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The question of finding an optimal dictionary for nonlinear m-term ap-
proximation is studied in the paper. We consider this problem in the periodic multi-
variate (d variables) case for classes of functions with mixed smoothness. We prove
that the well known dictionary Ud which consists of trigonometric polynomials (shifts
of the Dirichlet kernels) is nearly optimal among orthonormal dictionaries. Next, it
is established that for these classes near best m-term approximation with regard to
Ud can be achieved by simple greedy type (thresholding type) algorithm.

The univariate dictionary U is used to construct a dictionary which is optimal
among dictionaries with the tensor product structure.

1. Introduction

This paper is devoted to nonlinear approximation, namely, to m-term approxi-
mation. Nonlinear m-term approximation is important in applications in image and
signal processing (see for instance the recent servey [D]). One of the major questions
in approximation (theoretical and numerical) is: what is an optimal method? We
discuss here this question in a theoretical setting with the only criterion of quality
of approximating method its accuracy. One more important point in the setting
of optimization problem is to specify a set of methods over which we are going
to optimize. Most of the problems which approximation theory deals with are of
this nature. Let us give some examples from classical approximation theory. These
examples will help us to motivate the question we are studying in this paper.

Example 1. When we are searching for n-th best trigonometric approximation of
a given function we are optimizing in the sense of accuracy over the subspace of
trigonometric polynomials of degree n.

Example 2. When we are solving the problem on Kolmogorov’s n-width for a
given function class we are optimizing in the sense of accuracy for a given class over
all subspaces of dimension n.

1This research was supported by the National Science Foundation Grant DMS 9622925 and
by ONR Grant N0014-96-1-1003
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Example 3. When we are finding best m-term approximation of a given function
with regard to a given system of functions (dictionary) we are optimizing over all
m-dimensional subspaces spanned by elements from a given dictionary.

Example 2 is a development of Example 1 in the sense that in Example 2 we
are looking for an optimal n-dimensional subspace instead of being confined to a
given one (trigonometric polynomials of degree n). Example 3 is a nonlinear analog
of Example 1, where instead of trigonometric system we take a dictionary D and
allow approximating elements from D to depend on a function. In this paper we
make some steps in a direction of developing Example 3 to a setting which is a
nonlinear analog of Example 2. In other words, we want to optimize over some
sets of dictionaries. We discuss in this paper two classical structural properties of
dictionaries:

1. Orthogonality;
2. Tensor product structure (multivariate case).
Denote by D a dictionary in a Banach space X and by

σm(f,D)X := inf
gi∈D,ci,i=1,...,m

‖f −
m∑

i=1

cigi‖X

best m-term approximation of f with regard to D. For a function class F ⊂ X and
a collection D of dictionaries we consider

σm(F,D)X := sup
f∈F

σm(f,D)X ,

σm(F, D)X := inf
D∈D

σm(F,D)X .

Thus the quantity σm(F, D)X gives the sharp lower bound for best m-term approx-
imation of a given function class F with regard to any dictionary D ∈ D.

Denote by O the set of all orthonormal dictionaries defined on a given domain.
B.S. Kashin [K] proved that for the class Hr,α, r = 0, 1, . . . , α ∈ [0, 1], of univari-
ate functions such that

‖f‖∞ + ‖f (r)‖∞ ≤ 1 and |f (r)(x) − f (r)(y)| ≤ |x − y|α, x, y ∈ [0, 1]

we have

(1.1) σm(Hr,α, O)L2 ≥ C(r, α)m−r−α.

It is interesting to remark that we cannot prove anything like (1.1) with L2 replaced
by Lp, p < 2. We proved (see [KT]) that there exists Φ ∈ O such that for any
f ∈ L1(0, 1) we have σ1(f,Φ)L1 = 0. The proof from [KT] also works for Lp, p < 2,
instead of L1.

Remark 1.1. For any 1 ≤ p < 2 there exists a complete in L2(0, 1) orthonormal
system Φ such that for each f ∈ Lp(0, 1) we have σ1(f,Φ)Lp = 0.

This remark means that to obtain nontrivial lower bounds for σm(f,Φ)Lp , p <
2, we need to impose additional restrictions on Φ ∈ O. One way of imposing
restrictions was discussed in [KT], and we present another way in Section 4.
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We discuss in this paper approximation of multivariate functions. It is conve-
nient for us to present results in the periodic case. In this paper we consider classes
of functions with bounded mixed derivative MW r

q (see the definition in Section 3)
and classes with restriction of Lipschitz type on mixed difference MHr

q (see the def-
inition in Section 2). These classes are well known (see for instance [T2]) for their
importance in numerical integration, in finding universal methods for approxima-
tion of functions of several variables, in the average case setting of approximation
problems for the spaces equipped with the Wiener sheet measure (see [W]) and in
other problems. In Section 4 we prove

(1.2) σm(MHr
q , O)L2 ' m−r(log m)(d−1)(r+1/2), 1 ≤ q < ∞,

(1.3) σm(MW r
q , O)L2 ' m−r(log m)(d−1)r, 1 ≤ q < ∞.

In Sections 2 and 3 we prove that the orthogonal basis Ud which we construct
at the end of this section provides optimal upper estimates (like (1.2) and (1.3))
in best m-term approximation of the classes MHr

q and MW r
q in the Lp-norm,

2 ≤ p < ∞. Moreover, we prove there that for all 1 < q, p < ∞ the order of best
m-term approximation σm(MHr

q , Ud)Lp and σm(MW r
q , Ud)Lp can be achieved by a

greedy type algorithm Gp(·, Ud). Assume a given system Ψ of functions ψI indexed
by dyadic intervals can be enumerated in such a way that {ψIj}∞j=1 is a basis for
Lp. Then we define the greedy algorithm Gp(·,Ψ) as follows. Let

f =
∞∑

j=1

cIj (f,Ψ)ψIj

and
cI(f, p,Ψ) := ‖cI(f,Ψ)ψI‖p.

Then cI(f, p,Ψ) → 0 as |I| → 0. Denote Λm a set of m dyadic intervals I such that

(1.4) min
I∈Λm

cI(f, p,Ψ) ≥ max
J /∈Λm

cJ(f, p,Ψ).

We define Gp(·,Ψ) by formula

Gp
m(f,Ψ) :=

∑

I∈Λm

cI(f,Ψ)ψI .

Remark 1.2. Let Φ = {φk}∞k=1 be a basis for a Banach space X and ‖φk‖X =
1, k = 1, 2, . . . . Assume that we can calculate the X-norm of a function f ∈ X
and each ck(f) from the expansion

f =
∞∑

k=1

ck(f)φk
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in a finite number of steps. Then there is an algorithm which for any f ∈ X gives
the biggest |ck(f)| after a finite number of steps.

Proof. We have for any f ∈ X

|ck(f)| ≤ B‖f‖X , k = 1, 2, . . . ,

with a constant B and

lim
n→∞

‖
∞∑

k=n+1

ck(f)φk‖X = 0.

Let f *= 0. We find a nonzero coefficient cl(f) and denote ε := |cl(f)|/B. Next, we
find n such that

‖
∞∑

k=n+1

ck(f)φk‖X < ε.

