

Industrial Mathematics Institute

1998:19

On bipartite drawings and the linear arrangement problem
F. Shahrokhi, O. Sýkora, L.A. Székely and I. Vrt'o

IMI

Preprint Series
Department of Mathematics University of South Carolina

On Bipartite Drawings and the Linear Arrangement Problem*

Farhad Shahrokhi
Department of Computer Science, University of North Texas
P.O.Box 13886, Denton, TX 76203-3886, USA
Ondrej Sýkora
Institute for Informatics, Slovak Academy of Sciences
P.O.Box 56, 84000 Bratislava, Slovak Republic
László A. Székely
Department of Mathematics, University of South Carolina
Columbia, SC 29208, USA
Imrich Vrto
Institute for Informatics, Slovak Academy of Sciences
P.O.Box 56, 84000 Bratislava, Slovak Republic

Abstract

The bipartite crossing number problem is studied, and a connection between this problem and the linear arrangement problem is established. It is shown that when the arboricity is close to the minimum degree and the graph is not too sparse, then the optimal number of crossings has the same order of magnitude as the optimal arrangement value times the arboricity. The application of the results to a tree provides for a closed formula which expresses exactly, the optimal number of crossings in terms of the optimal value of the linear arrangement and the degree sequence, resulting in an $O\left(n^{1.6}\right)$ time algorithm for computing the bipartite crossing number. Two polynomial time approximation algorithms for computing the bipartite crossing number are derived, with approximation factors, $O\left(\log ^{2} n\right)$, and $O(\log n \log \log n)$, from the optimal, respectively, for approximating the number of crossings, and at the same time, total edge lengths, for a large class of graphs on n vertices. No approximation algorithm which could generate a provably good solution was previously known.

The problem of computing a largest weighted biplanar subgraph of an acyclic graph is also studied and a linear time algorithm for it is derived. This problem was known to be NP-hard when the graph is planar and very sparse, and all weights are 1.

1 Introduction

The planar crossing number problem calls for placing the vertices of a graph in the plane and drawing the edges with Jordan curves, so that the number of edge crossings is minimized. This problem has been extensively studied in graph theory [32], combinatorial geometry [22], and theory of VLSI [16]. In this paper we study the bipartite crossing number problem which is an important variation of the planar crossing number. Throughout this paper $G=\left(V_{0}, V_{1}, E\right)$ denotes a connected bipartite graph, where V_{0}, V_{1} are the two classes of independent vertices, and E is the edge set. We will assume that

[^0]$\left|V_{0} \cup V_{1}\right|=n$ and $|E|=m$. A bipartite drawing [13], or 2-layer drawing of G consists of placing the vertices of V_{0} and V_{1} into distinct points on two parallel lines and then drawing each edge using a straight line segment connecting the points representing the endvertices of the edge. Let $b c r(G)$ denote the bipartite crossing number of G, that is, $b c r(G)$ is the minimum number of edge crossings over all bipartite drawings of G.
Computing $b c r(G)$ is NP-hard $[11]^{1}$ but can be solved in polynomial time for bipartite permutation graphs [29]. The problem of obtaining nice multiple layer drawings of graphs (i.e. drawings with small number of crossings), has been extensively studied by the graph drawing, VLSI, and CAD communities $[6,7,19,30,31]$. In particular one of the most important aesthetic objectives in graph drawing is reducing the number of crossings [23]. Very recently Jünger and Mutzel, [14] and Mutzel [20] succeeded to employ integer programming methods in order to compute $b c r(G)$ exactly, or to estimate it, nevertheless, these methods do not guarantee polynomial time convergence. In fact, although a $O\left(\log ^{4} n\right)$ times optimal polynomial time algorithm for approximating the planar crossing number of degree bounded graphs has been known [17], no polynomial time approximation algorithm whose performance is guaranteed has been previously known for approximating $b c r(G)$. A nice result in this area is a fast polynomial time algorithm of Eades and Wormald [7] which approximates the bipartite crossing number by a factor of 3 , when the positions of vertices in V_{0} are fixed.

In this paper we explore an important relationship between the bipartite drawings and the linear arrangement problem, which is another well-known problem in the theory of VLSI [4, 5, 15, 18, 28]. In particular, it is shown that for many graphs the order of magnitude for the optimal number of crossings is bounded from below, and above, respectively, by minimum degree times the optimal arrangement value, and by arboricity times the optimal arrangement value, where the arboricity of G is the minimum number of acyclic graphs that G can be decomposed to. Hence for a large class of graphs, it is possible to estimate $b c r(G)$ in terms of the optimal arrangement value. Our general method for constructing the upper bound is shown to provide for an optimal solution and an exact formula, resulting to an $O\left(n^{1.6}\right)$ time algorithm for computing $b c r(G)$ when G is a tree. The presence of arboricity in our upper bound allows us to relate some important topological properties such as genus and page number, to $b c r(G)$. In particular, our results easily imply that when G is "nearly planar", i.e. it either has bounded genus, or bounded page number, then, the asymptotic values of $b c r(G)$, and the optimal arrangement are the same, provided that G is not too sparse.

A direct consequence of our results is that for many graphs, the bipratite drawings with small sum of edge lenghts also have small bipartite crossings, and vis versa, and therefore, a suboptimal solution to the bipartite crossing number problem can be extracted from a suboptimal solution to the linear arrangement problem. Hence, we have derived here, the first polynomial time approximation algorithms for $b c r(G)$, which perform within a multiplicative factor of $O(\log n \log \log n)$ from the optimal, for a large class of graphs. Moreover, we show here that the traditional divide and conquer paradigm in which the divide phase approximately bisects the graph, also obtains a provably good approximation, in polynomial time, for $b c r(G)$ within a multiplicative factor of $O\left(\log ^{2} n\right)$ from the optimal, for a variety of graphs. Crucial to verifying the performance guarantee of the divide and conquer algorithm, is a lower bound of $\Omega\left(\delta_{G} n b_{\beta}(G)\right)$, derived here, for $b c r(G)$, where $b_{\beta}(G), \beta<1 / 2$, and δ_{G} are the size of the β-bisection and minimum degree of G, respectively. This significantly improves Leighton's well-known lower bound of $\Omega\left(b_{\frac{1}{3}}^{2}(G)\right)$ [16] which was derived for the planar crossing number of degree bounded graphs. The class of graphs for which the performance of our approximation algorithms is guaranteed is very large, and in particular contains those regular graphs, degree bounded graphs, and genus bounded graphs, which are not too sparse. Another notable aspect of relating $b c r(G)$ to the linear arrangement problem is that, both algorithms produce drawings with near optimal number of crossings in which the coordinates of all vertices are integers, so that the total edge length is also

[^1]near optimal, with the same performance guarantee as for the number of crossings.
We also study biplanar graphs. A bipartite graph $G=\left(V_{0}, V_{1}, E\right)$ is called a biplanar, if it has a bipartite drawing in which no two edges cross each other. Eades and Whitesides [8] have shown that the problem of determining largest biplanar subgraph is NP-hard even when G is planar, and the vertices in V_{0} and V_{1} have degrees at most 3 and 2 , respectively. This raised the question of whether or not computing a largest biplanar subgraph can be done in polynomial time when G is acyclic [20]. In this paper we present a linear time dynamic programming algorithm for the weighted version of this problem in an acyclic graph. (The weighted version was first introduced by Mutzel [20].)

Section 2 contains our general results regarding the relation between $b c r(G)$ and the linear arrangement problem. Section 3 contains the applications, and includes several important observations, the bisection based lower bound for $\operatorname{bcr}(G)$, and the approximation algorithms. Finally, Section 4 contains our linear time algorithm for computing a largest biplanar subgraph of a tree.

2 Linear arrangement and bipartite crossings

Let $G=\left(V_{0}, V_{1}, E\right), V=V_{0} \cup V_{1},|V|=n$, and $v \in V$. We denote by d_{v} the degree of v, and by d_{v}^{*} denote the number vertices adjacent to v of degree 1 . We denote by δ_{G} the minimum degree of G.

A bipartite drawing of G is obtained by: (i) placing the vertices of V_{0} and V_{1} into distinct points on two horizontal lines y_{0}, y_{1}, respectively, (ii) drawing each edge with one straight line segment which connects the points of y_{0} and y_{1} where the endvertices of the edge were placed. Hence, the order in which the vertices are placed on y_{0} and y_{1} will determine the drawing.

