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Abstract. Reconstructing phylogenetic (evolutionary) trees is a major
research problem in biology, but unfortunately the current methods are
either inconsistent somewhere in the parameter space (and hence do not
reconstruct the tree even given unboundedly long sequences), have poor
statistical power (and hence require extremely long sequences on large
or highly divergent trees), or have computational requirements that are
excessive. We describe in this paper a new method, which we call the
Short Quartet Method, for inferring evolutionary trees. The Short Quar-
tet Method has great statistical power, is provably consistent throughout
the parameter space, and uses only polynomial time. We present the re-
sults of experimental studies based upon simulations of sequence evolu-
tion that demonstrate its greater statistical power than neighbor-joining
[33], perhaps the most popular method for phylogenetic tree inference
among molecular biologists.

1 Introduction

The study of evolution is a fundamental problem in Biology, and advances in this
area are of tremendous value to biomedical sciences. For example, understanding
the evolutionary history of a set of DNA sequences can answer such questions
as whether humans first originated in Africa (the controversial African-Eve hy-
pothesis) [42], assist in the design of drugs to cure or control diseases, potentially
determine the origins of life, as well as helping to answer immediate biomedical
questions such as whether a particular Florida dentist infected his patients with
HIV. Yet many of these questions remain essentially unanswered because the
problem of inferring accurate evolutionary trees is extraordinarily difficult. Two
of the critical issues that make evolutionary tree reconstruction difficult are that



every method, no matter how well suited, has on each tree an implicit sequence
length it needs in order to be accurate with high probability, as well as computa-
tional requirements that are needed in order to use them method (many methods
are, for example, attempts to solve NP-hard optimization problems, and hence
can take a very long time on some instances). These two issues in particular
make the reconstruction of very large trees containing widely divergent pairs of
sequences enormously difficult. Consequently, many in systematic biology have
considered the reconstruction of large evolutionary trees to be beyond the cur-
rent capabilities of today’s software and hardware.

In this paper, we describe a new method for reconstructing evolutionary trees
which we call the Short Quartet Method. Our method is surprisingly simple,
and has sufficient statistical power to reconstruct even very large and diver-
gent trees from sequences that are realistically bounded in length. Furthermore,
the method uses only polynomial time. We briefly describe the Short Quartet
method and present the results of an experimental study in which we compare
it to neighbor-joining, the most popular method for tree reconstruction among
molecular biologists.

2 Phylogeny Estimation: the Current State

2.1 Stochastic models of evolution

The objective of a phylogenetic tree reconstruction method is to recover the
topology of the evolutionary tree that gave rise to the observed taxa (typically
represented by biomolecular sequences), since that topology indicates the order
of speciation events that led to the observed taxa. However, for scientific reasons,
the exact location of the root is often difficult to determine, so a method is
considered to be accurate if it reconstructs the topology of the unrooted tree. In
order to study different methods for evolutionary tree reconstruction, a model
of biomolecular sequence evolution is assumed, and performance studies then
reflect how well each method reconstructs the topology of different model trees,
where a model tree is simply a rooted tree in which each edge is equipped with
a stochastic model of evolution. Most typically, it is assumed that the sites
(positions within the sequences) evolve identically and independently, and that
the tree has the “Markov” property, so that the evolutionary processes that
occur below a particular node in the tree do not depend upon what happens
outside that subtree.

As an example of a simple model of sequence evolution, the Cavender-Farris
[9] (also called “Cavender-Felsenstein”) model is designed to describe the evolu-
tion of binary sequences (i.e. sequences of 0’s and 1’s). In this case, the evolu-
tionary process is very simple. Every site evolves identically and independently,
the root is drawn from some distribution (typically from the uniform distribu-
tion), and every edge e in the tree is associated with a probability p(e), such
that each site changes state on that edge with that probability. The p(e) values
need not be identical. When the sequences are over a larger alphabet (such as



for DNA, RNA, or amino-acid sequences), then for every edge e there is also
an associated mutation matriz M (e), which specifies the probability of changing
between every pair of “states” (i.e. letters of the alphabet), given that a change
occurs.

