mutations in the past are independent from the coin tosses in the
phylogeny reconstruction algorithm. Criteria for the phylogeny reconstruction
may differ in what do we want to optimize.
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Consider the probability of returning a from a by the composition of two
random functions, i.e. ra = IP[γξa = a]. A natural criterion is to find Γ for
a given Ξ in order to maximize

∑
a ra. We may have situations where we are

given an w : A → IR weight function and we want to maximize
∑

a raw(a).
This can happen if we give preference to returning certain a’s, or, if we have
a prior probability distribution on A and we want to maximize the expected
return probability for a random element of A selected according to the prior
distribution. A random function Γ∗ : U → A can be defined in the following way:
for any fixed u ∈ U , γ∗

u = a∗ for sure if for all a ∈ A, IP[ξa∗ = u]w(a∗) ≥ IP[ξa =
u]w(a). This function Γ∗ is called the maximum likelihood estimation (MLE)
in the literature [12, 7]. (In case of ties, randomization is possible and usual.)
We show that the maximum likelihood estimation Γ∗ maximizes

∑
a raw(a) for

a given Ξ. However, it is at least as natural to look at a more conservative
criterion: maximize the smallest value of ra for a ∈ A. Call this criterion
the minimax criterion. For the minimax criterion MLE is not always optimal.
These results have been known in the context of statistical decision theory but
have never been discussed in the context of phylogeny.

This paper introduces a new abstract model for phylogeny reconstruction:
inverting parametric random functions. Most of the work done on the mathe-
matics of phylogeny reconstruction can be discussed in this context. This model
is more structured than random functions, and hence is better suited to describe
details of models of phylogeny and the evolution of biomolecular sequences. As-
sume that for a finite set A, for every a ∈ A, a measure space (Θ(a), µa(.)) is
assigned, so that µa(Θ(a)) < ∞, and moreover, Θ(a) ∩ Θ(b) = ∅ for a 
= b. Set
B = {(a, θ) : a ∈ A, θ ∈ Θ(a)} and let p denote the natural projection from
B to A. A parametric random function is the collection Ξ of random variables
such that

(i) for a ∈ A and θ ∈ Θ(a), a U -valued random variable ξ(a,θ) is in Ξ;

(ii) for all u ∈ U , the set {θ ∈ Θ(a) : ξ(a,θ) = u} is measurable in the measure
space (Θ(a), µa(.)).

We are interested in random functions Γ : U → A independent from Ξ so
that γξ(a,θ) best approximates p under certain criteria. Call Ra,θ the probability
IP[γξ(a,θ) ] = a. MLE, as it is used in the practice, would take the Γ∗, for which
for every fixed u γ∗

u = a∗ for sure if there exists an (a∗, θ∗) ∈ B, such that for
all a ∈ A, and all (a, θ) ∈ B, IP[ξ(a∗,θ∗) = u] ≥ IP[ξ(a,θ) = u]. (In case of ties,
randomization is possible and usual). We show that in the model of parametric
random functions, the MLE criterion has to be modified to keep the property
that Γ∗ maximizes ∑

a∈A

∫
Ra,θdµa(θ). (1)
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This criterion is natural, since if
∑

a∈A

∫
dµa(θ) = 1, the formula (1) can be

interpreted as expected probability of return of elements of A, given a prior
distribution on A.

A general reference to phylogeny reconstruction is [20]. For the popular
maximum likelihood estimation in phylogeny see [12], [7], esp. pp. 205–206. In
recent works on phylogeny the minimax criterion is gaining popularity, implicitly
or explicitly this criterion is followed in [10, 8, 9, 6, 2].

The only other work that studies necessary conditions for phylogeny recon-
struction that we know about is [10]. Their setting is more specific than inverting
random functions. We do not know if their results hold only for deterministic
phylogeny reconstruction algorithms or extend to randomized phylogeny recon-
struction algorithms.

2 General bounds

For completeness, we cite our first result on inverting random functions with
proof from [8]. This theorem generalizes the fact that inverting any ordinary
A → U function requires |A| ≤ |U |

Theorem 1 Assume that we have finite sets A and U and random functions
Ξ : A → U and Γ : U → A.
(i) If ra = IP[γξa = a] > ε for all a ∈ A then |U | > ε|A|, even without assuming
the independence of Ξ and Γ.
(ii) If Ξ and Γ are independent, and ra = IP[γξa = a] > 1/2 for all a ∈ A, then
|U | ≥ |A|.