This implies that for all k > n we have |ck(f)| < |cl(f)| and, therefore, we can
restrict our search for the largest |ck(f)| to 1 ≤ k ≤ n.

The question of constructing an algorithm which realizes (in the sense of order)
the best possible accuracy is a very important one and we discuss it in detail in this
paper. Let Am(·,D) be a mapping which maps each f ∈ X to a linear combination
of m elements from a given dictionary D. Then the best we can hope for with this
mapping is to have for each f ∈ X

(1.5) ‖f − Am(f,D)‖X = σm(f,D)X

or a little weaker

(1.6) ‖f − Am(f,D)‖X ≤ C(D, X)σm(f,D)X .

There are some known trivial and nontrivial examples when (1.5) holds in a Hilbert
space X. We do not touch this kind of relations in this paper. Concerning (1.6) it
is proved in [T3] that for any basis Ψ which is Lp-equivalent to the univariate Haar
basis we have

(1.7) ‖f − Gp
m(f,Ψ)‖Lp ≤ C(p)σm(f,Ψ)p, 1 < p < ∞.

However, as it is shown in [T4] and in Section 5 of this paper the inequality (1.7)
does not hold for particular dictionaries with tensor product structure. We have
for instance (see Section 5)

(1.8) sup
f∈Lp

‖f − Gp
m(f, Ud)‖Lp/σm(f, Ud)Lp ' (log m)(d−1)|1/2−1/p|.

The inequality (1.8) shows that using the algorithm Gp(·, Ud) we lose for sure for
some functions f ∈ Lp, p *= 2. In light of (1.8) the results of Sections 2 and 3 look
encouraging for using Gp(·, Ud): we have for 1 < q, p < ∞ and big enough r

(1.9) sup
f∈MHr

q

‖f − Gp
m(f, Ud)‖p + σm(MHr

q , Ud)p + m−r(log m)(d−1)(r+1/2),
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(1.10) sup
f∈MW r

q

‖f − Gp
m(f, Ud)‖p + σm(MW r

q , Ud)p + m−r(log m)(d−1)r,

where we use the abreviated notation ‖ ·‖ p := ‖ ·‖ Lp .
Comparing (1.9) with (1.2) and (1.10) with (1.3), we conclude that the dictionary

Ud is the best (in the sense of order) among all orthogonal dictionaries for m-
term approximation of the classes MHr

q and MW r
q in Lp where 1 < q < ∞ and

2 ≤ p < ∞. The dictionary Ud has one more important feature. The near best
m-term approximation of functions from MHr

q and MW r
q in the Lp-norm can be

realized by the simple greedy type algorithm Gp(·, Ud) for all 1 < q, p < ∞.
Let us now compare the performance of Ud with the performance of the best

dictionary with tensor product structure. Denote by Πd the set of all functions of
the form u1(x1) . . . ud(xd), where uj ∈ Lp, j = 1, . . . , d. Then it is clear that for
any dictionary D, with tensor product structure, we have D ⊂ Πd and

σm(f,D)p ≥ σm(f,Πd)p.

The problem of estimating σm(f,Π2)2 (best m-term bilinear approximation in L2)
is a classical one and was considered for the first time by E. Schmidt [S] in 1907.
For many function classes F an asymptotic behavior of σm(F,Π2)p is known. For
instance, the relation

(1.11) σm(MW r
q ,Π2)p + σm(MHr

q ,Π2)p + m−2r+(1/q−max(1/2,1/p))+

for r > 1 and 1 ≤ q, p ≤ ∞ follows from more general results in [T5]. In the case
d > 2 almost nothing is known. There is (see [T6]) an upper estimate in the case
q = p = 2

(1.12) σm(MW r
2 ,Πd)2 , m−dr/(d−1).

Comparing (1.9), (1.10) with (1.11),(1.12) we conclude that m-term approximation
with regard to Ud does not provide an optimal rate of approximation among dic-
tionaries with tensor product structure. This observation motivated us to study
m-term approximation with regard to the following dictionary

Y := (U × Lp) ∪ (Lp × U) = {y(x1, x2)}

with y(x1, x2) of the form y(x1, x2) = UI(x1)v(x2), UI ∈ U, v ∈ Lp, or y(x1, x2) =
v(x1)UI(x2), v ∈ Lp, UI ∈ U . We prove in Section 6 that we have for r >
(1/q − 1/p)+

(1.13) σm(MHr
q , Y )p + σm(MW r

q , Y )p + m−2r+(1/q−1/p)+ , 1 < q, p < ∞.

Comparing (1.13) with (1.11) we realize that for 1 < q ≤ p ≤ 2 and 1 < p ≤
q < ∞ the dictionary Y which is much smaller than Π2 provides optimal m-
term bilinear approximation for the classes MHr

q and MW r
q . We also make the

following important point. The error of approximation in (1.13) can be achieved
by combination of a linear method and greedy algorithm Gp(·, U2).
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We define at the end of this section a system of orthogonal trigonometric poly-
nomials which is optimal in a certain sense (see above) for m-term approximations.
Variants of this system are well-known and very useful in interpolation of func-
tions by trigonometric polynomials. We define first the system U := {UI} in the
univariate case. Denote

U+
n (x) :=

2n−1∑

k=0

eikx =
ei2nx − 1
eix − 1

, n = 0, 1, 2, . . . ;

U+
n,k(x) := ei2nxU+

n (x − 2πk2−n), k = 0, 1, . . . , 2n − 1;

U−
n,k(x) := e−i2nxU+

n (−x + 2πk2−n), k = 0, 1, . . . , 2n − 1.

It will be more convenient for us to normalize in L2 the system of functions
{U+

m,k, U−
n,k} and enumerate it by dyadic intervals. We write

UI(x) := 2−n/2U+
n,k(x) with I = [(k + 1/2)2−n, (k + 1)2−n)

and
UI(x) := 2−n/2U−

n,k(x) with I = [k2−n, (k + 1/2)2−n).

Denote

D+
n := {I : I = [(k + 1/2)2−n, (k + 1)2−n), k = 0, 1, . . . , 2n − 1}

and
D−

n := {I : I = [k2−n, (k + 1/2)2−n), k = 0, 1, . . . , 2n − 1}

D+
0 = D−

0 = D0 := [0, 1), D := ∪n≥1(D+
n ∪ D−

n ) ∪ D0.

It is easy to check that for any I, J ∈ D, I *= J we have

〈UI , UJ〉 = (2π)−1

∫ 2π

0
UI(x)ŪJ(x)dx = 0,

and
‖UI‖2

2 = 1.

We use the notations for f ∈ L1

fI := 〈f, UI〉 = (2π)−1

∫ 2π

0
f(x)ŪI(x)dx; f̂(k) := (2π)−1

∫ 2π

0
f(x)e−ikxdx

and

δ+
s (f) :=

2s+1−1∑

k=2s

f̂(k)eikx; δ−s (f) :=
−2s∑

k=−2s+1+1

f̂(k)eikx; δ0(f) := f̂(0).
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Then for each s and f ∈ L1 we have

δ+
s (f) =

∑

I∈D+
s

fIUI ; δ−s (f) =
∑

I∈D−
s

fIUI ; δ0(f) = f[0,1).