2.2 Phylogenetic tree reconstruction methods

Two types of methods generally are used to reconstruct trees from observed
sequences. The first type is sequence-based, and uses the sequences directly to
reconstruct the tree. Parsimony is probably the most popular sequence-based
method, and it is based upon minimizing the number of mutations implied by
the tree. This is computed by assigning sequences to every node in the tree, and
then counting the number of changes that occur on each edge and adding these
numbers up. Thus, parsimony is the “Hamming-distance Steiner tree problem”.
Maximum likelihood is the other most popular sequence-based method, and it
seeks the tree which is most likely to have generated the observed sequences.
The optimization problem, finding the most parsimonious tree, is known to be
NP-hard even when restricted to binary characters [11, 20], although the opti-
mal assignment of sequences to each internal node can be computed in polyno-
mial time if the leaf-labelled tree is specified [19, 23]. However, in practice the
heuristics used for parsimony seem to perform reasonably well, according to the
folklore in systematic biology. By contrast, maximum likelihood is not known to
be solvable in polynomial time if the input leaf-labelled tree is specified.

Distance-based methods, by contrast, operate by first computing distances
between every pair of sequences, and then use these distances to reconstruct the
tree. Thus, the input to a distance method is a matrix of observed distances, and
the output is an edge-weighted tree whose distance matrix is close to the input
matrix. There is an equivalent description of distance-based methods which is as
follows. First, we define additive distance matrices to be matrices of leaf-to-leaf
distances in edge-weighted trees in which all weights are positive. Since every
edge-weighted tree defines an additive distance matrix, a distance-based method
is actually a mapping from distance matrices to additive distance matrices, and as
such we can study the properties of the different methods. One natural property
we may wish to require is that a distance method fiz additive matrices (we call
this combinatorial consistency), and we may also wish to require that a distance
method be continuous.

Many optimization problems related to distance-based reconstruction have
been posed, but almost all have been shown to be NP-hard to solve exactly, and
some are even hard to solve approximately [14, 1]. However, recently Agarwala et
al. showed that a small modification to a classical method for tree reconstruction
(proposed originally in [7, 8]) would provide a guaranteed performance ratio of 3
for the L.,-nearest tree problem. This was later modified further by Cohen and
Farach [9]. Both the Agarwala et al. and Cohen and Farach algorithms are 3-
approximation algorithms, so that the output of these algorithms given distance
matrix d is an additive distance matrix D such that Lo (D,d) = maz;;|D;j —



dij| < 3Loo(d, D°P'), where D°P! is the nearest additive distance matrix to d
under this metric.

2.3 Performance issues

Studies of the performance of different methods have been concerned generally
with two distinct but related issues: consistency, i.e. whether the method con-
verges to the correct topology as the sequence length increases, and convergence
rate, which is the rate at which the error between the reconstructed tree and the
true tree goes to 0, as the sequence length increases.

Performance studies (usually based upon simulations) on different model
trees have revealed distinct differences between methods. For example, we now
know (due to an analytically obtained result of Felsenstein [16], and confirmed
experimentally in [27, 28]) that parsimony can make incorrect topology recon-
structions, even if the sequences are unboundedly long (i.e. parsimony can be
“inconsistent” ), while almost all distance based methods will yield accurate re-
constructions of the topology with arbitrarily high probability, if the sequences
are long enough (i.e. distance methods are “consistent” throughout the param-
eter space). For some biologists, this has led to the rejection of parsimony as
a method for reconstructing trees, since it can be “misled”, while others have
demonstrated that on some trees distance-methods may require sequence lengths
that exceed that of genomes in order to be accurate [25].

2.4 Why distance methods are consistent

We provide a sketch of the proof of why all “reasonable” distance based methods
are consistent, and note that full details can be obtained in [13].