Let D_{G} be a bipartite drawing of G; when the context is clear, we omit the subscript G and write D. For any $e \in E$, let $b c r_{D}(e)$ denote the number of crossings of the edge e with other edges. Edges sharing an endvertex do not count as crossing edges. Let $b c r(D)$ denote the total number of crossings in D, i.e. $b c r(D)=\frac{1}{2} \sum_{e} b c r_{D}(e)$.

The bipartite crossing number of G, denoted by $b c r(G)$ is the minimum number of crossings of edges over all bipartite drawings of G. Clearly, $b c r(G)=\min _{D} b c r(D)$.

We assume throughout this paper that the vertices of V_{0} are placed on the line y_{0} which is taken to be the x-axis, and vertices of V_{1} are placed on the line y_{1} which is taken to be the line $y=1$. For a vertex $v \in V_{0} \cup V_{1}$ let $x_{D}(v)$ denote v 's x-coordinate in the drawing D. We call the function $x_{D}: V \rightarrow \mathbb{R}$ the coordinate function of D. Throughout this paper, we often omit the y coordinates. Note that x_{D} is not necessarily an injection, since for $a \in V_{0}$, and $b \in V_{1}$, we may have $x_{D}(a)=x_{D}(b)$. Given an arbitrary graph $G=(V, E)$, and a real function $f: V \rightarrow \mathbb{R}$, define the length of f, as

$$
L_{f}=\sum_{u v \in E}|f(u)-f(v)| .
$$

The linear arrangement problem is to find a bijection $f: V \rightarrow\{1,2,3, \ldots,|V|\}$, of minimum length. This minimum value is denoted by $\hat{L}(G)$.
Let $G=\left(V_{0}, V_{1}, E\right)$ and D be a bipartite drawing of G. Define the length of D to be

$$
L_{x_{D}}=\sum_{u v \in E}\left|x_{D}(u)-x_{D}(v)\right| .
$$

In this section we derive a relation between the bipartite crossing number and the linear arrangement problem.

Let D be a bipartite drawing of $G=\left(V_{0}, V_{1}, E\right)$ such that the vertices of V_{0} are placed into the points

$$
(1,0),(2,0), \ldots,\left(\left|V_{0}\right|, 0\right)
$$

For $v \in V_{1}$, let $u_{1}, u_{2}, \ldots, u_{d_{v}}$ be its neighbors satisfying $x_{D}\left(u_{1}\right)<x_{D}\left(u_{2}\right)<\ldots<x_{D}\left(u_{d_{v}}\right)$. Define the median vertex of $v, \operatorname{med}(v)=u_{\left\lfloor\frac{d v}{2}\right\rfloor}$, if $d_{v} \geq 2$, and $\operatorname{med}(v)=u_{1}$, if $d_{v}=1[7]$. We say that D has the
median property if the vertices of G have distinct x-coordinates and the x-coordinate of any vertex v in V_{1} is larger than, but arbitrarily close to, $x_{D}(\operatorname{med}(v))$, with the restriction that if a vertex of odd degree and a vertex of even degree have the same median vertex, then the odd degree vertex has a smaller x-coordinate. Note that if D has the median property, then x_{D} is an injection.
When the bipartite drawing D does not have the median property, one can always convert it to a drawing which has the property, by first placing the vertices of V_{0} in the same order in which they appear in D into the locations $(1,0),(2,0), \ldots,\left(\left|V_{0}\right|, 0\right)$, and then placing each $v \in V_{1}$ on a proper position so that the median property holds. Such a construction is called the median construction and was utilized by Eades and Wormald [7] to obtain the following remarkable result.

Theorem 2.1 [7] Let $G=\left(V_{0}, V_{1}, E\right)$, and D be a bipartite drawing of G. If D^{\prime} is obtained using the median construction from D, then

$$
b c r\left(D^{\prime}\right) \leq 3 b c r(D)
$$

2.1 Lower bounds

Let $G=\left(V_{0}, V_{1}, E\right)$ and D be a bipartite drawing of G. Consider an edge $e=a b \in E$, and let u be a vertex in $V_{0} \cup V_{1}$ so that $u \notin\{a, b\}$. We say e covers u in D, if the line parallel to the y axis passing through u has a point in common with the edge e. Thus for $e=a b, a \in V_{0}, b \in V_{1}$, neither a nor b are covered by e. However, a vertex $c \in V_{1}$ with $x_{D}(c)=x_{D}(a)$ is covered by e. Let $N_{D}(e)$ denote the number of those vertices in V_{1} which are covered by e in D. We will use the following two lemmas later.

Lemma 2.1 For $G=\left(V_{0}, V_{1}, E\right)$, let D be a bipartite drawing of G. Recall that x_{D} is the coordinate function of D. Then, the following hold.
(i) Assume that $x_{D}(v)$ is an integer for all $x \in V_{0}$. Then, there is a bijection $f^{*}: V_{0} \cup V_{1} \rightarrow\{1,2, \ldots, n\}$ so that for any $e=a b \in E$, it holds

$$
\left|f^{*}(a)-f^{*}(b)\right| \leq N_{D}(e)+\left|x_{D}(a)-x_{D}(b)\right|+1
$$

(ii) Assume that D has the median property. Then for the bijection f^{*} in (i), it holds

$$
L_{f^{*}} \leq \frac{8 b c r(D)}{\delta_{G}}+L_{x_{D}}+\sum_{a \in V_{0}} d_{a} d_{a}^{*}+m
$$

Proof. To prove (i), we construct f^{*} by moving all vertices in V to integer locations. Formally, let $w_{1}, w_{2}, \ldots, w_{n}$ be the order of vertices of $V_{0} \cup V_{1}$ such that $x_{D}\left(w_{1}\right) \leq x_{D}\left(w_{2}\right) \leq \ldots \leq x_{D}\left(w_{n}\right)$. (Note that we may have $x_{D}\left(w_{i}\right)=x_{D}\left(w_{i+1}\right)$, for some i, $w_{i} \in V_{0}, w_{i+1} \in V_{1}$, since x_{D} may not be an injection.) Define $f^{*}\left(w_{i}\right)=i, 1 \leq i \leq n$, then the proof of (i) easily follows. (In particular note that the factor +1 appears in the upper bound, since the end point of e which belongs to V_{1} may not have an integer coordinate.) For (ii), let $e=a b \in E, a \in V_{0}, b \in V_{1}$. Assume $x(a)>x(b)$, and let v be any vertex in V_{1} covered by e in D. Since D has the median property, at least $\left\lfloor d_{v} / 2\right\rfloor$ of vertices adjacent to v are separated from v in D by the straight line segment e. This means, in this case, that vertex v generates at least $\left\lfloor\delta_{G} / 2\right\rfloor \geq\left(\delta_{G}-1\right) / 2$ crossings on e. Moreover, vertex v, even if it has degree 1 , generates one crossing on e, since v and $\operatorname{med}(v)$ are separated by the line segment e in D. Thus $b c r(e) \geq \frac{1}{2} N_{D}(e)\left(1+\frac{\delta_{G}-1}{2}\right)=N_{D}(e) \frac{\delta_{G}+1}{4}$. Now assume $x_{D}(a)<x_{D}(b)$, and let v be a vertex covered by e. Then, v generates at least $d_{v}-\left\lfloor\frac{d_{v}}{2}\right\rfloor \geq d_{v} / 2$ crossings on e provided that v is not a vertex of degree 1 which is adjacent only to a. Consequently, in this case, $\operatorname{bcr}_{D}(e) \geq\left(N_{D}(e)-d_{a}^{*}\right) \delta_{G} / 2$. We conclude that in either case, $b c r_{D}(e) \geq \frac{1}{4}\left(N_{D}(e)-d_{a}^{*}\right) \delta_{G}$, and hence $N_{D}(e) \leq \frac{4 b c r(e)}{\delta_{G}}+d_{a}^{*}$, and consequently, using (i),

$$
\left|f^{*}(a)-f^{*}(b)\right| \leq \frac{4 b c r(e)}{\delta_{G}}+d_{a}^{*}+\left|x_{D}(a)-x_{D}(b)\right|+1
$$

To finish the proof of (ii) take the sum over all $e=a b \in E$.
Lemma 2.2 Let $G=\left(V_{0}, V_{1}, E\right)$, and let D be a bipartite drawing of G which has the median property, then

$$
L_{x_{D}} \leq \epsilon+\sum_{\substack{u v \in E, u \in V_{v}, v \in V_{1} \\ v_{v} \geq 2}}\left|x_{D}(u)-x_{D}(v)\right| .
$$

with an arbitrary small $\epsilon>0$.
Proof. To prove the claim, let $u v \in E$ with $v \in V_{1}$ so that $d_{v}=1$. Since D has the median property, $\operatorname{med}(v)=u$, and thus v is placed arbitrary close to u. So we may assume that $\left|x_{D}(v)-x_{D}(u)\right| \leq \frac{\epsilon}{V_{1}}$. This way the total sum of the contributions of all edges which are incident to a vertex of degree one in V_{1} to $L_{x_{D}}$ is at most $\left|V_{1}\right| \frac{\epsilon}{\left|V_{1}\right|}=\epsilon$ and the claim follows.

