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Abstract

A comlement to A.M.Olevskii’s fundamental inequality on logaritmic growth of
Lebesgue functions of an arbitrary uniformly bounded orthonormal system on a set
of positive measure is made. Namely, the index where the Lebesgue functions have
growth slightly weaker than logarithm can be chosen independent of the variable.
The theorem proved in this paper improves one result established earlier by the
author.

1 Introduction

The role of Lebesgue functions in divergence phenomena is crucial. The fundamental
inequality of A.M.Olevskii on growth of Lebesgue functions on sets of positive measure
for general uniformly bounded orthonormal systems is well known [1-3]:

Theorem 1 (A. M. Olevskii ). Let {p,(x)}2, be an arbitrary ONS on [0, 1] that satisfy
the conditions:

lon(z)] < M, n=1,2,3,..., 2 €0,1]. (1)
Then for each n > 1 the following inequality holds
Il {w €[0,1]: max Ly (x) > Clog, n} >y >0, (2)

where 1 is the Lebesgue measure on [0, 1], C and v are positive constants that depend only

on M and )
Ln(@) = [
0

é%(m)wk(ﬁ)'dﬁ, m=1,2,...,z€0,1], (3)
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denotes the m-th Lebesque function of the system.

In this paper we prove a theorem that complements to some extent inequality (2).
The method of proof used by us is originated with the method of A.M.Olevskii. Namely,
the following is true:

Theorem 2 . Let {¢,(x)}22, be an orthonormal system on [0, 1] that satisfies (1). Then
for each n > pg there exists an index m,, < n such that

log, n

,u{ccE[O,l]: Ly, () >C } >y >0, (4)

- 1log2 log, logy n
where po, C1 and ~, are positive constants that depend only on M in (1).

The novelty of the inequality (4) is that the index m,, does not depend on z. The weaker
inequality than (4) was proved by us in [4]. In connection with the inequality (2) we
should also note [5] and [6].

We will prove in fact the ” 2"- version” of Theorem 2 because it is convenient for
notations. So we will establish the following

Theorem 3 . Let {¢, ()}, be an ortonormal system on [0, 1] that satisfies (1). Then
for each n > ng there exists an index N,, such that N,, < 2"t* and

,u{x €1[0,1]: Ly, (z) > Cy } > 9 >0, (5)

log, logy n
where ng, Cy, Y2 are positive constants that depend only on M in (1).

Consider the sets

n
FN:{a;e[o,u;LN(x)_@}, N=1,2,.... (6)
We may assume that
1 n+4
,LLFNSW forallN:1,2,...,2 y (7)

otherwise Theorem 3 is already established.



It is obvious that there exists a finite sequence of pairwise disjoint measurable sets
eg."), Jj=1,2,...,q(n), such that

q(n) n)
U e =1[0,1] (8)
j=1
and for all j =1,2,...,¢q(n) and k =1,2,..., 2" we have the inequalities
1
(1) — enl(@2)] < 557 (9)

for z; € egn)

Let also

, Ty € eg-n).

b = [ | (10)

3logyn

where by [a] is denoted the integer part of the real number a.

2 The basic Lemma

Now we formulate the basic

Lemma 1 . Suppose (7) holds. Then for each n > ng there ezist finite sequences:
of positive integers

mo=2"<my <my < ... <My < 2" (11)

of the sets
HP c[0,1], p=12,... k(n), (12)

of the sets QW) (x) C [0,1] ,that are defined for all z € [0,1] and p = 1,2, ... k(n), such
that

n+2
my —my_1 < e forall p=1,2,...k(n) (13)
and )
(P) > S =
pHP > SEITER forall p=1,2,... k(n). (14)

More than that for allp =1,2,...k(n)

OV (11) = QP (z,), el meel”, j=1,2...., q(n), (15)
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and for all xz € [0, 1]
Q@) NQ(2)=¢ 1< i< j< k(n) (16)

Also the following inequalities hold:

- n3P=Nn?log, n

pQP (z) < o forall p=1,2... k(n), x€][0,1] (17)
and for each x € HP) we have
/ % () ou ()| di) > — log 1 (18)
o) (o) | = TEI PR = 386M1 | 3log, logyn |’

where ng depends only on M from (1).