Assume that T' is a binary Cavender-Farris tree with n leaves. Thus, T is
rooted, every non-leaf node has exactly two children, and we have associated to
every edge e a mutation probability p(e). Let sequences of length k evolve on
this tree under the stochastic model of evolution implied by the tree, and define
a distance on the sequences as follows:

di; =—1/2In(1-2H(i,j)/k),

where H (i, 7) is the hamming distance between ¢ and j, i.e. H(i, j) is the number
of sites between sequences i,j in which they differ. Now let D be a distance
matrix defined by D;; = limy_0d;j. Then D is with probability 1 an additive
metric (i.e. D is exactly equal to a matrix of path distances in an edge-weighted
tree), and hence D defines a unique edge-weighted tree 7". Furthermore, the
tree T' is actually the model tree, and the weights of the edges are exactly
w(e) = —1/2In(1 — 2P(e)).

It is worth noting that given any additive matrix D, the unique edge-weighted
tree realizing D can be reconstructed in polynomial time (there are many such
algorithms, the first of which is due to Waterman et al. [44]). Consequently,
given D, not only can the topology of the model tree be obtained, but also



its mutation probabilities on the edges. This suggests a general approach to
tree reconstruction based upon distances: given distance matriz d, find a nearby
additive metric D' and compute the edge-weighted tree corresponding to D'. Since
distance matrices that are computed from finite length sequences are close to
the additive metrics that define the model tree that generated the sequences,
such an approach will work if two following conditions can be met:

1. all “nearest” additive matrices define the topology of the model tree, and

2. a method is available which can recover a nearby additive matrix from an
input matrix.

In [13], the conditions under which the first condition can hold were studied,
and it was shown that there is a positive neighborhood (under the L., metric)
around every additive matrix corresponding to a binary edge-weighted tree such
that every additive matrix in that neighborhood defined the same topology:

Theorem From [13]: Let D be an additive distance matriz for an edge-weighted
tree T which is binary and let x > 0 be the minimum weight of any edge in T'.
Then any additive distance matriz D' satisfying Loo(D, D') < x/2 defines a tree
with the same topology as T'.

Consequently, we have the following;:

Theorem From [13]: If a distance method is continuous and combinatorially
consistent, then the distance method is provably consistent for inferring binary
trees.

Proof. The proof is straightforward. Let T be an arbitrary Cavender-Farris
model tree which is binary, and let « be the minimum weight of any edge under
the transformation w(e) = —1/21n(1—2P(e)). Let D be the additive matrix asso-
ciated to T'. Then let M be an arbitrary distance method which is continuous and
combinatorially consistent. Since M is combinatorially consistent, M (D) = D.
Since M is continuous, there is some € > 0 such that for all distance matrices d
such that Lo (d, D) < €, Loo(M(d), M (D)) < x/2. But since M (D) = D, this
implies that M (d) and D have the same topology, which equals the topology of
T. Finally, since the distances based on finite length sequences converge (with
probability 1) on the distance matrix D, there will be some sequence length such
that distances computed from sequences exceeding that length will be with high
probability within e of the distance matrix D, and in such a case the method
will return the correct topology.

Almost all distance-based methods used in phylogeny estimation satisfy these
two properties and hence are consistent methods for inferring binary Cavender-
Farris trees. The only popular methods which violate these conditions are those
that explicitly seek to reconstruct ultrametric trees (i.e. trees which are rooted so
that the root is equidistant from all the leaves). Ultrametric tree reconstruction
is appropriate when biomolecular sequences evolve at a more-or-less constant



rate; this hypothesis, otherwise known as the molecular clock hypothesis, has
however been thoroughly discredited [6, 34, 31, 30, 43, 21], so that ultrametric
tree reconstruction is no longer very much in favor.