We now prove the main result of this section.
Theorem 2.2 Let $G=\left(V_{0}, V_{1}, E\right)$, then

$$
b c r(G)+\frac{1}{12} \sum_{v \in V} d_{v}^{2} \geq \frac{1}{36} \delta_{G} \hat{L}(G) .
$$

Proof. Let D be a bipartite drawing of G. We will construct an appropriate bijection $f^{*}: V_{0} \cup V_{1} \rightarrow$ $\{1,2, \ldots, n\}$. Let D^{\prime} be a drawing which is obtained by applying the median construction to D. Let $v \in V_{1}$ with $d_{v} \geq 2$, and let $u_{1}, u_{2}, \ldots, u_{d_{v}}$ be its neighbors with $x_{D^{\prime}}\left(u_{1}\right)<x_{D^{\prime}}\left(u_{2}\right)<\ldots<x_{D^{\prime}}\left(u_{d_{v}}\right)$. Let i be an integer, $1 \leq i \leq\left\lfloor d_{v} / 2\right\rfloor$, and let u be a vertex in V_{0} so that $x_{D^{\prime}}\left(u_{i}\right)<x_{D^{\prime}}(u)<x_{D^{\prime}}\left(u_{d_{v}-i+1}\right)$. Observe that u generates d_{u} crossings on the edges $u_{i} v$ and $u_{d_{v}-i+1} v$, if it is not adjacent to v. Similarly, u generates $d_{u}-1$ crossings on the edges $u_{i} v$ and $u_{d_{v}-i+1} v$, if it is adjacent to v. Thus

$$
\begin{align*}
& b c r_{D^{\prime}}^{\prime}\left(u_{i} v\right)+b c r_{D^{\prime}}\left(u_{d_{v}-i+1} v\right) \geq\left(x_{D^{\prime}}\left(u_{d_{v}-i+1}\right)-x_{D^{\prime}}\left(u_{i}\right)-1\right) \delta_{G}-d_{v} \\
& =\left(x_{D^{\prime}}\left(u_{d_{v}-i+1}\right)-x_{D^{\prime}}(v)+x_{D^{\prime}}(v)-x_{D^{\prime}}\left(u_{i}\right)-1\right) \delta_{G}-d_{v} . \tag{1}
\end{align*}
$$

Note that D^{\prime} has the median property, thus for $i=1,2, \ldots,\left\lfloor d_{v} / 2\right\rfloor$,

$$
x_{D^{\prime}}\left(u_{i}\right)<x_{D^{\prime}}(v)<x_{D^{\prime}}\left(u_{d_{v}-i+1}\right)
$$

and hence (1) implies

$$
\begin{align*}
\operatorname{bcr}_{D^{\prime}}\left(u_{i} v\right)+b c r_{D^{\prime}}\left(u_{d_{v}-i+1} v\right) & \geq\left(\left|x_{D^{\prime}}(v)-x_{D^{\prime}}\left(u_{d_{v}-i+1}\right)\right|+\mid x_{D^{\prime}}(v)\right. \\
& \left.-x_{D^{\prime}}\left(u_{i}\right) \mid-1\right) \delta_{G}-d_{v} . \tag{2}
\end{align*}
$$

Using (2) observe that, for $v \in V_{1}$ with $d_{v} \geq 2$,

$$
\begin{align*}
& \sum_{i=1}^{\left\lfloor\frac{d_{v}}{2}\right\rfloor}\left(b c r_{D^{\prime}}\left(u_{i} v\right)+b c r_{D^{\prime}}\left(u_{d_{v}-i+1} v\right)\right) \\
\geq & \delta_{G} \sum_{i=1}^{\left\lfloor\frac{d_{v}}{2}\right\rfloor}\left(\left|x_{D^{\prime}}(v)-x_{D^{\prime}}\left(u_{i}\right)\right|+\left|x_{D^{\prime}}(v)-x_{D^{\prime}}\left(u_{d_{v}-i+1}\right)\right|\right)-\delta_{G}\left\lfloor\frac{d_{v}}{2}\right\rfloor-\left\lfloor\frac{d_{v}}{2}\right\rfloor d_{v} . \tag{3}
\end{align*}
$$

Thus, using (3), when $d_{v} \geq 2$ is even, we have

$$
\begin{array}{r}
\sum_{i=1}^{d_{v}} b c r_{D^{\prime}}\left(u_{i} v\right)=\sum_{i=1}^{\left\lfloor\frac{d_{v}}{2}\right\rfloor}\left(b c r_{D^{\prime}}\left(u_{i} v\right)+b c r_{D^{\prime}}\left(u_{d_{v}-i+1} v\right)\right) \\
\geq \delta_{G} \sum_{i=1}^{\left\lfloor\frac{d_{v}}{2}\right\rfloor}\left(\left|x_{D^{\prime}}(v)-x_{D^{\prime}}\left(u_{i}\right)\right|+\left|x_{D^{\prime}}(v)-x_{D^{\prime}}\left(u_{d_{v}-i+1}\right)\right|\right)-\delta_{G}\left\lfloor\frac{d_{v}}{2}\right\rfloor-\left\lfloor\frac{d_{v}}{2}\right\rfloor d_{v} \\
=\delta_{G} \sum_{i=1}^{d_{v}}\left|x_{D^{\prime}}(v)-x_{D^{\prime}}\left(u_{i}\right)\right|-\delta_{G}\left\lfloor\frac{d_{v}}{2}\right\rfloor-\left\lfloor\frac{d_{v}}{2}\right\rfloor d_{v} . \tag{4}
\end{array}
$$

Moreover, when $d_{v} \geq 2$ is odd, we have,

$$
\begin{aligned}
\sum_{i=1}^{d_{v}} b c r_{D^{\prime}}\left(u_{i} v\right) & \geq b c r_{D^{\prime}}\left(u_{\left\lfloor\frac{d_{v}}{2}\right\rfloor} v\right)+b c r_{D^{\prime}}\left(u_{\left\lceil\frac{d_{v}}{2}\right\rceil} v\right) \\
& \geq\left(x_{D^{\prime}}\left(u_{\left\lceil\frac{d_{v}}{2}\right\rceil}\right)-x_{D^{\prime}}\left(u_{\left\lfloor\frac{d_{v}}{2}\right\rfloor}\right)-1\right) \delta_{G}
\end{aligned}
$$

where the upper bound is obvious, and the lower bound holds since no vertex adjacent to v is between $u_{\left\lceil\frac{d_{v}}{2}\right\rceil}$ and $u_{\left\lfloor\frac{d_{v}}{2}\right\rfloor}$. Consequently, when $d_{v} \geq 2$ is odd, we have,

$$
\begin{aligned}
\sum_{i=1}^{d_{v}} b c r_{D^{\prime}}\left(u_{i} v\right) & \geq b c r_{D^{\prime}}\left(u_{\left\lfloor\frac{d v}{2}\right\rfloor} v\right)+b c r_{D^{\prime}}\left(u_{\left\lceil\frac{d v}{2}\right\rceil} v\right) \\
& \geq\left(x_{D^{\prime}}\left(u_{\left\lceil\frac{d v}{2}\right\rceil}\right)-x_{D^{\prime}}(v)+x_{D^{\prime}}(v)-x_{D^{\prime}}\left(u_{\left\lfloor\frac{d v}{2}\right\rfloor}\right)-1\right) \delta_{G} \\
& \geq \delta_{G}\left|x_{D^{\prime}}(v)-x_{D^{\prime}}\left(u_{\left\lceil\frac{d v}{2}\right\rceil}\right)\right|-\delta_{G}
\end{aligned}
$$

where the last line is obtained by observing that $x_{D^{\prime}}\left(u_{\left\lceil\frac{d_{v}}{2}\right\rceil}\right)>x_{D^{\prime}}(v)>x_{D^{\prime}}(\operatorname{med}(v))=x_{D^{\prime}}\left(u_{\left\lfloor\frac{d_{v}}{2}\right\rfloor}\right)$. Combining this with (3), for odd d_{v}, we obtain

$$
\begin{equation*}
2 \sum_{i=1}^{d_{v}} b c r_{D^{\prime}}\left(u_{i} v\right) \geq \delta_{G} \sum_{i=1}^{d_{v}}\left|x_{D^{\prime}}(v)-x_{D^{\prime}}\left(u_{i}\right)\right|-\delta_{G}-\delta_{G}\left\lfloor\frac{d_{v}}{2}\right\rfloor-\left\lfloor\frac{d_{v}}{2}\right\rfloor d_{v} \tag{5}
\end{equation*}
$$