3 Proof of Lemma 1

The proof of the first step in the Lemma is completely similar to the construction of the
p + 1-th step. So we will show only the latter.

Now we suppose that al the steps in Lemma 1 have been carried out from the first up
to the step p,p < k(n).

3.1 The Assumption After the p-th step and its Analysis

Let F}, ,,,, where m > m,, be the set of all points that posses the following property:
for x there exists a measurable set Go(z) C [0, 1] such that

i log, n
M| dy > —=— 19
Lo 2 addd)|dv = = (19)
and 2]
uGo(z) < 10 9821 (20)

2n
We will need the following



Lemma 2 . Suppose that some integer m', satisfies simultaneously the following condi-
tions

, 2n+2
mp S m S my + W (21)
and )
E 22
:u b, - 256M2 ( )

Then the p + 1-th step of Lemma 1 can be constructed.

Proof of Lemma 2. Indeed let 7 be an index such that
& N Fpr # 6, 1< < q(n).

Then for each such j we choose an arbitrary point :c ) from egn N Fy m and keep it fixed.

It is clear that for each such point there exists a set Go(xj )) C [0,1] that satisfy the
inequality

/G e k_%+l<p(:cgl>) (0)| dv > loi—gn (23)
and at the same time 3702 loc. 1
Golal)) < T Lo 1
We introduce the set »
Qgp+1)(x§1)) — GQ(CL’gl)) \ oW (:cg»l)). (25)

Then by the assumption up to the step p in Lemma 1 we get (cf.(17),(21),(1)))
Z (@) pn(9)

/ (Z) (1)
Uf:lQ —mp—l-l

< 422" 2”: 30=Dn2log, n < 8M>n?n3P=V log, n
- on - n3p

dv

3p
n i—1

_ 8M?logy n
n



Consequently, we get for n > ng (cf.(23)-(25))

log, n
k(9)|dY > . 2
Finugn |, 35, peeonto]ao = 2% 2
and 3. 2

< on
We now define the sets QP+ (z) for all z € [0,1] on each eg»"), j =1.2....q(n), by the
following equalities
QP+ (z) = Qgpﬂ)(xg»l)) for all z € egn) if eg»") NFyp # ¢ (28)
and
QP () = ¢ forall =€ e§n) if eg-") NFypw = . (29)

Let x € F}, v be arbitrary. Then (cf.(8))there exists an integer Jo that depend on x such

that x € e(n) N Fy,m. We have already chosen the point a: ) from e( "N F, v such that
(cf. (27), (26))

log, n
k(9)|dY >
/Q(p+1)( (1) i %_H oz () = 749 (30)
where 321
MQngrl)(I%)) < n n2n0g2n. (31)
But then by the definition of €§n) (¢f.(9),(30),(31)and (28)) we conclude
log, n
)| dY > 32
/lepﬂ)( . %_H or(® 50 (32)
where (cf.(31))
3p 21
uQE () < %' (33)
¢ From the assumption of induction up to the step p (cf.(29),(15)) and (25) we have
Q@) NP () =¢ 1< j<p,zecl01] (34)
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Now we define the set H®*Y and index Mmyp4+1 from Lemma 1. Introducing the set

log, n
(p+1) _ . 2
L {x € L '/n“’*” ‘Cw = 700 }
we let )

H1(1p+1) — T7(Lp+1) and myyq =m,, if pT) (p+1) > > o
and ]

Hr(Lp—i_l) = Fp,m’ \Tn(p+1) and mp+1 = m/ if MTn(p+1)) < m
Lemma 2 (cf.(32)-(34))is proved.
The next is
Lemma 3 . Let | be an integer such that
<1< | 19®n |
— 7 |3log,log,n
integer m; — any index exceeding my, from Lemma 1 and r, defined as
/r, — m/ _I_ Q—n
P [nr(logyn)t ]
Suppose that for some x € [0, 1] we have
1
/ Z o) ()] do > 282
e 1 24
where
2" 2"
A,y =19 € e
pt = { 0,1] n?P(log, n) 3ln |, %:H el | ~ n3P(log, n)3 logy n