2.5 Convergence rates of different methods

We have shown that almost all distance methods are consistent for inferring
binary trees, but we have not discussed how well different methods perform at
finite length sequences. However, the proof above provides a technique by which
it is possible to infer something about the sequence length for which a method
might be accurate. As indicated in the proof of Theorem 2, this inference takes
two steps: In the first step we infer the largest € so that Ly (d, D) < € guarantees
that Loo(M(d),D) < z/2, and in the second step we compute the sequence
length needed to have L. (d, D) < € with high probability.
Using this two-step process, Erdos et al. proved the following:

Theorem From [13] Let T is a Cavender-Farris model tree with edge mutation
probabilities in the range [f,g]. Then for every € > 0 there is a constant ¢ such
that if sequences of length k are generated on this tree, where

c-logn
f2(]_ _ 29)2diam(T) ’ (1)

k>

then with probability 1 — € the result of applying the Neighbor-joining algorithm
to corrected distances will be the true tree. The same formula (with the constant
enlarged) exists for the Agarwala et al. algorithm [1] and its variant, the Double-
Pivot algorithm [10].

The proof in [13] also showed that Neighbor-Joining could be guaranteed
to be accurate from shorter sequences than the 3-approximation algorithms for
the L..-nearest tree problem, and even from shorter sequences than an exact
algorithm for the L,-nearest tree problem!

Note that the sequence length requirement for guaranteed accuracy goes up
as either the lowest rate decreases, or as the highest rate increases. However, once
we fix f and g, the lowest and highest mutation probability on any edge, then
this theorem indicates a sequence length requirement that depends only upon the
number n of leaves in the tree and the diameter of the tree. The diameter is the
length (in terms of the number of edges) in the longest path in the tree. It is easy
to see that the diameter always falls between log n and 7 — 1, no matter what the
tree, hence for every pair f, g, this sequence length requirement (for guaranteed
accuracy) can vary dramatically from polylogarithmically to exponentially in
n. Of importance, therefore, is the diameter of a typical tree that is studied in
evolutionary tree reconstruction. However, the diameter of almost all trees is
at least \/n [2], suggesting that the sequence length requirement for guaranteed
accuracy generally will grow superpolynomially in the size of the tree. Or, in
other words, neighbor-joining, the Agarwala et al. algorithm and its variant,



the Double-Pivot, might be incapable of inferring accurate topologies from large
data sets.

However, this analysis is pessimistic; it implies good performance for these
methods if the sequence length exceeds some lower bound, but does not cor-
respondingly imply poor performance below that bound. Thus, the analytical
result requires an experimental verification.

We studied this experimentally through a study [32] involving more than
200,000 data sets simulated on hundreds of model trees, and confirmed this
conjectured bad performance. (A similar study was done by Strimmer and Von
Haeseler, who found also that neighbor-joining based upon uncorrected distances
required sequence lengths to grow exponentially in the number of taxa in the tree
in order for a completely accurate topology estimation to be obtained.) However,
we also saw that parsimony did not degrade in performance on large trees, at
least not significantly, so that on large trees we observed that parsimony obtained
accurate topology estimations from shorter sequences than neighbor-joining or
the Agarwala et al. algorithm. Hillis also observed better performance by par-
simony than by neighbor-joining in [24], although in that study the distinction
between the methods was not as great as in ours.

Such results are potentially very disturbing, since molecular biologists have
been relatively content with neighbor-joining because previous experimental
studies tended to suggest that it had good performance [35]. However, despite
intensive and extensive earlier experimental studies by a number of researchers
(Felsenstein, Kuhner, Swofford, Huelsenbeck, and Hillis), this phenomenon had
not been observed, because other studies had only rarely examined large enough
trees, and had not systematically studied the effects of increasing size in the tree
in order to make such an observation. Indeed, our own study in [32] shows that on
small data sets, parsimony is in fact outperformed (albeit slightly) by neighbor-
joining, and even by the Agarwala et al. algorithm [1], but that on larger trees
the situation is definitely reversed, and the larger the tree, the greater the im-
provement of parsimony over distance-based methods.