We note that since (5) is weaker than (4), it must also hold when d_{v} is even, and conclude by summing (5) over all $v \in V_{1}$ with $d_{v} \geq 2$, that

$$
\begin{aligned}
4 b c r\left(D^{\prime}\right) & \geq \delta_{G} \sum_{\substack{u v \in E, v \in V_{1} \\
d_{v} \geq 2}}\left|x_{D^{\prime}}(v)-x_{D^{\prime}}(u)\right| \\
& -\delta_{G}\left|V_{1}\right|-\delta_{G} \sum_{v \in V_{1}}\left\lfloor\frac{d_{v}}{2}\right\rfloor-\sum_{v \in V_{1}}\left\lfloor\left.\frac{d_{v}}{2} \right\rvert\, d_{v}\right. \\
& \geq \delta_{G} \sum_{\substack{u v \in E, v \in V_{1} \\
d_{v} \geq 2}}\left|x_{D^{\prime}}(v)-x_{D^{\prime}}(u)\right|-2 \sum_{v \in V_{1}} d_{v}^{2} .
\end{aligned}
$$

Using Lemma 2.2, we get

$$
\begin{equation*}
4 b c r\left(D^{\prime}\right) \geq \delta_{G} L_{x_{D^{\prime}}}-\epsilon-2 \sum_{v \in V_{1}} d_{v}^{2} . \tag{6}
\end{equation*}
$$

Consider the bijection f^{*} in Part (ii) of Lemma 2.1. Then

$$
\delta_{G} L_{x_{D^{\prime}}} \geq \delta_{G} L_{f^{*}}-8 b c r\left(D^{\prime}\right)-\delta_{G} m-\delta_{G} \sum_{v \in V_{0}} d_{v} d_{v}^{*}
$$

Observe that $\delta_{G} \geq 2$ implies $\sum_{v \in V_{0}} d_{v} d_{v}^{*}=0$, and hence

$$
\delta_{G} L_{x_{D^{\prime}}} \geq \delta_{G} L_{f^{*}}-8 b c r\left(D^{\prime}\right)-\delta_{G} m-\sum_{v \in V_{0}} d_{v} d_{v}^{*} .
$$

Hence (6) implies

$$
\begin{equation*}
12 b c r\left(D^{\prime}\right) \geq \delta_{G} L_{f^{*}}-\delta_{G} m-\epsilon-\sum_{v \in V_{0}} d_{v} d_{v}^{*}-2 \sum_{v \in V_{1}} d_{v}^{2} \tag{7}
\end{equation*}
$$

Observing that $L_{f^{*}} \geq \hat{L}(G)$, $b \operatorname{cr}\left(D^{\prime}\right) \leq 3 b c r(D), \delta_{G} m+\epsilon=\epsilon+\sum_{v \in V_{0}} d_{v} \delta_{G} \leq \sum_{v \in V} d_{v}^{2}$, and $\sum_{v \in V_{0}} d_{v} d_{v}^{*}+2 \sum_{v \in V_{1}} d_{v}^{2} \leq 2 \sum_{v \in V} d_{v}^{2}$, we obtain

$$
36 b c r(D)+3 \sum_{v \in V} d_{v}^{2} \geq \delta_{G} \hat{L}(G)
$$

which finishes the proof.
Next, we investigate the cases for which the error term $\sum_{v \in V} d_{v}^{2}$ can be eliminated from Theorem 2.2.

Corollary 2.1 Let $G=\left(V_{0}, V_{1}, E\right)$ so that $m \geq(1+\gamma) n$, and $\sum_{v \in V}\left(d_{v}-d_{v}^{*}\right)^{2} \geq \alpha \sum_{v \in V} d_{v}^{2}$, where γ and α are positive constants. Then

$$
b c r(G) \geq C_{\alpha, \gamma} \delta_{G} \hat{L}(G), \text { where } C_{\alpha, \gamma}=\frac{1}{36} \cdot \frac{1}{1+\frac{8+4 \gamma}{3 \alpha}} .
$$

Proof. To prove the result we will first show that for any bipartite drawing D of G it holds,

$$
\begin{equation*}
b c r(D) \geq \frac{\sum_{v \in V}\left(d_{v}-d_{v}^{*}\right)^{2}}{16}-m \tag{8}
\end{equation*}
$$

For now assume that (8) holds. It is easy to see that $\operatorname{bcr}(G) \geq m-n+1$ [19], and since $n \leq \frac{\gamma}{1+\gamma} m$, we conclude that $m \leq(\gamma+1) b c r(G)$. Combining this inequality with (8), we obtain $(2+\gamma) b c r(G) \geq$ $\frac{1}{16} \sum_{v \in V}\left(d_{v}-d_{v}^{*}\right)^{2} \geq \frac{\alpha}{16} \sum_{v \in V} d_{v}^{2}$, and thus

$$
\frac{16(2+\gamma)}{\alpha} b c r(G) \geq \sum_{v \in V} d_{v}^{2}
$$

and the claim follows from Theorem 2.2.
To prove (8), let D be any bipartite drawing of G, and let $v \in V_{0}$ so that $d_{v}-d_{v}^{*} \geq 2$. Let $u_{1}, u_{2}, \ldots, u_{d_{v}-d_{v}^{*}}$ be the set of vertices of degree at least 2 which are adjacent to v, and assume with no loss of generality that $x_{D}\left(u_{1}\right)<x_{D}\left(u_{2}\right)<\ldots<x_{D}\left(u_{d_{v}-d_{v}^{*}}\right)$. Let i be an integer, $1 \leq i \leq\left\lfloor\frac{d_{v}-d_{v}^{*}}{2}\right\rfloor$, and note that any vertex $u_{j}, d_{v}-d_{v}^{*}-i+1>j>i$ generates at least one crossing on the edges $u_{i} v$ and $u_{d_{v}-i+1} v$. Thus $b c r\left(v u_{i}\right)+b c r\left(v u_{d_{v}-d_{v}^{*}-i+1}\right) \geq d_{v}-d_{v}^{*}-2 i, 1 \leq i \leq\left\lfloor\frac{d_{v}-d_{v}^{*}}{2}\right\rfloor$, and therefore

$$
\begin{align*}
& \sum_{i=1}^{\left\lfloor\frac{d_{v}-d_{*}^{*}}{2}\right\rfloor}\left[b c r_{D}\left(u_{i} v\right)+b c r_{D}\left(u_{d_{v}-i-d_{v}^{*}+1} v\right)\right] \geq \sum_{i=1}^{\left\lfloor\frac{d_{v}-d_{v}^{*}}{2}\right\rfloor} d_{v}-d_{v}^{*}-2 i \\
& \geq\left(d_{v}-d_{v}^{*}\right) \frac{d_{v}-d_{v}^{*}-1}{2}-\frac{d_{v}-d_{v}^{*}}{2} \cdot \frac{d_{v}-d_{v}^{*}+2}{2} \\
& \geq \frac{1}{4}\left(d_{v}-d_{v}^{*}\right)^{2}-d_{v} \tag{9}
\end{align*}
$$

We conclude that by summing (9) over all $v \in V_{1}$ that,

$$
2 b c r(D) \geq \frac{\sum_{v \in V_{1}}\left(d_{v}-d_{v}^{*}\right)^{2}}{4}-2 m
$$

Similarly we can show that $2 b c r(D) \geq\left(\sum_{v \in V_{0}}\left(d_{v}-d_{v}^{*}\right)^{2} / 4\right)-2 m$, and hence the claim follows.
Remarks. The conditions of Corollary 2.1, involving α and γ are not restrictive at all. For instance, any bipartite graph of minimum degree at least 3 , satisfies the conditions. We identify more additional graphs which satisfy these conditions in Section 3.