Proof. Proof of (i): By hypothesis ε|A| <
∑

a IP[γξa = a] =
∑

a

∑
u IP[ξa =

u & γu = a] ≤
∑

u(
∑

a IP[γu = a]) =
∑

u 1 = |U |.

Proof of (ii): First note that IP[γξa = b] =
∑

u IP[γu = b]IP[ξa = u] by indepen-
dence. Arrange the numbers IP[γu = b] into an |A|×|U | matrix M and the num-
bers IP[ξa = u] into an |U | × |A| matrix N . Now we have b[MN ]a = IP[γξa = b]
and the column sums in MN equal to 1.

Let C = (cij) denote a complex square matrix. A theorem of Lévy and
Desplanques asserts that if for all i, |cii| >

∑
i: i�=j |cij |, then det(C) 
= 0 ([15],

p. 146). By our assumptions C = MN satisfies the conditions of the Lévy-
Desplanques theorem: cii > 1/2 and

∑
i: i�=j cij = 1 − cii < 1/2, and hence

|A| = rank(MN) ≤ rank(M) ≤ |U |.
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There is another proof which avoids linear algebra. Observe that for each a,
there exists an u = ua for which IP[γua = a] > 1/2. Assume that for contrary,
exists an a ∈ A such that for all u ∈ U IP[γu = a] ≤ 1/2. Then we have

ra =
∑

u

IP[ξa = u & γu = a] (here we use independence)

=
∑

u

IP[ξa = u]IP[γu = a] ≤ 1
2

∑
u

IP[ξa = u] =
1
2

contradicting our assumption IP[γξa = a] > 1/2. Now, the map sending a to ua

is one-to-one from A into U (and so |A| ≤ |U | as required) since otherwise, if
two elements get mapped to u, then 1 =

∑
a IP[γu = a] > 1/2 + 1/2. �

Note that the message of Theorem 1 (ii) is that relaxing the requirement for
reconstructing functions for sure to reconstructing functions with probabilities
exceeding half does not allow any relaxation on the size of U . Theorem 1 (ii) is
no longer valid if we give up the independence of Ξ and Γ, this observation was
made by Peter Winkler. Indeed, let us be given a random variable υ which has
uniform distribution in {1, 2, ..., n}. We give up independence by using the same
experiment for υ to define the random function and to design its inverse. Take
A = {1, 2, ..., n + 1}, U = {1, 2, ..., n}, and define ξi = i for sure for i ≤ n, and
ξn+1 = i if υ = i. Define the random function Γ in the following way. If υ = i,
then make a coin toss τ independently from υ, so that IP[τ = HEAD] = 1/3
and IP[τ = TAIL] = 2/3. Set

γj =

{
n + 1, if υ = j, τ = TAIL,
j, if υ = j, τ = HEAD,
j, if υ 
= j.

Using conditional probabilities, it is easy to see that

IP[γξn+1 = n + 1] =
n∑

l=1

2
3
IP[υ = l] = 2/3;

and that for i ≤ n,

IP[γξi = i] = IP[γξi = i|υ = i]IP[υ = i] + IP[γξi = i|υ 
= i]IP[υ 
= i]

=
1
3
· 1
n

+ 1 · (1 − 1
n

).

Any n ≥ 2 yields the example required.

The condition |A| ≤ |U | is not sufficient to invert every ordinary A → U
function. In the following two theorems we show a finer analysis for random
functions, measuring how close they are to injections.
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Theorem 2 Assume that we have finite sets A and U and random functions
Ξ : A → U and Γ : U → A. If for all u ∈ U , maxa IP[ξa = u] ≤ λ(u), then for
ra = IP[γξa = a] we have

min
a

ra ≤ 1
|A|

∑
a∈A

ra ≤ 1
|A|

∑
u∈U

λ(u).