However, parsimony is also problematic, since parsimony is known to be
inconsistent in some portions of the parameter space [16, 27], and we do not
know the conditions under which parsimony can be reliable (see [29] for a study
which reveals that parsimony can be inconsistent even under conditions pre-
viously thought to be favorable to parsimony). Furthermore, parsimony is also
NP-hard to solve exactly, and hence we do not have any reliable polynomial time
algorithms to solve parsimony on all cases.

We summarize our observations as follows:

— parsimony is NP-hard to solve exactly, so that even a method which obtains
optimal solutions may not reconstruct the correct topology everywhere (i.e.
there are some trees on which parsimony will reconstruct the wrong topology
with probability 1, even from unbounded length sequences),

— neighbor-joining uses only polynomial time, but it may not have adequate
statistical power on large or highly divergent trees to reconstruct a reasonable
estimate of the topology from realistic length sequences, and



— maximum likelihood estimation has great statistical power, but it is not
generally used on large data sets due to its computational requirements.

The objective then is to develop methods which run in polynomial time and
which obtain more accurate reconstructions of the model tree than existing meth-
ods, especially when reconstructing very large and divergent trees. We present in
this paper a new method, which we call the Short Quartet Method, which seems
to be capable of such a reconstruction. We describe its properties and present
the results of an experimental study in which we compared the Short Quartet
Method to Neighbor-Joining.

3 Short Quartet Method:

3.1 The method, briefly

We have developed a new quartet-based method called the Short Quartet Method.
This method, originally introduced in [13], reconstructs trees based upon topolo-
gies of just a subset of the possible quartets containing the “short quartets”.
While the method used to reconstruct topologies on quartets can be arbitrary,
Erdos et al. analyzed the performance of a variant of the method based upon
using a simple distance-method to calculate topologies on quartets, as follows.

Definition 1. We denote by ij|kl the topology on leaves i, j, k,! in which there
is an internal edge separating i, j from k,[. The topology on i, j, k,l which has
no internal edge separating two pairs of leaves is called the star-topology.

Relaxed four-point method:

Given sequences i, j, k, [, compute all distances between pairs in i, j, k,[. Re-
turn topology 44|kl if d;; +dr < min(di +dji, di +dji). If all three pairwise
sums are equal, return “star-topology”.

The Short Quartet Method operates iteratively through a set of distance
bounds, b. For each such bound b, it does the following:

— The set of quartets @, is computed, where {i, j, k,l} € Q) if the maximum
pairwise distance among i, 7, k,l does not exceed b.

— The topology on every quartet in @ is computed using the relaxed four-point
condition above, or some other method (for example, maximum likelihood
or parsimony can be used).

— The topologies in @), are given as input to an algorithm called the Short
Quartet Consistency Algorithm (defined in [13]). The output from the short
quartet consistency algorithm is either a tree uniquely consistent with the
topological constraints, or failure.

— If no unique tree is returned, then the bound b is increased. Eventually either
the bound b exceeds the maximum distance observed in the input, or a tree
is reconstructed which is uniquely consistent with the topologies.



3.2 Performance of the Short Quartet Method

As we have indicated, performance of evolutionary tree reconstruction methods
is evaluated according to the degree of accuracy a method is likely to have on
sequences of a given length generated on different model trees, and the specific
different issues that are typically considered are consistency (i-e. accuracy from
“long enough” sequences) and convergence rate (i.e. the rate at which the error
goes to 0 as a function of the sequence length).

Erdos et al. studied the performance of the short quartet method, and proved
that the method is consistent, so that under the assumption that the sequences
evolve on a Cavender-Farris model tree (or, in fact, on the general Markov
model!), once the sequences are long enough this greedy method would return
the topology of the model tree with high probability. They also showed that the
method runs in polynomial time since the short quartet consistency algorithm
uses only polynomial time. The critical question then was how long the sequences
had to be in order for this method to be accurate, or, to use the terminology we
have introduced earlier, how quickly does the short quartet method converge to
the correct topology?