Moreover, the following important for us analog of Marcinkiewicz theorem holds

(1.14) ‖δ+
s (f)‖p

p +
∑

I∈D+
s

‖fIUI‖p
p; ‖δ−s (f)‖p

p +
∑

I∈D−
s

‖fIUI‖p
p

for 1 < p < ∞ with constants depending only on p.
We remark that

(1.15) ‖UI‖p + |I|1/p−1/2, 1 < p ≤ ∞,

which implies for any 1 < q, p < ∞

(1.16) ‖UI‖p + ‖UI‖q|I|1/p−1/q.

In the multivariate case of x = (x1, . . . , xd) we define the system Ud as the tensor
product of the univariate systems U . Let I = I1 × · · · × Id, Ij ∈ D, j = 1, . . . , d,
then

UI(x) :=
d∏

j=1

UIj (xj).

For s = (s1, . . . , sd) and ε = (ε1, . . . , εd), εj = + or −, denote

Dε
s := {I : I = I1 × · · · × Id, Ij ∈ Dεj

sj
, j = 1, . . . , d}.

It is easy to see that (1.15) and (1.16) are also true in the multivariate case. It is
not difficult to derive from (1.14) that for any ε we have

(1.17) ‖δεs(f)‖p
p +

∑

I∈Dε
s

‖fIUI‖p
p, 1 < p < ∞,

with constants depending on p and d. Here we denote

δεs(f) :=
∑

k∈ρ(s,ε)

f̂(k)ei(k,x)

where
ρ(s, ε) := ε1[2s1 , 2s1+1 − 1) × · · · × εd[2sd , 2sd+1 − 1).

We will often use the following inequalities

(1.18) (
∑

s,ε

‖δεs(f)‖p
p)

1/p , ‖f‖p , (
∑

s,ε

‖δεs(f)‖2
p)

1/2, 2 ≤ p < ∞,

7



(
∑

s,ε

‖δεs(f)‖2
p)

1/2 , ‖f‖p , (
∑

s,ε

‖δεs(f)‖p
p)

1/p, 1 < p ≤ 2,

which are corollaries of the well-known Littlewood-Paley inequalities

(1.20) ‖f‖p + ‖(
∑

s

|
∑

ε

δεs(f)|2)1/2‖p.

We note that the system Ud
I can be enumerated in such a way that {UIl}∞l=1

forms a basis for each Lp, 1 < p < ∞. Indeed, let us first enumerate vectors
s = (s1, . . . , sd) with integer nonnegative components in such a way that for all
j = 1, 2, . . . we have ‖sj‖∞ ≤ ‖sj+1‖∞. Then we enumerate all dyadic intervals
in D following the rule: we proceed to enumerate the intervals from Dε

sj+1 after
enumerating all intervals from Dε

sj for all ε. Any partial sum with regard to {UIl}∞l=1
can be represented in the form

n−1∑

j=1

∑

ε

δεsj (f) +
∑

I∈Λn

fIUI =: f1 + f2,

where Λn ⊂ ∪εDε
sn . Then we get from (1.20)

(1.21) ‖f1‖p , ‖f‖p.

In order to prove the estimate
(1.22) ‖f2‖p , ‖f‖p

we use the following inequalities

‖δεs(f)‖p , ‖
∑

ε

δεs(f)‖p , ‖f‖p

and the relation (1.17). Thus, the norms of the operators of taking partial sums
with regard to {UIl}∞l=1 are uniformly bounded. This implies that {UIl}∞l=1 is a
basis for Lp, 1 < p < ∞. We remark that P. Wojtaszczyk [Wo] proved recently
that the system U is equivalent to the Haar system in all Lp, 1 < p < ∞, and,
therefore, is an unconditional basis for all Lp, 1 < p < ∞.

In Sections 2 and 3 we study efficiency of greedy algorithms with regard to Ud

on the classes of functions with bounded mixed derivative or difference.

2. The upper estimates for the classes MHr
q

In this section we study the classes MHr
q . We define these classes as follows (see

for instance [T2], p. 196). Let ∆l
u(j) denote the operator of l-th difference with

step u in the variable xj . For a nonempty set e of natural numbers from [1, d] and
a vector t = (t1, . . . , td) we denote

∆l
t(e) :=

∏

j∈e

∆l
tj

(j).

We define the class MHr
q as the set of f ∈ Lq such that ‖f‖q ≤ 1 and for any

nonempty set e we have
‖∆l

t(e)f(x)‖q ≤
∏

j∈e

|tj |r

with l = [r]+1, where [a] denotes the integral part of a. We prove first two auxiliary
results.
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Lemma 2.1. For a fixed real number a denote

hn(s) := 2−n(r+1/2)+a(‖s‖1−n)

and for f ∈ MHr
q consider the sets

A(f, n, a) := {I : |fI | ≥ hn(s), if I ∈ Dε
s}, n = 1, 2, . . . .

Then if r > 1/q − 1/2 − a we have

#A(f, n, a) , 2nnd−1

with a constant independent of n and f .

Proof. It is known (see [T1], p.33 and [T2], p.197) that for f ∈ MHr
q we have for

all ε

(2.1) ‖δεs(f)‖q , 2−r‖s‖1 .

For convenience we will omit ε in the notations δεs(f), Dε
s, N ε

s (see below) meaning
that we are estimating a quantity δεs(f) or N ε

s for a fixed ε and all estimates we are
going to do in this paper are the same for all ε.

Using the following two properties of the system {UI}

(2.2) ‖δs(f)‖q
q +

∑

I∈Ds

‖fIUI‖q
q,

(2.3) ‖UI‖q + 2‖s‖1(1/2−1/q), I ∈ Ds,

we get from (2.1)

(2.4)
∑

I∈Ds

|fI |q , 2−‖s‖1(rq+q/2−1).

Denote N ε
s := #(A(f, n, a)∩ Dε

s). Then (2.4) implies

Nshn(s)q , 2−‖s‖1(rq+q/2−1)

and
Ns , 2n(r+1/2+a)q2−‖s‖1(rq+q/2−1+aq).

Using the assumption r > 1/q − 1/2 − a we get
∑

‖s‖1≥n

Ns , 2nnd−1

and

(2.5)
∑

ε

∑

‖s‖1≥n

N ε
s , 2nnd−1.

It remains to remark that for ‖s‖1 < n we have the following trivial estimates

(2.6)
∑

ε

∑

‖s‖1<n

N ε
s ≤

∑

ε

∑

‖s‖1<n

#Dε
s , 2nnd−1.

Combining (2.5) and (2.6) we complete the proof.
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Lemma 2.2. Let hn(s) and A(f, n, a) be from Lemma 2.1 and a > −1/2. For each
n denote

gn(f) :=
∑

I∈A(f,n,a)

fIUI , fn := f − gn(f).

Then for any f ∈ MHr
q and p ≥ 2 satisfying 1 < q ≤ p < ∞ we have for

r > (a + 1/2)(p/q − 1)
‖fn‖p , 2−rnn(d−1)/2

with a constant independent of n and f .