2.2 An upper bound

We now derive an upper bound on $b c r(G)$. We need the following obvious lemma.
Lemma 2.3 Let D be a bipartite drawing of $G=\left(V_{0}, V_{1}, E\right)$. Let $e=u v$ and $\bar{e}=a b, u, a \in V_{0}, v, b \in$ V_{1} be two edges which cross in D. Assume that $\left|x_{D}(v)-x_{D}(u)\right| \geq\left|x_{D}(a)-x_{D}(b)\right|$, then either a or b is covered by e in D. Moreover, if a is covered by e, then

$$
\left|x_{D}(b)-x_{D}(u)\right| \leq\left|x_{D}(v)-x_{D}(u)\right|,
$$

whereas, if b is covered by e, then

$$
\left|x_{D}(a)-x_{D}(v)\right| \leq\left|x_{D}(v)-x_{D}(u)\right| .
$$

Let V_{H} and E_{H}, denote the vertex set and the edge set of a subgraph H, of G. The arboricity of G, denoted by a_{G}, is $\max _{H}\left\lceil\frac{\left|E_{H}\right|}{\left|V_{H}\right|-1}\right\rceil$, where the maximum is taken over all subgraphs H, with $\left|V_{H}\right| \geq 2$. Note that $\delta_{G} / 2 \leq a_{G} \leq \Delta_{G}$, where Δ_{G} denotes the maximum degree of G. A well-known theorem of Nash-Williams [21] asserts that a_{G} is the minimum number of edge disjoint acyclic subgraphs that edges of G can be decomposed to.

Theorem 2.3 Let $G=\left(V_{0}, V_{1}, E\right)$, then

$$
b c r(G) \leq 5 a_{G} \hat{L}(G)
$$

Proof. Consider a solution (not necessarily optimal) of the linear arrangement of G, realized by a bijection $f^{*}: V_{0} \cup V_{1} \rightarrow\{1,2, \ldots, n\}$. The mapping f^{*} induces an ordering of vertices of $V_{0} \cup V_{1}$ in y_{0}. Lift up the vertices of V_{1} into y_{1} and draw the edges with respect to the new locations of these vertices to obtain a bipartite drawing D. Note that

$$
\begin{equation*}
L_{x_{D}}=\sum_{u v \in E}\left|x_{D}(u)-x_{D}(v)\right|=L_{f^{*}} \tag{10}
\end{equation*}
$$

for this drawing D. Let $e=u v \in E, u \in V_{0}, v \in V_{1}$, and define I_{e} to be the set all edges crossing e in D so that for any $a b \in I_{e}$,

$$
\left|x_{D}(a)-x_{D}(b)\right| \leq\left|x_{D}(v)-x_{D}(u)\right|
$$

Observe that if any edge $e^{\prime} \notin I_{e}$ crosses e, then $e \in I_{e^{\prime}}$. Hence, in this case the crossing of e and e^{\prime} contributes one to $\left|I_{e^{\prime}}\right|$. We conclude that

$$
b c r(D) \leq \sum_{e \in E}\left|I_{e}\right|,
$$

and will show that $\left|I_{e}\right| \leq a_{G}\left(4\left|x_{D}(u)-x_{D}(v)\right|+1\right)$. For $e=u v \in E$, with $u \in V_{0}, v \in V_{1}$, let V_{0}^{e} be the set of all those vertices y of V_{0} so that $\left|x_{D}(y)-x_{D}(v)\right| \leq\left|x_{D}(u)-x_{D}(v)\right|$. Similarly, let V_{1}^{e} be the set of all those vertices y of V_{1} so that $\left|x_{D}(y)-x_{D}(u)\right| \leq\left|x_{D}(u)-x_{D}(v)\right|$. Note that, $\left|V_{i}^{e}\right| \leq 2\left|x_{D}(u)-x_{D}(v)\right|+1, i=0,1$, since the coordinates of all vertices are integers. Therefore, we have $\left|V_{0}^{e} \cup V_{1}^{e}\right| \leq 4\left|x_{D}(u)-x_{D}(v)\right|+2$. Let $\bar{e}=a b \in I_{e}, a \in V_{0}, b \in V_{1}$, and observe that by Lemma 2.3, $a \in V_{0}^{e}$ and $b \in V_{1}^{e}$. Consequently, $\left|I_{e}\right| \leq\left|E_{H}\right|$, where E_{H} is the edge set of the induced subgraph of G on the vertex set $V_{0}^{e} \cup V_{1}^{e}$. Clearly,

$$
\left|I_{e}\right| \leq\left|E_{H}\right| \leq a_{G}\left(4\left|x_{D}(u)-x_{D}(v)\right|+2-1\right)=a_{G}\left(4\left|x_{D}(u)-x_{D}(v)\right|+1\right)
$$

by the definition of a_{G}, and thus

$$
b c r(D) \leq \sum_{e \in E} I_{e} \leq a_{G}\left(4 L_{x_{D}}+m\right) .
$$

To complete the proof we take f^{*} to be the optimal solution to the linear arrangement problem, that is, $L_{f^{*}}=\hat{L}(G) \geq m$.

2.3 Bipartite crossings in trees

We note that if a_{G} is small, then, the gap between the upper bound and the lower bound in Theorems 2.2 and 2.3 is small, and hence, it is natural to investigate the case $a_{G}=1$, that is, when G is acyclic. In fact, in this case the method in the proof of Theorem 2.3 provides for an optimal bipartite drawing.

Theorem 2.4 Let T be a tree on the vertex set $V=V_{0} \cup V_{1}$, where V_{0} and V_{1} are the partite sets, and $|V|=n$. Let f^{*} be a bijection utilizing the optimal solution to the linear arrangement problem. Let D^{*} be a bipartite drawing constructed by the method of Theorem 2.3, that is, by lifting the vertices in V_{1} into the line $y=1$. Then

$$
\begin{equation*}
b c r\left(D^{*}\right)=b c r(T)=\hat{L}(T)-n+1-\sum_{v \in T}\left\lfloor\frac{d_{v}}{2}\right\rfloor\left\lceil\frac{d_{v}-2}{2}\right\rceil . \tag{11}
\end{equation*}
$$

Proof. We prove the Theorem by induction on n. The result is true for $n=1,2$. Let $n \geq 3$. Assume that the Theorem is true for all l-vertex trees, $l<n$, and let T be a tree on n vertices. We first show that the RHS of (11) is a lower bound on $b c r(T)$. We then show that $b c r\left(D^{*}\right)$ equals to RHS of (11). Consider an optimal bipartite drawing D of T. It is not difficult to see that one of the leftmost (rightmost) vertices is a leaf. Denote the left leaf by v_{0}, the right leaf by v_{k}, and let $P=v_{0} v_{1} \ldots v_{k}$ be the path between v_{0} and v_{k}. Note that P will cross any edge in T which is not incident to v_{i}, $0 \leq i \leq k$, it follows that path P will generate at least

$$
\begin{equation*}
c_{P}=n-1-k-\sum_{i=1}^{k-1}\left(d_{v_{i}}-2\right) \tag{12}
\end{equation*}
$$

crossings, where c_{P} counts exactly the number of edges in T (in D) which are not incident to any vertex on P. Deleting the edges of P we get trees T_{i}, on the vertex set $V^{i}=V_{0}^{i} \cup V_{1}^{i}$, rooted in $v_{i}, i=1,2, \ldots, k-1$. Consider the optimal bipartite drawings of $T_{i}, i=1,2, \ldots, k-1$, and place them consecutively such that T_{i} does not cross T_{j}, for $i \neq j$. Then draw the path P without self crossings such that $v_{0}\left(v_{k}\right)$ is placed to the left (right) of the drawing of $T_{1}\left(T_{k-1}\right)$. Then clearly the number of crossings in this new drawings is $\sum_{i=1}^{k-1} b c r\left(T_{i}\right)+c_{P}$, so we conclude that