Proof. We have

ra =
∑

u

IP[ξa = u]IP[γu = a] ≤
∑

u

λ(u)IP[γu = a],

ra ≤ 1
|A|

∑
a∈A

ra ≤ 1
|A|

∑
a∈A

∑
u∈U

λ(u)IP[γu = a]

=
1
|A|

∑
u∈U

λ(u)
∑
a∈A

IP[γu = a] =
1
|A|

∑
u∈U

λ(u).�

Theorem 3 Assume that we have finite sets A and U and random functions
Ξ : A → U and Γ : U → A. Let d(a, b) for a, b ∈ A denote the variational
distance

∑
u∈U |IP[ξa = u]− IP[ξb = u]|. Suppose that there is an element b ∈ A

and a subset N ⊂ A such that for all a ∈ N

d(a, b) < δ.

Then we have
min
a∈N

ra ≤ 1
|N | + δ(1 − 1

|N | ).

Proof. Set rac = IP[γξa = c]. We have∑
a∈N

ra =
∑
a∈N

raa = rbb +
∑
a∈N
a�=b

raa.

Now we have
rbb = 1 −

∑
a∈A
a�=b

rba ≤ 1 −
∑
a∈N
a�=b

rba.

We have ∑
a∈N

ra ≤ rb +
∑
a∈N
a�=b

ra ≤ 1 −
∑
a∈N
a�=b

rba +
∑
a∈N
a�=b

raa

= 1 +
∑
a∈N
a�=b

(raa − rba) ≤ 1 +
∑
a∈N
a�=b

|raa − rba|.
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Now take
raa =

∑
u

IP[ξa = u & γu = a] =:
∑

u

xu,

rba =
∑

u

IP[ξb = u & γu = a] =:
∑

u

yu.

Using the independence, we obtain xu = IP[ξa = u]IP[γu = a] and yu = IP[ξb =
u]IP[γu = a]. We have |xu − yu| ≤ IP[γu = a]|IP[ξa = u] − IP[ξb = u]| ≤
|IP[ξa = u] − IP[ξb = u]|, and hence |raa − rba| ≤

∑
u |xu − yu| ≤ d(a, b). Thus∑

a∈N ra ≤ 1 +
∑

a∈N
a�=b

d(a, b) and we obtain the claimed result.�

3 Optimization criteria for inverting random
functions

Theorem 4 Assume that we have finite sets A and U , a function w : A → IR,
and a random function Ξ : A → U . A random function Γ∗ : U → A maximizing∑

a raw(a) can be defined in the following way: for any fixed u ∈ U , γ∗
u = a∗

for sure if for all a ∈ A, IP[ξa∗ = u]w(a∗) ≥ IP[ξa = u]w(a).

Proof. This theorem occurs in the setting of statistical decision theory in
the book of Berger [3] p. 159. For completeness we give a proof. We will prove
an even more general result in Section 4. We have to solve the following linear
program in order to find Γ∗:

for all a ∈ A, u ∈ U, IP[γu = a] ≥ 0;

for all u ∈ U,
∑

a

IP[γu = a] = 1;

max
∑
u∈U

∑
a∈A

IP[γu = a]IP[ξa = u]w(a).

The Duality Theorem of linear programming [17] applies:

max{cTx : Mx ≤ b} = min{yT b : y ≥ 0, yTM = c},

if both optimizations are taken over nonempty sets. The Duality Theorem
applies with the following setting: collect the values IP[γu = a] in a column
vector y of length |U ||A|, the values −IP[ξa = u]w(a) into a row vector b of
length |U ||A|, cT = (1, 1, ..., 1) of length |U |, and set the |U ||A| × |U | matrix M
by

(a,u)Mu′ =
{

1, if u = u′,
0, otherwise.
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We see that the dual problem comes in variables xu (u ∈ U),

for all a ∈ A, xu ≤ −IP[ξa = u]w(a),

max
∑
u∈U

xu.

Clearly
xu ≤ −max

a∈A
IP[ξa = u]w(a),

and hence for every feasible solution xu we have∑
u∈U

xu ≤ −
∑
u∈U

max
a∈A

IP[ξa = u]w(a).

This bound for the dual objective function is attained with setting the values
of Γ∗ as it is in the statement of the Theorem. �

Theorem 5 Assume that we have finite sets A and U and a random function
Ξ : A → U . The random function Γ† : U → A maximizing mina∈A ra has the
following good characterization:

min
a∈A

ra = max
µ

∑
u∈U

max
a∈A

µ(a)IP[ξa = u],

where µ is a probability distribution on A, i.e.
∑

a∈A µ(a) = 1 and µ(a) ≥ 0 for
every a ∈ A. An optimal Γ† can be computed by linear programming.