Then

S ani U Fp,f{'

}

(35)



Proof of lemma 3. Indeed from (37) and (38) it follows that there exists a measurable set
G1(z) with the following properties:

log, n
N dy = —==—,
/Gl("”) k %:H Pl 24
and
Gr(2) € Ay
According to (38) we have
2" log, n
G
n??(log, n)f"’ln'u DY
and ,consequently,
n*Pn?log, n
HGh () < 2 (40)
So we get that either
log, n
)| d9 > ,
/ @) |y %H% 18
and then x € F, /. or
log, n
Lo S o) > 8"
k=mp+1 48
and then x € F .
Lemma 3 is established.
3.2 Construction of the p+1-th step of Lemma 1
We may assume that
1 n+2
MFp’mSW for mp+1§m§mp+[n3p], (41)
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otherwise, by Lemma 2, it would remain nothing to construct.

Let |
08y M
=|—]. 42
r(n) [310g2 log, n] (42)

We will show first the following

Lemma 4 . Suppose (41) holds. Then for each n > ng there exist finite sequences: of
positive integers

(43)

2n+4

n3p
of the measurable sets
AD co,1], 1=1,2,...7(n), (44)

of the measurable sets w¥(x) C [0,1] ,that are defined for all x € [0,1], and | =
1,2,...r(n), such that

21’L
(log, )0

/ /
my —my_y <

5 Joralll=1,2,.. .r(n) (45)

and .
phV > I forall 1=1,2,... r(n). (46)

More than that for alll =1,2,...r(n) we have

wO(@) =wO(@y), z1€el”, meel, j=1,2....,r(n), (47)
and for all x € [0,1]
W@ NwD(@)=¢ 1< i< j<r(n) (48)
Also the following inequalities hold:

log, n)3=Yn® log, n
(1) (log, g2
p (@) < INVEST

and for each x € h¥) we have

~/w(l)(m)

where ng depends only on M from (1).

forall 1=1,2... r(n), x€][0,1] (49)

1

>
W= Sone

S o))

k=mp+1




Proof of Lemma 4. We will prove this lemma by induction. We note that the construction
of the 1-st step is absolutely similar to the construction of the 1+1-th step. So we will
give only the construction of the latter one.
Now suppose that all the steps up to the 1-th step have been carried out and [ < r(n).
We introduce the integer

- lLl | (51)

n? (logy n)*

It is clear that (cf.(11),(45),(43),(51))

2”§m,,+1§mggr;§mp+ﬁgzn+4. (52)
Let ,
o= jrebils 3 2|t (53
k=m]+1 2 | n*(logy n)
Then (cf.(53),(51))
l on ] 1 f: 2( \d
§/ prlz)dx
n? (log, n)* O f=mi+1 *
1 2"
-/ + / < (MPukl,, + —) s
/ b O, P a) [ (log, n)?
and, consequently,
1
piki g = oM (54)

Next we introduce the set

p;+1 = kl,—i-l \ (me U Fr{ U Fp,m{ U Fp,rl’) . (55)
By the assumptions (7) and (41) and also (52),(54) we have

1 4 S 7
2M?  256M2 — 16M?

[Py >
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Let now ¢ be an index such that

N Np £ 6, 1<i<q(n).

Then for each such 7 we choose an arbitrary point y(l“)

So we have(cf.(51),(55)) Z

o] £ (£, s

k=m/+1

(n)

from e;"” Np;,, and keep it fixed.