$$
b c r(D)=\sum_{i=1}^{k-1} b c r\left(T_{i}\right)+c_{P}=\left(\sum_{i=1}^{k-1} b c r\left(T_{i}\right)\right)+n-1-k-\sum_{i=1}^{k-1}\left(d_{v_{i}}-2\right),
$$

for otherwise D is not an optimal drawing. For any $v \in V$, let d_{v}^{i} denote the degree of v in T_{i}; applying the inductive hypothesis to $T_{i}, i=1,2, \ldots, k-1$, we obtain

$$
\begin{align*}
\operatorname{bcr}(T)= & \sum_{i=1}^{k-1}\left(\hat{L}\left(T_{i}\right)-\left|V^{i}\right|+1-\sum_{v \in V^{i}}\left\lfloor\frac{d_{v}^{i}}{2}\right\rfloor\left\lceil\frac{d_{v}^{i}-2}{2}\right\rceil\right) \\
& +n-1-k-\sum_{i=1}^{k-1}\left(d_{v_{i}}-2\right) \\
= & \sum_{i=1}^{k-1}\left(\hat{L}\left(T_{i}\right)-\sum_{v \in V^{i}}\left(\left\lfloor\frac{d_{v_{i}}}{2}\right\rfloor\left\lceil\frac{d_{v_{i}}-2}{2}\right\rceil+d_{v_{i}}-2\right)\right) . \tag{13}
\end{align*}
$$

Now observe that for $v \in V^{i}, d_{v}^{i}=d_{v}$, if $v \neq v_{i}$; otherwise $d_{v}^{i}=d_{v}-2, i=1,2, \ldots, k-1$. Consequently,

$$
\begin{align*}
\sum_{v \in V^{i}}\left\lfloor\frac{d_{v}^{i}}{2}\right\rfloor\left\lceil\frac{d_{v}^{i}-2}{2}\right\rceil+d_{v_{i}}-2 & =\left\lfloor\frac{d_{v_{i}}-2}{2}\right\rfloor\left\lceil\frac{d_{v_{i}}-4}{2}\right\rceil+d_{v_{i}}-2+\sum_{v \in V^{i}-v_{i}}\left\lfloor\frac{d_{v}}{2}\right\rfloor\left\lceil\frac{d_{v}-2}{2}\right\rceil \\
& =\sum_{v \in V^{i}}\left\lfloor\frac{d_{v}}{2}\right\rfloor\left\lceil\frac{d_{v}-2}{2}\right\rceil, \tag{14}
\end{align*}
$$

where the last line is obtained by observing that $\left\lfloor\frac{d_{v_{i}}-2}{2}\right\rfloor\left\lceil\frac{d_{v_{i}}-4}{2}\right\rceil+d_{v_{i}}-2=\left\lfloor\frac{d_{v_{i}}}{2}\right\rfloor\left\lceil\frac{d_{v_{i}}-2}{2}\right\rceil$. Thus it follows using (13) that

$$
\begin{equation*}
b c r(D)=\sum_{i=1}^{k-1} \hat{L}\left(T_{i}\right)-\sum_{v \in V}\left\lfloor\frac{d_{v}}{2}\right\rfloor\left\lceil\frac{d_{v}-2}{2}\right\rceil . \tag{15}
\end{equation*}
$$

Now consider the optimal linear arrangements of the trees T_{i}, for $i=0,1,2, \ldots, k$ and place them consecutively in that order on a line, and the path P. Let g denote the bijection associated with this arrangement, then $L_{g}=\sum_{i=1}^{k-1} \hat{L}\left(T_{i}\right)+n-1$. Using this fact (15) implies

$$
b c r(T) \geq \hat{L}(T)-n+1-\sum_{v \in T}\left\lfloor\frac{d_{v}}{2}\right\rfloor\left\lceil\frac{d_{v}-2}{2}\right\rceil,
$$

since $L_{g} \geq \hat{L}(T)$.
To finish the proof we will show that $b c r\left(D^{*}\right)$ equals to the RHS of (11). Consider an optimal linear arrangement f^{*} of the tree T. It is not difficult to see that, $f^{*-1}(1)$ and $f^{*-1}(n)$ are leaves, $[25,4]$. Let $P=v_{0} v_{1} \ldots v_{k}$ be the path between $v_{0}=f^{*-1}(1)$ and $v_{k}=f^{*-1}(n)$ in T, and let T_{i} be trees defined in the first part of the proof. Note that for the bijection g, described earlier, it holds $L_{g}=\sum_{i=1}^{k-1} \hat{L}\left(T_{i}\right)+n-1$, and thus we conclude that,

$$
\begin{equation*}
L_{f^{*}}=\hat{L}(T)=\sum_{i=1}^{k-1} \hat{L}\left(T_{i}\right)+n-1, \tag{16}
\end{equation*}
$$

and note that the above equation implies that P does not cross itself, in the arrangement associated with f^{*}. It follows that P does not cross itself in the bipartite drawing D^{*}. Let f_{i}^{*} be the restriction of f^{*} to V^{i}, and D_{i}^{*} be the subdrawing in D^{*} which is associated with $T_{i}, i=1,2, \ldots, k-1$. Note that $b c r\left(D^{*}\right)=\sum_{i=1}^{k-1} b c r\left(D_{i}^{*}\right)+c_{P}$. However, it is easy to see that D_{i}^{*} is obtained from f_{i}^{*} by lifting the vertex set V_{1}^{i} to the line $y=1$, and hence we can apply the induction hypothesis to $D_{i}^{*}, i=1,2, \ldots k-1$, to obtain

$$
\begin{equation*}
b c r\left(D^{*}\right)=\sum_{i=1}^{k-1}\left(\hat{L}\left(T_{i}\right)-\left|V_{i}\right|+1-\sum_{v \in V_{i}}\left\lfloor\frac{d_{v}}{2}\right\rfloor\left\lceil\frac{d_{v}-2}{2}\right\rceil\right)+c_{P} . \tag{17}
\end{equation*}
$$

Substituting c_{P} its value from (12), and repeating the same steps used in deriving (15), we obtain

$$
\begin{equation*}
\operatorname{bcr}\left(D^{*}\right)=\sum_{i=1}^{k-1} \hat{L}\left(T_{i}\right)-\sum_{v \in V}\left\lfloor\frac{d_{v}}{2}\right\rceil\left\lceil\frac{d_{v}-2}{2}\right\rceil . \tag{18}
\end{equation*}
$$

To complete the proof use (16) in (18) and obtain,

$$
b c r\left(D^{*}\right)=\hat{L}(T)-n+1-\sum_{v \in T}\left\lfloor\frac{d_{v}}{2}\right\rfloor\left\lceil\frac{d_{v}-2}{2}\right\rceil .
$$

Since the optimal linear arrangement of an n-vertex tree can be found in $O\left(n^{1.6}\right)$ time [4], computing D^{*} can also be done in $O\left(n^{1.6}\right)$ time.

3 Applications

It is instructive to provide examples of graphs G for which $\operatorname{bcr}(G)=\Theta\left(\delta_{G} \hat{L}(G)\right)$. Consider any bipartite G with $\delta_{G} \geq 3$ and $\delta_{G}=\Theta\left(a_{G}\right)$, for instance, take any regular bipartite graph with $\delta_{G} \geq 3$. Then, conditions of Corollary 2.1 are met, and thus by Theorem 2.3, $\operatorname{bcr}(G)=\Theta\left(\delta_{G} \hat{L}(G)\right)$. Moreover, consider any connected bipartite G of degree at most a constant k, with $m \geq(1+\gamma) n$, where $\gamma>0$
is fixed. Note that, $d_{v}-d_{v}^{*} \geq 1$ for any $v \in V$, since G is connected and is not a star, and thus, $\sum_{v \in V}\left(d_{v}-d_{v}^{*}\right)^{2} \geq n$. (Note that the star is excluded by the density condition $m \geq(1+\gamma) n$.) Now let $\alpha=\frac{1}{k^{2}}$, to obtain $n \geq \frac{1}{k^{2}} \sum_{v \in V} d_{v}^{2}$. Hence this graph satisfies the conditions of Corollary 2.1, moreover, it is easy to see that $a_{G} \leq k=O(1)$, and we conclude using Theorem 2.3 that $b c r(G)=\Theta(\hat{L}(G))$.