Definition 2. If e is an edge in a tree T, then deleting the edge e (but not the
endpoints of e) creates two rooted subtrees, t; and t». Let d; be the distance
from the root of t; to its nearest leaf. Then the depth of the edge e is defined to
be maz(dy,d2). The depth of T, denoted depth(T), is the maximum depth of
any edge in T'. We say that i, j, k,[ is a short quartet of a tree T if , j, k,[ are
leaves in T and the maximum path length (counting only the number of edges)
between any pair in i, j, k, [ is at most 2depth(T) + 3.

Erdos et al. made the following critical observations, upon which their method
rests:

Theorem From [13]: 1. The short quartets suffice to define the tree, so that
the set QQy of quartet topologies defines the tree for all b > B, for some value
B.

2. If the Short Quartet Consistency algorithm is applied to Qp for b > B, then
it will reconstruct the unique tree consistent with the topologies in Qy.

3. Hence, if all the quartets in Qp are correct and b > B, then the topology of
the model tree is returned.

It should be noted that the short quartet method either produces a tree con-
sistent with all the quartet constraints, or it produces a star tree (i.e. the null
tree). Thus, the short quartet method can fail entirely to obtain any information
about the tree topology.

Erdos et al. studied the sequence length required for the Short Quartet
Method to obtain a completely accurate reconstruction of the topology of the
model tree.



Theorem From [13] Let T is a Cavender-Farris model tree with edge mutation
probabilities in the range [f, g]. Then for every e > 0 there is a constant ¢ such
that if sequences of length k are generated on this tree, where

c-logn

k> f2(]_ _ 29)4d6pth(T)’ (2)

then with probability 1 — e the result of applying the Short Quartet Method to
corrected distances will be the true tree.

The comparison between the sequence length requirement of the Short Quar-
tet Method to that of the sequence length requirement of the other methods (as
provided by this analysis) thus depends on a comparison between the depth and
the diameter.

The diameter of T' (which we have denoted by diam(T")) is the number of
edges in the longest path in T'. It is clear that for small trees, diam/(T') is small
as well, but for large trees diam(T") can be quite large. The diameter of random
trees has been analyzed in [2] and [13], showing that diam(T) grows on the
order of /n for random trees under the uniform distribution [2], and on the
order of logn for random trees under the Yule-Harding distribution [13]. These
findings indicate that the sequence length needed for guaranteed accuracy by
the Neighbor-Joining method, the Agarwala et al. [1] and Double-Pivota [10] 3-
approximation algorithms for the L,-nearest tree, or even by an exact algorithm
for the L,-nearest tree, can grow superpolynomially in the number of taxa in
the dataset. On the other hand, the depth of a tree is never more than logn,
and in general can be shown to be bounded by O(loglogn) for random trees
in either the uniform distribution or the Yule-Harding distributions [13]. Thus,
the sequence length requirement for the Short Quartet Method generally grows
polylogarithmically, and never more than polynomially, in the number of taxa in
the dataset.

However, these results must then be evaluated experimentally, since they
imply only that good performance is guaranteed in certain conditions, but do
not imply bad performance when those conditions do not hold.

We present the results of our experimental performance analysis comparing
neighbor-joining and the Short Quartet Method in Figure 1 and Figure 2. This
study was obtained by simulating sequence evolution on a 50-taxon caterpillar
in which we had uniform edge mutation probabilities on all edges except two
most extreme edges, which each had mutation probabilities 5 times as great as
the remaining edges. We varied the mutation probabilities on the edges while
maintaining the ratio between every pair of edges, and we generated sequences of
varying lengths. The horizontal axis represents sequence length, and the vertical
axis represents overall sequence divergence. Grayscale values show fraction of 10
replicates for which the model tree was calculated correctly. The performance
advantage enjoyed by the Short Quartet method over neighbor joining is very
dramatic on this experimental study.
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Fig. 1. Short Quartet Method on the 50-taxon caterpillar
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Fig. 2. Neighbor Joining on the 50-taxon caterpillar