2n
<M | —— / YR (9)| dv
B [n?”’(logzn) 1 B(pJ) |, %:H% or(0)
2”
V)| dv
+n3p(log2 n)3 logzn/ Alpl) |, %l:ﬂgo ()
2n
Ndy =1+, + I
+n3p(log2n)3l n/c(pl . %:HSO er(V) 1+ 12 + 13,
where
aefreo— 2 | ] < 2
ph © nr(logyn)iin T |, m+1(p ~ n?(logyn)3 log, n
and
2n
B,y = {9€[0,1] on( 9)| > 57
" { k %:—H o )' n3 (logy n )™ 10%2”} (57)
and
2n
Coi= 19 €10,1] or( V)| < ————.
o ] 5 0] < ot |

According to the definition of the sets Fiy (cf.(6),(3),(52)) we have

* = ¥ (logy n)¥n 162 ~ 16207 (log, )™
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. From the definition of the sets F}, ,,,, Lemma 3 and (19),(35),(36),(39),(20),(37),(55),(52)we

get
21’L

I, <
2= 2430 (logy n)¥

Consequently, we conclude for n > ng that

7"2 1
DY o, (9)] do > .
/. -, %:w e en)| i =
It is obvious that one can find a set
Gy € B(p, 1)
such that
1
o ( ()| dY = )
i From (57) we have
2" 1+1 1

1 (log, n)3 log, n'ugl“(yZ )= 4M2

and, consequently,

(z+1))< 1 n3p(10g2n)3l10g2n.

Let 1
w(l+1)(y2(l+1)) _ l+1 l+1 U (l+1 . (59)
then we have from the assumption of the mductlon (cf.(51),(49))
i (4)
/U5 WD) k_%;ﬂ Wk(yl+1)80k(19) dd
)
20n l 3p 3(1-1)
< M=2 Z (log, n)3U logyn < 2(logy 1) logy n
4M?2n? (logy )3 — 2n 4(logy n)3
B 1
2(logy m)?
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So we get for n > ng (cf.(59))

/w(l+1)(y£l+1

We now define the sets w1 (z) for all z € [0,1] on cach €™, i = 1,2,... g(n), by the
following equalities

Z ey )p(0)| dY >

k:m—i—l

W () = WD (Y for all 2 € & if e Npp,, # ¢ (61)

and
w(l“)(a;) =¢ forall ze e§”’ if e (n) NP = o (62)

According to (8), (9), (61), we get for all € pj,, and n > ng

/ww ot )| 2 10}\42 (63)
JFrom (59),(47) it is obvious that for all z € [0, 1]
W@ Nw(@)=¢ 1< i <l+1 < r(n). (64)
and from (61),(62)
WD (z)) = WD (2y), zy €€l maee™, i=1,2,..., r(n). (65)
Now we Introduce the set
H0+1) {x € P - /(m) Z or(x )| d9 > 20}\42}
k=mp+1

We define

7
1+1 1+1 . 1+1
h(+):t(+)and m2+1:m2 lf/,Lt(—‘r)ZW
and .
I+1 1+1) (I+1
A =g A\t and my,, =7 if ) < Ve
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It is clear that (cf.(41)-(53),(56),(58), (63)-(64)) the I 4+ 1-th step of the lemma is now
constructed and so Lemma 4 is proved.

Now we start the construction of the p+1-th step Lemma 1 using Lemma 4.

Let

7
et = {x € [0,1] lep > Wr(n)} (66)

where each x;, is the characteristic function of the set h® from Lemma 4.
It is obvious that (cf.(14),(12),(66),(46))

32]\42 / Z Xl /W - /[0,1}\43”1)

7
< (p+1)
< r(mpef™ 4 (),
and, consequently,
7
+1
pedtt > sz (67)
Now we take an arbitrary point x from e®*!) and keep it fixed. Then accordmg to (66)
there exists a finite sequense of integers depending on z, 1 < [} < ... < Lty < < r(n)
such that
zeh =12 4(n) (68)
and
j'(n) > WT(H)- (69)
Taking account of (45) we conclude for all i =1,2,3,... j'(n) that
r(n) (n) on 2n+1
/ r I
My (ny — My, = S:%;rl(ms mg ) < Z  (logy )36 Dn3» < (log, n)in" (70)
And for all i = 1,2,3,... j/(n)
l; 1
D) dv > ) 71
Love, 2 ade)e0)|di 2 g (71)
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According to (1),(68)-(71),(49),(48) it is clear that

| dd
\/L\J:(q)u)(l)(w) k_ZH i) Z/ @) |, Z—H o () or(V)
- =mp = myp
i'(n) m, i'(n) ()
>3 [ a@a®| -y [ 1Y e do
j'(n) 2 S (1)
= 20M2 ; Hw (I)(mr(n) m,)