Proof. For 2 ≤ p < ∞ we have by a corollary to the Littlewood-Paley inequalities

‖fn‖2
p ,

∑

ε

(
∑

s

‖δεs(fn)‖2
p) =

∑

ε

(
∑

‖s‖1<n

‖δεs(fn)‖2
p+

∑

‖s‖1≥n

‖δεs(fn)‖2
p) =:

∑

ε

(Σ′ +Σ′′).

We estimate first Σ′. By the definition of A(f, n, a) we have for all I

(2.7) |fn
I | < hn(s), I ∈ Ds.

Therefore,

‖δs(fn)‖p
p , hn(s)p

∑

I∈Ds

‖UI‖p
p , 2−n(r+1/2+a)p2‖s‖1(a+1/2)p

and

(2.8)
∑

‖s‖1<n

‖δs(fn)‖2
p , 2−2rnnd−1.

We proceed to estimating Σ′′ now. We have

(2.9) ‖δs(fn)‖p
p ,

∑

I∈Ds

‖fn
I UI‖p

p , (hn(s)2‖s‖1(1/2−1/p))p−q
∑

I∈Ds

‖fn
I UI‖q

p ,

(hn(s)2‖s‖1(1/2−1/p))p−q
∑

I∈Ds

‖fn
I UI‖q

q2
‖s‖1(1/q−1/p)q.

Using (2.1) we get

(2.10)
∑

I∈Ds

‖fn
I UI‖q

q ≤
∑

I∈Ds

‖fIUI‖q
q , ‖δs(f)‖q

q , 2−r‖s‖1q

and from (2.9)

(2.11) ‖δs(fn)‖p
p , 2−n(r+1/2+a)(p−q)2‖s‖1(−rq+(a+1/2)(p−q)).

Using the assumption r > (a + 1/2)(p/q − 1) we get

(2.12) Σ′′ , 2−2rnnd−1.

Combining (2.8) and (2.12) we complete the proof of Lemma 2.2.

It is clear from the proof of Lemma 2.2 that the following statement holds.
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Lemma 2.2′. Let hn(s) be from Lemma 2.1 and a > −1/2. Assume that a function
f satisfies the restrictions

‖δεs(f)‖q , 2−r‖s‖1 , 1 < q < ∞,

|fI | , hn(s), I ∈ Dε
s,

with constants independent of f , n, and s. Then for max(2, q) ≤ p < ∞ and
r > (a + 1/2)(p/q − 1) we have

‖f‖p , 2−rnn(d−1)/2

with a constant independent of n and f .

Consider the following greedy type algorithm Gc,a. Take a real number a and
rearrange the sequence |fI ||I|a in the decreasing order

|fI1 ||I1|a ≥ |fI2 ||I2|a ≥ . . . .

Define

Gc,a
m (f, Ud) :=

m∑

k=1

fIkUIk .

Theorem 2.1. Let 1 < q < ∞ and max(2, q) ≤ p < ∞. Then for any a > −1/2
and r > max{(a + 1/2)(p/q − 1), 1/q − 1/2 − a} we have

sup
f∈MHr

q

‖f − Gc,a
m (f, Ud)‖p + σm(MHr

q , Ud)p + m−r(log m)(d−1)(r+1/2).

Proof. Let m be given. Denote by n(m) the biggest n satisfying

sup
f∈MHr

q

#A(f, n, a) ≤ m.

Lemma 2.1 implies
2n(m) ' m(log m)1−d,

and for
g := f − Gc,a

m (f, Ud) we have |gI | ≤ hn(m)(s), I ∈ Ds.

Similarly to (2.10) it is easy to check that

‖δs(g)‖q , 2−r‖s‖1

with a constant independent of s and g. Applying Lemma 2.2′ to g we get

‖g‖p , 2−rn(m)n(m)(d−1)/2 , m−r(log m)(d−1)(r+1/2),

what proves the upper estimate in Theorem 2.1

sup
f∈MHr

q

‖f − Gc,a
m (f, Ud)‖p , m−r(log m)(d−1)(r+1/2).

11



The lower estimate

σm(MHr
q , Ud)p ' m−r(log m)(d−1)(r+1/2)

follows from Theorem 4.2 in Section 4.
The proof of Theorem 2.1 is complete.

Consider now the Lb-greedy algorithm Gb(·, Ud). Take a number 1 ≤ b ≤ ∞ and
rearrange the sequence {‖fIUI‖b} in the decreasing order

‖fI1UI1‖b ≥ ‖fI2UI2‖b . . . .

Define

Gb
m(f, Ud) :=

m∑

k=1

fIkUIk .

It is clear from the relation

‖fIUI‖b + |fI ||I|1/b−1/2

that the algorithms Gb and Gc,a with a = 1/b − 1/2 are closely connected. The
following proposition can be proved similarly to Theorem 2.1.

Theorem 2.2. Let 1 < q < ∞ and max(2, q) ≤ p < ∞. Then for any 1 < b < ∞
and r > max{(p/q − 1)/b, 1/q − 1/b} we have

sup
f∈MHr

q

‖f − Gb
m(f, Ud)‖p + σm(MHr

q , Ud)p + m−r(log m)(d−1)(r+1/2).

We formulate now the corollary of Theorem 2.2 in the most interesting case
b = p.

Theorem 2.3. Let 1 < q, p < ∞. Then for all r > r(q, p) we have

sup
f∈MHr

q

‖f − Gp
m(f, Ud)‖p + σm(MHr

q , Ud)p + m−r(log m)(d−1)(r+1/2)

with
r(q, p) :=

{
(1/q − 1/p)+, for p ≥ 2
(max(2/q, 2/p)− 1)/p, otherwise.

Proof. The lower estimates follow from Theorem 4.2 in Section 4. We prove the
upper estimates. Consider first the case 2 ≤ p < ∞. If 1 < q ≤ p we use Theorem
2.2 with b = p and get a restriction r > 1/q − 1/p . If p < q < ∞ we use the
inequality

(2.13) sup
f∈MHr

q

‖f − Gp
m(f, Ud)‖p ≤ sup

f∈MHr
p

‖f − Gp
m(f, Ud)‖p

and reduce this case to the case q = p which has already been considered above.
It remains to consider the case 1 < p < 2. If 1 < q ≤ p we use Theorem 2.2 with
p = 2 and b = p and get

sup
f∈MHr

q

‖f − Gp
m(f, Ud)‖p ≤ sup

f∈MHr
q

‖f − Gp
m(f, Ud)‖2 , m−r(log m)(d−1)(r+1/2)

provided r > (2/q− 1)/p . If p < q < ∞ we use the inequality (2.13) to reduce this
case to the case q = p. In this case we get a restriction r > (2/p − 1)/p.

Theorem 2.3 is proved now.
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3. The upper estimates for the classes MW r
q

In this section we study the classes MW r
q which we define for positive r (not

necessarily an integer). Let

Fr(u) := 1 + 2
∞∑

k=1

k−r cos(ku − πr/2)

be the univariate Bernoulli kernel and let

Fr(x) := Fr(x1, . . . , xd) :=
d∏

j=1

Fr(xj)

be its multivariate analog. We define

MW r
q := {f : f = Fr ∗ φ, ‖φ‖q ≤ 1},

where ∗ denotes the convolution.
Results and their proofs in this section are similar to those from the previous

section. The technique in this section is a little more involved. We start with two
lemmas.