Proof. Finding Γ† can be written as the following linear program:

for all a ∈ A, u ∈ U, IP[γu = a] ≥ 0;

for all u ∈ U,
∑

a

IP[γu = a] = 1;

for all a ∈ A, ha ≥ 0;
s ≥ 0;

−ha − s +
∑
u∈U

IP[ξa = u]IP[γu = a] = 0;

min −s.

The Duality Theorem of linear programming [17] states that

max{cTx : Mx ≤ b} = min{yT b : y ≥ 0, yTM = c},

if both optimizations are taken over nonempty sets. From here the required
characterization immediately follows. Note that this characterization is present
in a different terminology in [3] Chapter 5. �
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It seems to be an interesting new observation, that for |A| = 2, Γ† can be
computed by the greedy algorithm. Let A = {a, b}, pi = IP[ξa = ui], and
qi = IP[ξb = ui]. Denote xi = IP[γui = a] and 1 − xi = IP[γui = b]. We have to
solve:

0 ≤ xi ≤ 1∑
i

pixi =
∑

i

(1 − xi)qi

max
∑

i

pixi,

since some optimal solutions have to satisfy ra = rb. The middle line of the
linear program can be rewritten as∑

i

(pi + qi)xi =
∑

i

qi.

From here, the following greedy algorithm gives the solution: sort the numbers
pi

pi+qi
into decreasing order. Assume now without loss of generality that this

order is j1, j2, ..., j|U|. Let i∗ denote the smallest index for which
∑i∗

l=1 pjl
+qjl

>∑|U|
i=1 qi, and let

r∗ =
1

pi∗ + qi∗

( |U|∑
i=1

qi −
i∗−1∑
l=1

(pjl
+ qjl

)
)

.

Set

xji =

{ 1, if i < i∗,
r∗, if i = i∗,
0, if i > i∗.

(2)

Furthermore, if |A| > 2, and for every every a, b ∈ A we knew all the numbers
ci(a, b),

ci(a, b) = IP[γui = a] + IP[γui = b]

for a Γ† solution, then the argument above makes it possible to find IP[γui = a]
and IP[γui = b]. Just modify the linear progam to

0 ≤ xi ≤ ci (3)∑
i

pixi =
∑

i

(ci − xi)qi (4)

max
∑

i

pixi, (5)

Let i∗ denote the smallest index for which
∑i∗

l=1(pjl
+ qjl

)cjl
>

∑|U|
i=1 ciqi, and

let

r∗ =
1

pi∗ + qi∗

( |U|∑
i=1

ciqi −
i∗−1∑
l=1

(pjl
+ qjl

)cjl

)
,
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and change 1 in the first line of (2) to ci.

The modification of the greedy algorithm is straightforward. We are left
with the following

Problem 1 Is there a clear combinatorial way to give an optimal Γ† solution
also for |A| > 2? If a Γ has the property, that for all a, b ∈ A, xi = IP[γui = a]
is an optimal solution for (3,4,5), is then necessarily Γ an optimal Γ†?

The following example shows that some elements of A may never be re-
covered by the MLE principle, although all elements of A may be returned
by high probability under the minimax criterion. Take A = {1, 2, ..., n + 1},
U = {1, 2, ..., n}, and define ξi = i for sure for i ≤ n, and ξn+1 = i with proba-
bility 1

n for i = 1, 2, ..., n. Clearly, using MLE we never get back (n+1). Define
Γ by

γj =
{

n + 1, with probability 1/2,
j, with probability 1/2

for j = 1, 2, ..., n. It is not difficult to see that IP[γξi = i] = 1/2 for all i =
1, 2, ..., n + 1.

Problem 2 How much the MLE criterion can differ from the minimax crite-
rion? Which situations are the worst?

Problem 3 There is a natural definition for a Γ : U → A. Namely,

IP[γu = a] =
IP[ξa = u]∑

b∈A IP[ξb = u]
.

Is there any optimization criterion under which this Γ is the best random func-
tion to invert Ξ?

4 How to use maximum likelihood in phy-
logeny?

Let us turn now to inverting parametric random functions.