4 Summary

The Short Quartet Method is a polynomial time method for tree reconstruction
which operates by estimating topologies on quartets, and then combines these
quartet topologies into one tree if they are consistent with each other and oth-
erwise returns “failure”. Thus, it is a quartet-based method in keeping with a
long tradition; for example, the Berry-Gascuel method [5] for reconstructing the
Buneman Tree, the Quartet Puzzling Method of Strimmer and Von Haeseler [37],
the “network” construction method of Bandelt and Dress [4], and other classical



methods are all based upon estimating topologies on quartets and combining
them. The way in which the Short Quartet Method is distinguished from previ-
ous quartet based methods is that it only uses a subset of the possible quartets,
and the choice with which it selects those quartets allows an accurate topology
estimation from much shorter sequences than in general is otherwise possible; i.e.
the short quartet method has a faster convergence rate than other quartet-based
methods. We have demonstrated this improvement in convergence rate through
analytically obtained estimations of the sequence length needed for an accurate
topology estimation, as well as through an experimental study, and have shown
that this improvement can be quite dramatic.

It is important to note certain distinct aspects of this method. First, the
method does not return a tree unless all the quartets topology estimations are
consistent. This can mean that on some data sets there will be no tree returned,
so that there is a disadvantage to using the short quartet method if the only
objective is to obtain a tree. However, this can also be considered an advantage,
since if a tree is obtained, there is an inherent wvalidation of the tree that is
significant and not generally obtained using other methods (which return trees
even given completely random sequences).

Another distinct aspect of the method is that it does not seem to rely upon
a completely accurate multiple sequence alignment. Rather, we never need se-
quence alignments of more than four sequences at a time, and the four sequences
at a time are always close together in the tree and hence easier to align. Further-
more, we only need a sequence alignment which is accurate enough to indicate the
correct topology of the quartet. This makes the problem of obtaining a multiple
sequence alignment much easier than is usually the case for tree reconstruction,
and avoids the problems of whether the tree reconstruction method is robust to
errors in the multiple sequence alignment.

One of the major problems with reconstructing evolutionary trees which con-
tain widely disparate taxa is the “missing data” problem; this occurs when, for
example, there are genetic sequences that apply only to a small subset of the
taxa. Most methods in such cases will require that only the portion of the se-
quences that apply to all the taxa be used for reconstruction purposes, thus
resulting in shorter sequences rather than longer sequences for what is already
a difficult reconstruction task. However, the short quartet method avoids this
problem substantially. When some genetic sequences apply only to a subset of
the taxa, these can still be used to reconstruct the subtrees on quartets that fall
within that subset. This improves the accuracy of the topology prediction of the
quartets, and hence of the entire tree.

The short quartet method also enables the use of different types of data,
and does not specify the particular method by which each quartet is estimated
(indeed, the choice of method for topology estimation can depend quite sub-
stantially on the particular quartet). Note also that both the analytical and
experimental results were obtained for a distance-based variation of the short
quartet method. In general, as extensive performance studies of different meth-
ods on four-taxon trees have shown [27], we would expect better accuracy from



shorter sequences using maximum likelihood or other more sensitive methods
than the relaxed four-point method. We may also obtain greater accuracy by
reconstructing subtrees on subsets larger than quartets, and we can still use the
short quartet consistency algorithm to combine these subtrees when they are
compatible. Thus, the short quartet method is a particular example of a general
class of methods which compute trees on small subsets of taxa using an arbitrary
method, and then combine the subtrees. This versatility with respect to subtree
order and reconstruction method may make the method more robust to model
violations.

5 Future Reading

Much interesting material can be obtained in the extensive literature in phylo-
genetics. We recommend in particular the following articles which provide an
interesting survey of the field: [18, 39].
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