Lemma 3.1. For a fixed real number a denote

wn(s) := 2−n(r+1/2)+a(‖s‖1−n)n−(d−1)/2

and for f ∈ MW r
q consider the sets

W (f, n, a) := {I : |fI | ≥ wn(s), if I ∈ Dε
s}, n = 1, 2, . . . .

Then for 1 < q ≤ 2 and r > 1/q − 1/2 − a we have

#W (f, n, a) , 2nnd−1

with a constant independent on n and f .

Proof. It is known ([T1], p.36 and [T2], p.242) that for f ∈ MW r
q we have

(3.1) ‖
∑

‖s‖1=l

δs(f)‖q , 2−rl.

Further, for 1 < q ≤ 2 we have as a corollary of the Littlewood-Paley inequalities

(3.2) ‖
∑

‖s‖1=l

δs(f)‖q ' (
∑

‖s‖1=l

‖δs(f)‖2
q)

1/2.

Similarly to the proof of Lemma 2.1 we get for N ε
s := #(W (f, n, a)∩ Dε

s)

(3.3) Nswn(s)q , ‖δs(f)‖q
q2

−‖s‖1(q/2−1).

13



Using (3.1) and (3.2) we obtain

∑

‖s‖1=l

Ns , 2n(r+1/2+a)qn(d−1)q/22−l(q/2−1+aq)
∑

‖s‖1=l

‖δs(f)‖q
q ,

2n(r+1/2+a)qn(d−1)q/22−l(q/2−1+aq)l(d−1)(1−q/2)(
∑

‖s‖1=l

‖δs(f)‖2
q)

q/2 ,

2n(r+1/2+a)qn(d−1)q/22−l(q/2−1+aq+rq)l(d−1)(1−q/2).

Using the asumption r > 1/q − 1/2 − a we get from here

(3.4)
∑

l≥n

∑

‖s‖1=l

Ns , 2nnd−1.

For Ns with ‖s‖1 ≤ n we have

(3.5)
∑

‖s‖1<n

Ns ≤
∑

‖s‖1<n

#Ds , 2nnd−1.

Combining (3.4) and (3.5) and summating over ε we complete the proof of Lemma
3.1.

Lemma 3.2. Let wn(s) be from Lemma 3.1 and a > −1/2. Assume that a function
f satisfies the restrictions

(
∑

‖s‖1=l

‖δεs(f)‖2
q)

1/2 , 2−rl, 1 < q < ∞,

|fI | , wn(s), I ∈ Dε
s,

with constants independent of f , n, and s. Then for max(2, q) ≤ p < ∞ and
r > (a + 1/2)(p/q − 1) we have

‖f‖p , 2−rn

with a constant independent of n and f .

Proof. By a corollary to the Littlewood-Paley inequalities we have for p ≥ 2

‖f‖2
p ,

∑

ε

∑

s

‖δεs(f)‖2
p =

∑

ε

(
∑

‖s‖1<n

‖δεs(f)‖2
p +

∑

‖s‖1≥n

‖δεs(f)‖2
p) =:

∑

ε

(Σ′ +Σ′′).

Similarly to the corresponding part (see (2.8)) of the proof of Lemma 2.1 we obtain

(3.6) Σ′ , 2−2rn.

14



Analogously to (2.9) and (2.11) we get

(3.7) ‖δs(f)‖p
p , γp−q

n 2‖s‖1(a+1/2)(p−q)‖δs(f)‖q
q,

where we use the notation

γn := 2−n(r+1/2+a)n−(d−1)/2.

Next,
∑

‖s‖1=l

‖δs(f)‖2
p , γ2(p−q)/p

n 22l(a+1/2)(p−q)/p
∑

‖s‖1=l

‖δs(f)‖2q/p
q ≤

γ2(p−q)/p
n 22l(a+1/2)(p−q)/pl(d−1)(1−q/p)(

∑

‖s‖1=l

‖δs(f)‖2
q)

q/p ,

γ2(p−q)/p
n 22l(−rq+(a+1/2)(p−q))/pl(d−1)(1−q/p).

Using the assumption r > (a + 1/2)(p/q − 1) we get from here

(3.8) Σ′′ , 2−2rn.

Combining (3.6) and (3.8) we complete the proof.

Using Lemmas 3.1 and 3.2 instead of Lemmas 2.1 and 2.2′ we prove in the same
way as in Section 2 the following analogs of Theorems 2.1 and 2.2. We note that
the lower estimates follow from Theorem 4.1 in Section 4.

Theorem 3.1. Let 1 < q ≤ 2 ≤ p < ∞. Then for any a > −1/2 and r >
max{(a + 1/2)(p/q − 1), 1/q − 1/2 − a} we have

sup
f∈MW r

q

‖f − Gc,a
m (f, Ud)‖p + σm(MW r

q , Ud)p + m−r(log m)(d−1)r.

Theorem 3.2. Let 1 < q ≤ 2 ≤ p < ∞. Then for any 1 < b < ∞ and r >
max{(p/q − 1)/b, 1/q − 1/b} we have

sup
f∈MW r

q

‖f − Gb
m(f, Ud)‖p + σm(MW r

q , Ud)p + m−r(log m)(d−1)r.

We derive now one more theorem from Theorem 3.2.

Theorem 3.3. Let 1 < q, p < ∞. Then for all r > r′(q, p) we have

sup
f∈MW r

q

‖f − Gp
m(f, Ud)‖p + σm(MW r

q , Ud)p + m−r(log m)(d−1)r

with
r′(q, p) :=

{
max(1/q, 1/2)− 1/p, for p ≥ 2;
(max(2/q, 2/p)− 1)/p, for p < 2.
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Proof. The lower estimates follow from Theorem 4.1 in Section 4. Proving the
upper estimates we consider first the case 2 ≤ p < ∞. If 1 < q ≤ 2 we use Theorem
3.2 with b = p. This will result in a restriction r > 1/q − 1/p . If 2 < q < ∞ we
use the inequality

(3.9) sup
f∈MW r

q

‖f − Gp
m(f, Ud)‖p ≤ sup

f∈MW r
2

‖f − Gp
m(f, Ud)‖p

to reduce this case to the case that has already been treated. We get a restriction
r > 1/2− 1/p in this case. We proceed to the case 1 < p < 2 now. If 1 < q ≤ p we
use Theorem 3.2 with p = 2 and b = p and get

sup
f∈MW r

q

‖f − Gp
m(f, Ud)‖p ≤ sup

f∈MW r
q

‖f − Gp
m(f, Ud)‖2 , m−r(log m)(d−1)r

provided r > (2/q − 1)/p . If p < q < ∞ we use an analog of inequality (3.9) to
reduce this case to the case q = p. In this case we get a restriction r > (2/p− 1)/p.

Theorem 3.3 is proved now.

4. Lower bounds for best m-term
approximation for the classes MHr

q and MW r
q

We begin this section by proving the following two lower estimates.

Theorem 4.1. For any 1 < q, p < ∞ and r > (1/q − 1/p)+ we have

σm(MW r
q , Ud)p ' m−r(log m)(d−1)r.