Theorem 6 For a parametric random function Ξ : B → U , a random function
Γ∗ : U → A maximizing

∑
a∈A

∫
Ra,θdµa(θ) can be obtained by the following

rule: for any fixed u ∈ U , γ∗
u = a∗ for sure if for all a ∈ A,∫

IP[ξ(a∗,θ) = a∗]dµa∗(θ) ≥
∫

IP[ξ(a,θ) = a]dµa(θ).
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Proof. Apply Theorem 4 in the following way: for a parametric random
function Ξ : B → U , assign a random function Υ : A → U in the following
way:

IP[υa = u] =

∫
ξ(a,θ)dµa(θ)∫

dµa(θ)
.

The value of ra regarding Γ ◦ Υ is∫
R(a,θ)dµa(θ)∫

dµa(θ)
,

and Theorem 4 applies to Γ ◦ Υ with w(a) =
∫

dµa(θ). �

Theorem 6 is interesting from the following point of view. For phylogeny
reconstruction, several stochastic models are in use, like the Cavender-Farris
(or Neyman) model [5, 16], the Kimura 3-parameter model [14], and even more
general stochastic models [19, 9]. All these models are easily described as para-
metric random functions. A θ associated to a fixed tree would represent the
stochastic mutation mechanism associated with the tree, the models mentioned
above associate numbers or matrices to the edges of tree. The model prob-
abilities with which certain biomolecular sequences occur in the leaves of the
tree, also depend on these numbers or matrices, and not just on the tree it-
self. The numbers

∫
dµa(θ) can be interpreted as a prior distribution on A if∑

a∈A

∫
dµa(θ) = 1. Arguments and models have been made in phylogeny to

explain that not all trees are equally likely as phylogenetic trees [1, 4, 13]. A
prior distribution may be convenient to describe this situation.

Maximum Likelihood Estimation, as it is used in the practice of phylogeny
reconstruction, would take the Γ∗, for which for every fixed u γ∗

u = a∗ for sure
if there exists an (a∗, θ∗) ∈ B, such that for all a ∈ A, and all (a, θ) ∈ B,
IP[ξ(a∗,θ∗) = u] ≥ IP[ξ(a,θ) = u]. (In case of ties, randomization is possi-
ble and usual). Theorem 6 shows that this Γ∗ is not necessarily maximizing∑

a∈A

∫
Ra,θdµa(θ), since the Duality Theorem yields a different criterion. If

one would like to keep this maximizing property, then one has to use MLE in
a slightly different way, as it is described in Theorem 6. There are certainly
difficulties in doing so,

(1) one needs a measure on the parameters—how can we convince ourselves that
we have an appropriate measure?

(2) evaluating the integrals associated with the modified selection criterion can
be difficult. Actually people are now starting to use biologically motivated priors
on trees [1, 4, 13] and on the edge parameters (but for slightly different things
than the modication of MLE that we mention). They [21] are also estimating
the integrals (with some success), so perhaps both difficulties can be overcome.
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It is a natural question if bad examples like in the previous section can also
happen in phylogenetics. Recently Siddall [18] exhibited an example where the
parsimony principle [20] beats MLE. This example also shows the difference
between the minimax and MLE reconstruction.

Take for example, the set A to be the set of 3 resolved (binary) trees on 4
leaves, each having equal prior probability 1/3. For each tree a ∈ A with its
associated set of 5 edges E(a), randomly select the parameter θ = {(e, θe) : e ∈
E(a)} by selecting θe ∈ (0, 0.5) according to a joint probability density function
that is everywhere positive, but which concentrates all but δ of its measure into
a region for which p(e) > 0.5− ε for three edges all incident with a single vertex,
and p(e) < ε for the other two edges. Suppose we now indendently evolve k
sites on these three trees under the Neyman 2-state model [5], in which θe is
interpreted as the probability that a change of state occurs on edge e. Then
the expected reconstruction probability for the (ordinary) maximum likelihood
method is (approximately) 1

3 for ε and δ sufficiently small (and k fixed), yet
for the maximum parsimony method ([20]) the expected reconstruction prob-
ability (over B) is (approximately, ε, δ sufficiently small) 1 − (3

4 )k and so can
be arbitrarily close to 1. Note this example also give a phylogenetic example
where Maximum Likelihood can also fail to maximize the minimum expected
reconstruction probability mina∈A

∫
R(a,θ)dµa(θ).
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