3.1 Bipartite crossings, bisection, genus, and page number

The appearance of a_{G} in the upper bound of Theorem 2.3 relates $b c r(G)$ to other important topological properties of G such as genus of G, denoted by g_{G} [32], and page number of G [1], denoted by p_{G}.

Observation 3.1 Let $G=\left(V_{0}, V_{1}, E\right)$, and assume that $\delta_{G} \geq 2$ and $m \geq(1+\gamma) n$, for a fixed $\gamma>0$. Then $b c r(G)=\Theta(\hat{L}(G))$, provided that $a_{G}=O(1)$. Consequently, under the given conditions for G, if either $p_{G}=O(1)$, or $g_{G}=O(1)$, then $\operatorname{bcr}(G)=\Theta(\hat{L}(G))$.

Proof. Assume that $a_{G}=O(1)$, then using Corollary 2.1 and Theorem 2.3, and observing that, $a_{G}=O(1)$, implies $\delta_{G}=O(1)$, we conclude that $\operatorname{bcr}(G)=\Theta(\hat{L}(G))$. (Note that, $\delta_{G} \geq 2$, gives $d_{v}^{*}=0$, for all $v \in V$.) To finish the proof, observe that $p_{G}=O(1)\left(g_{G}=O(1)\right)$, implies that $a_{G}=O(1)$.

Next, we provide another application of our results, by deriving nontrivial upper bounds on the bipartite crossing number.

Observation 3.2 Let $G=\left(V_{0}, V_{1}, E\right)$, with page number p_{G} and genus g_{G}. Then

$$
\operatorname{bcr}(G) \leq 10 p_{G} \hat{L}(G) \text { and } \operatorname{bcr}(G) \leq\left(10 \sqrt{g_{G}}+20\right) \hat{L}(G)
$$

Proof. Since $\operatorname{cr}(G) \leq b c r(G) \leq 5 a_{G} \hat{L}(G)$, by Theorem 2.3, we need to bound a_{G} in terms of g_{G} and p_{G}. Let H be a subgraph of G with the vertex set $V_{H},\left|V_{H}\right| \geq 2$, and the edge set E_{H}. Note that $p_{H} \leq p_{G}$, and $\frac{\left|E_{H}\right|}{\left|V_{H}\right|-1} \leq 2 p_{H}$ [1], and hence $a_{G} \leq 2 p_{G}$, which verifies the upper bound involving p_{G}. To finish the proof observe that $\frac{\left|E_{H}\right|}{4}-\frac{\left|V_{H}\right|}{2}+1$ is a lower bound on the genus of H, or g_{H} [32]. Thus,

$$
\frac{g_{H}}{\left|V_{H}\right|-1} \geq \frac{1}{4} \frac{\left|E_{H}\right|}{\left|V_{H}\right|-1}-\frac{\left|V_{H}\right|}{2\left|V_{H}\right|-2}+\frac{1}{\left|V_{H}\right|-1} .
$$

Since g_{H} is at most $\left(\left|V_{H}\right|-1\right)^{2} / 12[32]$, it follows that for any subgraph $H, \sqrt{g_{G} / 12} \geq \sqrt{g_{H} / 12} \geq$ $\frac{g_{H}}{\left|V_{G}\right|-1} \geq \frac{1}{4} \frac{\left|E_{H}\right|}{\left|V_{H}\right|-1}$, and consequently $a_{G} \leq 2 \sqrt{g_{G}}+4$.

Let $0<\beta \leq \frac{1}{2}$ be a constant and denote by $b_{\beta}(G)$ size of the minimal β-bisection of G. That is,

$$
b_{\beta}(G)=\min _{\beta n \leq|A| \leq(1-\beta) n}|(A, \bar{A})|
$$

where (A, \bar{A}) denotes a cut which partitions V into A and \bar{A}. Leighton [16] proved for any degree bounded graph G, the inequality $\operatorname{cr}(G)+n=\Omega\left(b_{\frac{1}{3}}^{2}(G)\right)$, where $\operatorname{cr}(G)$ is the planar crossing number of G. Another very interesting consequence of Theorem 2.2 is providing a stronger version of Leighton's result, for $b c r(G)$.

Theorem 3.1 Let $G=\left(V_{0}, V_{1}, E\right)$, Then, for any constant $0<\beta<\frac{1}{2}$, it holds

$$
b c r(G)+\sum_{v \in V} d_{v}^{2}=\Omega\left(\delta_{G} n b_{\beta}(G)\right),
$$

in particular when G is regular, it holds

$$
b c r(G)=\Omega\left(m b_{\beta}(G)\right)
$$

Proof. The claim follows from the lower bound in Theorem 2.2 and the well-known observation that $\hat{L}(G) \geq(1-2 \beta) n b_{\beta}(G)$. (See for instance [12].)
Remarks. After proving Theorem 3.1, we discovered that a weaker version of this Theorem for degree bounded graphs can be obtained by a shorter proof which uses Menger's Theorem [27].

3.2 Approximation algorithms

Given a bipartite graph G, the bipartite arrangement problem is to find a bipartite drawing D of G with smallest $L_{x_{D}}$, or smallest length, so that the x coordinate of any vertex is an integer. We denote this minimum value by $\bar{L}(G)$. Note that coordinate function x_{D}, for a bipartite drawing need not to be an injection, since we may have $x_{D}(a)=x_{D}(b)$, for $a \in V_{0}$, and $b \in V_{1}$. Thus, in general $\bar{L}(G) \neq \hat{L}(G)$. Our approximation algorithms in this section provide a bipartite drawing in which all vertices have integer coordinates, so that the number of crossings and at the same time the length of the drawing is small. We need the following Lemma giving a relation between $\bar{L}(G)$ and $\hat{L}(G)$.

Lemma 3.1 For any connected bipartite graph $G=\left(V_{0}, V_{1}, E\right)$ it holds

$$
\bar{L}(G) \geq \frac{\hat{L}(G)-1}{4} .
$$

Proof. Let D be a bipartite drawing of G in which all x coordinates are integers. Let $e=a b \in E$, and note that $N_{D}(e) \leq\left|x_{D}(a)-x_{D}(b)\right|$, since any vertex in $V_{0} \cup V_{1}$ has an integer x coordinate. Let f^{*} be the bijection in Part (i) in Lemma 2.1, then $\left|f^{*}(a)-f^{*}(b)\right| \leq 2\left|x_{D}(a)-x_{D}(b)\right|+1$, and hence by taking the sum over all edges, we obtain $L_{f^{*}} \leq 2 L_{x_{D}}+m$. To prove the lemma, we claim that there are at least $\frac{m-1}{2}$ edges $e=a b$, so that $x_{D}(a) \neq x_{D}(b)$, and consequently $L_{x_{D}} \geq \frac{m-1}{2}$, which implies the result. To prove our claim, note that there are at most $\frac{n}{2}$ edges $a b$, so that $x_{D}(a)=x_{D}(b)$, and hence at least $m-\frac{n}{2} \geq \frac{m-1}{2}$ edges $a b$, with $x_{D}(a) \neq x_{D}(b)$, since G is connected and therefore has at least $n-1$ edges.

Even et al. [9] in a breakthrough result came up with polynomial time $O(\log n \log \log n)$ times optimal approximation algorithms for several NP-hard problems, including the linear arrangement problem. Combining their result with ours, we obtain the following.

Theorem 3.2 Let $G=\left(V_{0}, V_{1}, E\right)$, and consider the drawing D (with integer coordinates) in Theorem 2.3 obtained form an approximate solution to the linear arrangement problem provided in [9]. Then $L_{x_{D}}=O(\log n \log \log n \bar{L}(G))$. Moreover, if G meets the conditions in Corollary 2.1, then bcr $(D)=$ $O(\log n \log \log n b c r(G))$, provided that $\delta_{G}=\Theta\left(a_{G}\right)$.
Proof. Note that $L_{x_{D}}=O(\hat{L}(G) \log n \log \log n)$ and thus the claim regarding $L_{x_{D}}$ follows from Lemma 3.1. To finish the proof note that, Theorem 2.3 gives $b c r(D)=O\left(a_{G} \log n \log \log n \hat{L}(G)\right)$, and the claim regarding $b c r(D)$ is verified by the application of Corollary 2.1, since $\delta_{G}=\Theta\left(a_{G}\right)$.