Theorem 4.2. For any 1 < q, p < ∞ and r > (1/q − 1/p)+ we have

σm(MHr
q , Ud)p ' m−r(log m)(d−1)(r+1/2).

For proving these theorems we use a method which is based on geometrical
charateristics of the sets MW r

q and MHr
q . The first realizations (see [DT], [KT])

of this method used volume estimates of projections of the set under consideration
onto appropriately chosen finite dimensional subspaces. We will use a variant of
this method (see [T7]) expressed in terms of entropy numbers of the given set.

For a bounded set F in a Banach space X we denote for integer m

εm(F, X) := inf{ε : ∃f1, . . . , f2m ∈ X : F ⊂ ∪2m

j=1(fj + εB(X))},

where B(X) is the unit ball of Banach space X and fj + εB(X) is the ball of radius
ε with the center at fj . The entropy numbers are closely connected with metric
entropy. Both characteristics had been well studied for different function classes
(see for instance [BS], [T8] and historical remarks there). In this section we will
use the following two known estimates (see [T9], [T8]):

(W) for any 1 ≤ q < ∞ and r > 0 we have

(4.1) εm(MW r
q , L1) ' m−r(log m)(d−1)r;
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(H) for any r > 0 we have

(4.2) εm(MHr
∞, L1) ' m−r(log m)(d−1)(r+1/2).

These estimates will be used in the general method which roughly speaking states
that m-term approximations with regard to any reasonable basis are bounded from
below by the entropy numbers. We formulate now one result from [T7].

Assume a system Ψ := {ψj}∞j=1 of elements in X satisfies the condition:
(VP) There exist three positive constants Ai, i = 1, 2, 3, and a sequence {nk}∞k=1,

nk+1 ≤ A1nk, k = 1, 2, . . . , such that there is a sequence of the de la Vallée-Poussin
type operators Vk with the properties
(4.3)
Vk(ψj) = λk,jψj , λk,j = 1 for j = 1, . . . , nk; λk,j = 0 for j > A2nk,

(4.4) ‖Vk‖X→X ≤ A3, k = 1, 2, . . . .

Theorem 4.3. Assume that for some a > 0 and b ∈ R we have

εm(F, X) ≥ C1m
−a(log m)b, m = 2, 3 . . . .

Then if a system Ψ satisfies the condition (VP) and also satisfies the following two
conditions

(4.5) En(F,Ψ) := sup
f∈F

inf
c1,...,cn

‖f −
n∑

j=1

cjψj‖X ≤ C2n
−a(log n)b, n = 1, 2, . . . ;

(4.6) Vk(F ) ⊂ C3F

we have
σm(F,Ψ)X ' m−a(log m)b.

Proof of Theorem 4.1. Let p > 1 be fixed. We specify Ψ = Ud, X = Lp and the
sequence of operators Vn = SQn , where SQn is defined as follows

SQn(f) :=
∑

k∈Qn

f̂(k)ei(k,x)

with
Qn := ∪ε ∪‖s‖1≤n ρ(s, ε),

where ρ(s, ε) is defined at the end of Section 1. It is known ([T2], p. 20) that for
any 1 < p < ∞

(4.7) ‖SQn‖Lp→Lp ≤ C(p, d),

what implies in particular that

(4.8) SQn(MW r
q ) ⊂ C3(q, d)MW r

q , 1 < q < ∞.
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It remains to check the relation (4.5). We use the known estimate ([T1], p. 36 and
[T2], p. 242)

(4.9) EQn(MW r
p )p , 2−rn, 1 < p < ∞.

Let first 1 < p ≤ q < ∞. Then

(4.10) EQn(MW r
q )p ≤ EQn(MW r

p )p , 2−rn , (#Qn)−r(log #Qn)(d−1)r.

Using (4.1), (4.8) and (4.10) we get from Theorem 4.3 that

(4.11) σm(MW r
q , Ud)p ' m−r(log m)(d−1)r.

It remains to prove (4.11) for 1 < q < p. This follows right away from (4.11) with
q = p and the embedding

MW r
p ⊂ MW r

q , q ≤ p.

Theorem 4.1 is proved now.

Proof of Theorem 4.2. This proof is similar to the previous one. We specify as
above Ψ = Ud, X = Lp and Vn = SQn . The property (4.7) and the following
characterization of the classes MHr

q , 1 < q < ∞, (see [T1], p. 33 and [T2], p. 197)

(4.12) f ∈ MHr
q ⇒ ‖δs(f)‖q , 2−r‖s‖1 ,

(4.13) ‖δs(f)‖q , 2−r‖s‖1 ⇒ C(q, d)f ∈ MHr
q

imply that

(4.14) SQn(MHr
q ) ⊂ C′

3(q, d)MHr
q , 1 < q < ∞.

It is clear that it suffices to prove Theorem 4.2 for big q, say 2 ≤ q < ∞, and small
p, say 1 < p ≤ 2. In this case we use the estimate ([T1], p. 37 and [T2], p. 244)

(4.15) EQn(MHr
q )p ≤ EQn(MHr

q )q , 2−rnn(d−1)/2 ,

(#Qn)−r(log #Qn)(d−1)(r+1/2).

Using (4.2), (4.14) and (4.15) and applying Theorem 4.3 we get for 1 < p ≤ 2 ≤
q < ∞, r > 0

σm(MHr
q , Ud)p ' m−r(log m)(d−1)(r+1/2).

The general case 1 < q, p < ∞ follows from the case considered by embedding
arguments. Theorem 4.2 is proved now.

We prove now the lower bounds (1.2) and (1.3).
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Theorem 4.4. For any orthonormal basis Φ we have for r > (1/q − 1/2)+
σm(MHr

q ,Φ)2 ≥ C1(r, q, d)m−r(log m)(d−1)(r+1/2), 1 ≤ q < ∞,

and
σm(MW r

q ,Φ)2 ≥ C2(r, q, d)m−r(log m)(d−1)r, 1 ≤ q < ∞.

Proof. This proof is based on a proposition from [K] (see Corollary 2) which we
formulate as a lemma.
Lemma 4.1. There exists an absolute constant c0 > 0 such that for any orthonor-
mal basis Φ and any N-dimensional cube

BN(Ψ) := {
N∑

j=1

ajψj, |aj| ≤ 1, j = 1, . . . , N ; Ψ := {ψj}N
j=1 an orthonormal system}

we have
σm(BN ,Φ)2 ≥ 3

4
N1/2

if m ≤ c0N .
Let q < ∞ be fixed and m be given. Denote

D(n) := ∪‖s‖1=nD(+,...,+)
s

and find a minimal n such that
m ≤ c0#D(n).

then
(4.16) m + 2nnd−1.

We set N := #D(n) and choose in a place of {ψj}N
j=1 the system U(n) := {UI}I∈D(n).

Then for any f ∈ BN(U(n)) we have

(4.17) ‖δs(f)‖q
q +

∑

I∈Ds

‖fIUI‖q
q ≤

∑

I∈Ds

‖UI‖q
q , 2nq/2.

This estimate and the relation (4.13) imply that for some positive C(q, d) we have
C(q, d)2−n(r+1/2)BN(U(n)) ⊂ MHr

q .

Therefore, Lemma 4.1 gives
σm(MHr

q ,Φ)2 ' 2−rnn(d−1)/2 + m−r(log m)(d−1)(r+1/2).