) log, n(log, n)3¢i—1

2
— 20M? ; 4M?(log, n)3

J) ) 1 [ logm
—20M2%2  2(logyn)? T 192M* | 3log,logyn |

Consequently we have constructed the set eP*1) such that (67) holds and for all z € eP*+V)
we have

e 1 logy n ]
ok ( )| o > [ . 72
/ @) |, %H g 192M* | 3log, logy n (72)
where .
GPrO(x) = |J wO(2). (73)

=1
We note that (cf.(49),(42),(73)) for all z € [0, 1]

") (log, n)*=Vn log, n < 2(log, n)3r)=1n3 log, n

(p+1)
pG (@) < - < -
Car AM?2 AM?2

- n3nlog, n
- 4M?2n

Now we define the set Q®+Y(z) in Lemma 1 as follows

(@) = GO @)\ U 20 (a), (74)
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We have from the assumption of the induction in Lemma 1 up to the p-th step (cf.(17))

() P ‘
/u" o > ) d¥ < M? ( ()~ mp) S0 (z)

i=1 (CC) k= mp—‘,-]_ =1

M?2" P n3=n?log, n < 2M? logy n

3p n —
nr 2 n

We conclude from (74),(72) that for n > ny and for all x € eP+!)

) 1 log, n
9| di > 2 :
~/Q£f’+1)(m) k:%ﬂgok(:c)gok( ) — 193M* | 3log, loan]

We introduce the set

1 log, n
(p+1) (p+1) )| d > 2 .
@ {x < / P () — 386 M4 [3log2 log, n] }

Now we define the set H*Y and index m,; from Lemma 1. Let

ZS%

7

Hr(zpﬂ) = QSLPH) and myy =m, if MQ(pH = 1902
and .
Lemma 1 (cf.(14),(74),(73)) is proved.
4 Proof of Theorem 3.
We introduce the set

E, = 6012 ! k(n) (75)
" X1 (1) 2 5570

where Xl(,lp) is the characteristic function of the set H® from Lemma 1
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Analogiously to (67) we get

B>
HEn = 024002 (76)

Now we take an arbitrary point = from F, and keep it fixed. Then (cf.(75)) there exists
a finite sequense of indices depending on z, 1 <p; < ... < pjm) < k(n) such that

re HP) =12 ... jn) (77)
and .
i(n) > ———k(n). 78
O —— (78)
Now let
Taking account of (13) we have for alli =1, 2 ... k(n)
k(n)—1 k(n)—1 2n+2 2n+3
Ny —my, = p;z (Mpy1 —my) < pzl:h n3p < n3pi
as well as
k(n)—1 k(n)—1 1
Nn =mg+ Z (mp+1 _ mp) S on + 2n+2 Z _3p S 2n+4‘
p=0 p=0 n

According to (77) (78),(10),(16)-(18) it is obvious that

i(n)
/ ‘dﬁ>2/(m( ‘dﬁ
= Z/(p- Z(’Ok ‘dﬁ Z/(p) Z or(r)er(9)| dY
=1 Sl @) | k=my, +1
> G logyn Jf: M2(N, — m,,) Q@) (z)
log, log, n = 2 on
] i(n) n3@i—1)
> Gi)logsn o0 |
log, logy n — i
an
~ log, logyn’

for some constants Cy and Cj that depend only on M from (1).
Theorem 3 (cf.(3),(5),(76)) and, consequently, Theorem 2 are proved completely.
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