Next, for 2 ≤ q < ∞ for any f ∈ BN(U(n)) we have

(4.18) ‖f‖q , (
∑

s

‖δs(f)‖2
q)

1/2 , 2n/2n(d−1)/2.

By Bernstein inequality ([T1], p. 12 and [T2], p. 209) we get from (4.18)
‖f (r,...,r)‖q , 2rn‖f‖q , 2n(r+1/2)n(d−1)/2.

Consequently, for some positive C(q, d) we have
C(q, d)2−n(r+1/2)n−(d−1)/2BN(U(n)) ⊂ MW r

q .

Therefore, by Lemma 4.1 we get
σm(MW r

q ,Φ)2 ' m−r(log m)(d−1)r.

It is clear that the general case 1 ≤ q < ∞ follows from the above considered case
2 ≤ q < ∞. Theorem 4.4 is proved now.
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5. Efficiency of Gp for individual functions

We prove in this section that for each m and 1 < p < ∞ there is a function
fm,p ∈ Lp such that

(5.1) ‖f − Gp
m(f, Ud)‖p/σm(f, Ud)p ' (log m)(d−1)|1/2−1/p|.

We prove this inequality for m of the form

(5.2) mn := #D(n) =
∑

‖s‖1=n

#Ds + 2nnd−1, Ds := D(+,...,+)
s .

For a given n we construct two functions f1(n, x) and f2(n, x). The first function
is defined as follows

f1(n, x) :=
∑

‖s‖1=n

ei(2s1x1+···+2sd xd).

Then for any I ∈ Dµ, ‖µ‖1 *= n, we have (f1(n))I = 0 and for I ∈ Dµ, ‖µ‖1 = n,
we have

f1(n)I = 2−n/2, and ‖f1(n)IUI‖p + 2−n/p.

Next, by the Littlewood-Paley inequalities we get

‖f1(n)‖p + n(d−1)/2, 1 < p < ∞.

We proceed to define the second function. We set l(n) = [(log mn)/d]+1 and define

f2(n) := 2−n/2
∑

I∈Λ(n)

UI

where Λ(n) ⊂ D(l(n),...,l(n)) with #Λ(n) = mn. Then for each I ∈ Λ(n) we have

f2(n)I = 2−n/2

and
‖f2(n)IUI‖p + 2−n/p.

We also have

‖f2(n)‖p + 2−n/2(#Λ(n)2n(1/2−1/p)p)1/p + n(d−1)/p.

Let 2 ≤ p < ∞ and a constant C1(d, p) be such that

(5.3) min
I∈Λ(n)

‖f2(n)IUI‖p > C1(d, p) max
I

‖f1(n)IUI‖p.

Consider
fmn,p := C1(d, p)f1(n) + f2(n).
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Then by (5.3) we have

(5.4) ‖fmn,p − Gp
mn

(fmn,p, U
d)‖p = C1(d, p)‖f1(n)‖p + n(d−1)/2.

Next,

(5.5) σmn(fmn,p, U
d)p ≤ ‖f2(n)‖p + n(d−1)/p.

Combining (5.4) with (5.5) we get (5.1) for m = mn.
Let now 1 < p ≤ 2 and a constant C2(d, p) be such that

min
I∈D(n)

‖f1(n)IUI‖p > C2(d, p) max
I∈Λ(n)

‖f2(n)IUI‖p.

Consider
fmn,p := f1(n) + C2(d, p)f2(n).

Then we have on one hand

(5.6) ‖fmn,p − Gp
mn

(fmn,p, U
d)‖p = C2(d, p)‖f2(n)‖p + n(d−1)/p

and on the other hand

(5.7) σmn(fmn,p, U
d)p ≤ ‖f1(n)‖p + n(d−1)/2.

Combining (5.6) with (5.7) we get (5.1) for m = mn. It is easy to see that the
general case of m can be derived from the case m = mn.

We note that using the result of P. Wojtaszczyk [Wo] on equivalence of U to
the Haar system in all Lp, 1 < p < ∞, we can derive some results on Ud from the
corresponding results on the multivariate Haar system Hd (see [T4]). For instance,
we get from [T4, Theorems 2.1, 2.2] that for any f ∈ Lp, 1 < p < ∞, the inequality

(5.8) ‖f − Gp
m(f, Ud)‖p ≤ C(p, d)(log m)dσm(f, Ud)p

holds, and from [T4, Theorem 2.1, Section 3] that in the case d = 2, 4/3 ≤ p ≤ 4,
the factor (log m)d in (5.8) can be replaced by (logm)(d−1)|1/2−1/p|. The last remark
shows that the inequality (5.1) is sharp.

6. One special dictionary with tensor product structure

In this section we study m-term approximation with regard to the dictionary Y
(see the Introduction for the definition) which is something intermediate between
the dictionaries U2 and Π2. We prove here the following theorem.

Theorem 6.1. For d = 2 and 1 < q, p < ∞ we have

σm(MHr
q , Y )p + σm(MW r

q , Y )p + m−2r+(1/q−1/p)+ ,

provided r > (1/q − 1/p)+.

Proof. The lower estimates in the case 1 < p ≤ q < ∞ and in the case 1 < q ≤
p ≤ 2 follow from the corresponding result for bilinear approximations (see (1.11)).
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We remark only that the restriction r > 1 in (1.11) was used for proving upper
estimates. For details see [T5]. We prove now the lower estimates in the case
1 < q ≤ p < ∞. It is clear that it suffices to carry out the proof for m of the form
m = 2l−1. Consider a function

f(x1, x2) :=
∑

I∈D+
l

UI(x1)UI(x2).

We have
‖f‖q

q + 2l(q−1), 1 < q < ∞,

and by Bernstein inequality

(6.1) ‖f (r,r)‖q , 2l(2r+1−1/q).

Assume an m-term approximant with regard to Y has the form

g(x) =
∑

I∈Ω1

UI(x1)v1
I (x2) +

∑

I∈Ω2

v2
I (x1)UI(x2)

with #Ω1 + #Ω2 = m. Then for 1 < p < ∞ we have

(6.2) ‖f − g‖p
p ≥ C(p)‖δ(+,+)

(l,l) (f − g)‖p
p '

‖
∑

I∈D+
l \(Ω1∪Ω2)

UI(x1)UI(x2)‖p
p ' 2l(p−1).

The inequalities (6.1) and (6.2) imply

σm(MW r
q , Y )p ' 2l(−2r+1/q−1/p) + m−2r+1/q−1/p.

It remains to note that MW r
q is embedded in MHr

q .
We proceed with proving the upper estimates. It is sufficient to prove the upper

estimates in the case 1 < q ≤ p < ∞. We prove the upper estimates for the wider
class MHr

q . We use in the proof a combination of a linear method and the algorithm
Gp(·, U2). For a fixed n we define a linear operator Sn as follows

S′
n(f)(x) :=

∑

|I|≥2−n

〈f(·, x2), UI(·)〉UI(x1)

Sn(f)(x) := S′
n(f)(x) +

∑

|I|≥2−n

〈f(x1, ·) − S′
n(f)(x1, ·), UI(·)〉UI(x2).

Then
fn := f − Sn(f) =

∑

|I1|<2−n,|I2|<2−n

fIUI .

We apply the greedy algorithm Gp(·, U2) to fn. The proof is similar to, but simpler
than the corresponding proofs in Sections 2 and 3.
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Lemma 6.1. Let 1 < q ≤ p < ∞. Denote

h(n) := 2−n(2r−1/q+2/p).

Then for any function f of the form

(6.3) f =
∑

|I1|<2−n,|I2|<2−n

fIUI , ‖δεs(f)‖q ≤ C(r, d, q)2−r‖s‖1,

we have
#Hn , 2n

where
Hn := {I : ‖fIUI‖p ≥ h(n)}.

Proof. Denote N ε
s := #(Hn ∩ Dε

s). Then similarly to the proof of Lemma 2.1 we
get

Ns , h(n)−q2‖s‖1(−rq−q/p+1),

and using r > 1/q − 1/p we get
∑

s1≥n,s2≥n

Ns , h(n)−q22n(−rq−q/p+1) = 2n.

Lemma 6.2. Let h(n) be from Lemma 6.1. Assume that a function f of the form
(6.3) satisfies the restriction

‖fIUI‖p < h(n) for all I.

Then we have
‖f‖p ≤ 2−n(2r−1/q+1/p).

Proof. For each s we have

‖δs(f)‖p
p ,

∑

I∈Ds

‖fIUI‖p
p ≤ h(n)p−q

∑

I∈Ds

‖fIUI‖q
p ,

h(n)p−q
∑

I∈Ds

‖fIUI‖q
q2

‖s‖1(1/q−1/p)q , h(n)p−q2‖s‖1(−rq+1−q/p)

and

‖f‖p ≤
∑

s1≥n,s2≥n

‖δs(f)‖p , h(n)1−q/p
∑

s1≥n,s2≥n

2‖s‖1(−rq+1−q/p)/p.

Using r > 1/q − 1/p we get from here

‖f‖p , 2n(−2r+1/q−1/p).

Lemma 6.2 is proved now.

We continue the proof of Theorem 6.1. From Lemmas 6.1 and 6.2 we obtain for
fn

(6.4) ‖fn − Gp
2n(fn, U2)‖p , 2−n(2r−1/q+1/p).

The estimate (6.4) implies the upper estimate in Theorem 6.1 for m = 5(2n). It is
clear that this implies the general case of m.
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7. Further remarks

The results we have developed in the previous sections in the periodic case can
be extended to the nonperiodic case and to other systems Ψ instead of Ud. We
discuss here in more detail a generalization of the results from Section 3. The key
points of the proof of Theorems 3.1– 3.3 were the following.

1. The multivariate system Ud satisfies the relation (1.17)

‖
∑

I∈Ds

fIUI‖p
p +

∑

I∈Ds

‖fIUI‖p
p, 1 < p < ∞,

which is a corollary of the corresponding relation (1.14) for the univariate system
U . This system also satisfies (1.15)

‖UI‖p + |I|1/p−1/2, 1 < p < ∞.

2. The system Ud satisfies the Littlewood-Paley inequalities in a weak form

‖f‖p + ‖(
∑

s

|
∑

I∈Ds

fIUI |2)1/2‖p, 1 < p < ∞.

3. The function class MW r
q has a certain approximation property (see (3.1))

which is equivalent to the Jackson inequality: for f ∈ MW r
q , 1 < q < ∞, we have

(7.1) ‖f −
∑

|I|≥2−n

fIUI‖q , 2−rn;

and the embedding property MW r
q1

⊂ MW r
q2

if q1 ≥ q2.
Thus if some system Ψ and function classes F r

q satisfy the conditions 1–3 above
then Theorems 3.1–3.3 hold with Ud and MW r

q replaced by Ψ and F r
q .

In the paper [DKT] we gave some sufficient conditions on a system Ψ to be
Lp-equivalent to the Haar system. We recall the definition of the Haar system and
make some simple observations about systems Lp-equivalent to the Haar system.
Denote the univariate Haar system by H := {HI}I , where I are dyadic intervals of
the form I = [(j − 1)2−n, j2−n), j = 1, . . . , 2n; n = 0, 1, . . . and I = [0, 1] with

H[0,1](x) = 1 for x ∈ [0, 1) ,

H[(j−1)2−n,j2−n) =






2n/2, x ∈ [(j − 1)2−n, (j − 1/2)2−n)
−2n/2, x ∈ [(j − 1/2)2−n, j2−n)
0, otherwise.

Consider the multivariate Haar basis Hd := H×· · ·×H which consists of functions

HI(x) =
d∏

j=1

HIj (xj), I = I1 × · · · × Id, x = (x1, . . . , xd).
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We say that a system Ψ = {ψI} is Lp-equivalent to the Haar system Hd if for any
finite set Λ and for any coefficients {cI} we have

(7.2) C1(Ψ, p, d)‖
∑

I∈Λ

cIHI‖p ≤ ‖
∑

I∈Λ

cIψI‖p ≤ C2(Ψ, p, d)‖
∑

I∈Λ

cIHI‖p.

It is well known (see for instance [KS]) that the Haar system satisfies the Littlewood-
Paley inequalities in a strong form

(7.3) ‖
∑

I

cIHI‖p + ‖(
∑

I

|cIHI |2)1/2‖p, 1 < p < ∞.

It is clear from (7.2) and (7.3) and the corresponding properties of Hd that each
system Ψ which is Lp-equivalent to Hd with 1 < p < ∞ satisfies property 1 and a
stronger analog of property 2 from above. In the paper [DKT] we gave some suffi-
cient conditions on a system Ψ to have the Jackson inequality (7.1). For particular
examples of Ψ satisfying (7.1) see [Km].

Completing this section we conclude that the results on nice properties of the sys-
tem Ud can be extended onto many other systems including wavelet type systems.
For instance the following two theorems hold.

Theorem 7.1. Assume a system Ψ is Lp-equivalent to the Haar system Hd, 1 <
p < ∞, and function classes F r

q having the following property: for any f ∈ F r
q we

have
‖f −

∑

|I|≥2−n

cI(f,Ψ)ψI‖q , 2−rn, 1 < q < ∞,

with a constant independent of f and n; and F r
q1

⊂ F r
q2

if q1 ≥ q2. Then we have

sup
f∈F r

q

‖f − Gp
m(f,Ψ)‖p , m−r(log m)(d−1)r, 1 < q, p < ∞,

provided r > r′(q, p) with r′(q, p) from Theorem 3.3.

Theorem 7.2. Assume a system Ψ is Lp-equivalent to the Haar system Hd, 1 <
p < ∞, and function classes F r

q having the following property: for any f ∈ F r
q we

have
‖

∑

I∈Ds

cI(f,Ψ)ψI‖q , 2−r‖s‖1 , 1 < q < ∞,

with a constant independent of f and n; and F r
q1

⊂ F r
q2

if q1 ≥ q2. Then we have

sup
f∈F r

q

‖f − Gp
m(f,Ψ)‖p , m−r(log m)(d−1)(r+1/2), 1 < q, p < ∞,

provided r > r(q, p) with r(q, p) from Theorem 2.3.
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