The divide and conquer paradigm has been very popular in solving VLSI layout problems both in theory and also in practice. Indeed, the only known approximation algorithm for the planar crossing number is a simple divide and conquer algorithm in which the divide phase consists of approximately bisecting the graph [2]. This algorithm approximates $c r(G)+n$ to within a factor of $O\left(\log ^{4} n\right)$ from the optimal, when G is degree bounded [17]. A similar algorithm approximates $\hat{L}(G)$ to within a factor of $O\left(\log ^{2} n\right)$ from the optimal. To verify the quality of the approximate solutions, in general, one needs to show that the error term arising in the recurrence relations associated with the performance of algorithms are small compared to the value of the optimal solution. A nice algorithmic consequence of Theorem 3.1 is that the standard divide and conquer algorithm in which the divide phase consists of approximately bisecting the graph gives a good approximation for $b c r(G)$ in polynomial time. The divide stage of our algorithm uses an approximation algorithm for bisecting a graph such as those in [10, 17]. These algorithms have a performance guarantee of $O(\log n)$ from the optimal [10, 17]. It should be noted that the lower bound of $\Omega\left(b_{\frac{1}{3}}^{2}(G)\right)$, although is sufficient to verify the the performance of the divide and conquer approximation algorithm for the planar crossing number, can not be used to show the quality of the approximation algorithm for $b c r(G)$, since (as we will see) it does not bound from above the error term in our recurrence relation. Thus our lower bound of $\Omega\left(n \delta_{G} b_{\frac{1}{3}}(G)\right)$ is crucial to show the suboptimality of the solution.

Theorem 3.3 Let A be a polynomial time $1 / 3-2 / 3$ bisecting algorithm to approximate the bisection of a graph with a performance guarantee $O(\log n)$. Consider a divide and conquer algorithm which (a) recursively bisects the graph G, using A, (b) obtains the two bipartite drawings, and then (c) inserts the edges of the bisection between these two drawings. This divide and conquer algorithm generates, in polynomial time, a bipartite drawing D with integer coordinates, so that $L_{x_{D}}=O\left(\log ^{2} n \bar{L}(G)\right)$. Moreover, if G meets the conditions in Corollary 2.1, then $b \operatorname{cr}(D)=O\left(\log ^{2} n b c r(G)\right)$, provided that $\delta_{G}=\Theta\left(a_{G}\right)$.

Proof. Assume that using A, we partition the graph G to 2 vertex disjoint subgraphs G_{1} and G_{2} recursively. Let $\bar{b}(G)$ denote the number of those edges having one endpoint in the vertex set of G_{1}, and the other in the vertex set of G_{2}. Let $D_{G_{1}}$, and $D_{G_{2}}$ be the bipartite drawings already obtained by the algorithm for G_{1} and G_{2}, respectively. Let D denote the drawing obtained for G. To show the claim regarding $L_{x_{D}}$, note that

$$
L_{x_{D}} \leq L_{x_{D_{G_{1}}}}+L_{x_{D_{G_{2}}}}+\bar{b}(G) n .
$$

Since, we use the approximation algorithm A for bisecting we have $\bar{b}(G)=O\left(\log n b_{\frac{1}{3}}(G)\right)$, hence the error term in the recurrence relation is $O\left(n \log n b_{\frac{1}{3}}(G)\right)$. Moreover, $3 \hat{L}(G) \geq b_{\frac{1}{3}}(G) n$, [12], and consequently using Lemma 3.1, we obtain, $12 \bar{L}(G)+3 \geq b_{\frac{1}{3}}(G) n$. Thus the error term is $O(\log n \bar{L}(G))$, and consequently,

$$
L_{x_{D}} \leq L_{x_{D_{G_{1}}}}+L_{x_{D_{G_{2}}}}+O(\log n \bar{L}(G)),
$$

which implies $L_{x_{D}}=O\left(\log ^{2} n \bar{L}(G)\right)$. To verify the claim regarding $b c r(D)$, note that

$$
b c r(D) \leq b c r\left(D_{G_{1}}\right)+b c r\left(D_{G_{2}}\right)+\bar{b}^{2}(G)+\bar{b}(G) m
$$

Now observing that $m \leq a_{G} n, \bar{b}(G)=O\left(\log n b_{\frac{1}{3}}(G)\right)$, and $n b_{\frac{1}{3}}(G) \leq 3 \hat{L}(G)$, we obtain,

$$
b c r(D) \leq b c r\left(D_{G_{1}}\right)+b c r\left(D_{G_{2}}\right)+O\left(a_{G} \hat{L}(G) \log n\right)
$$

which implies

$$
b c r(D)=O\left(a_{G} \hat{L}(G) \log ^{2} n\right)
$$

Note that by Corollary 2.1, $b c r(G)=\Omega\left(a_{G} \hat{L}(G)\right)$, and the claim follows.
Remarks. The method of Even et al. that we suggested to use in Theorem 3.2, although a theoretical breakthrough, requires the usage of specific interior point linear programming methods which may be computationally expensive or hard to code. Hence, the the divide and conquer approximation algorithm, although in theory, weaker than the method of Theorem 3.2, it may be easier to implement. Moreover, one may use very fast and simple heuristics developed by the VLSI and CAD communities [24] for graph bisection in the divide stage. Although, these heuristics do not produce provably suboptimal solutions for bisecting a graph, they work well in practice, and are extremely fast. Therefore, one may anticipate that certain implementations of the divide and conquer algorithm are very fast and effective in practice.

Note that since a_{G} can be computed in polynomial time, the class of graphs with $a_{G} \leq c \delta_{G}$ is recognizable in polynomial time, when c is a given constant. Hence, those graphs which meet the required conditions in Theorems 3.2, and 3.3 can be recognized in polynomial time. Also, note that many important graphs such those introduced in Section 3 meet the conditions, and hence for these graphs the performance of both approximation algorithms is guaranteed.

4 Largest biplanar subgraphs in acyclic graphs

Let $T=\left(V_{T}, E_{T}\right)$ be a tree and $w_{i j}$ be a weight assigned to each edge $i j \in E_{T}$. For any $B \subseteq E_{T}$, define the weight of B, denoted by $w(B)$, to be the sum of weights for all edges in B. In this section we present a linear time algorithm to compute a biplanar subgraph of T of largest weight.
A tree on at least 2 vertices is called a caterpillar if it consists of a path to which some vertices of degree 1 (leaves) are attached. We distinguish four categories of vertices in a caterpillar. First consider caterpillars which are not stars. They have a unique path connecting two internal vertices to which all leaves are attached to. We call this path the backbone of the caterpillar. The two endvertices of the backbone are called endbone vertices, internal vertices of the backbone are called midbone vertices. Leaves attached to endbones are called endleaves. Leaves attached to midbones are called midleaves.

For a star with at least 3 vertices, the middle vertex is considered as endbone, the backbone path consists of this single endbone, and the leaves in the star are considered endleaves. If a star has two vertices, then we treat these vertices as endbones.
Let $T=\left(V_{T}, E_{T}\right)$ be an unrooted tree and $r \in V_{T}$. Then, we view r as the root of T. Then any vertex $x \in V_{T}, x \neq r$ will have a unique parent which is the first vertex on the path towards the root. For $x \in V_{T}$, the set of children of x, denoted by N_{x}, are those vertices of T whose parent is x. For any $x \in V_{T}, x \neq r$ we denote by T_{x} the component of T, containing x, which is obtained after removing the parent of x from T. We define T_{r} to be T.

We use the notation B_{x} for a biplanar subgraph of $T_{x}, x \in V_{T}$, and treat B_{x} as an edge set. We say that B_{x} spans a vertex a, if there is an edge $a b \in B_{x}$. For $x \in V_{T}$, we define

$$
\begin{equation*}
W\left(T_{x}\right)=\max _{B_{x} \subseteq E_{T_{x}}} w\left(B_{x}\right) . \tag{19}
\end{equation*}
$$

Our goal is to determine $W\left(T_{r}\right)$. To achieve this goal, we define 5 additional related optimization problems as follows:

$$
\begin{aligned}
w^{1}\left(T_{x}\right) & =\max \left\{w\left(B_{x}\right): x \text { is endleaf in } B_{x}\right\} \\
w^{2}\left(T_{x}\right) & =\max \left\{w\left(B_{x}\right): x \text { is midleaf in } B_{x}\right\} \\
w^{3}\left(T_{x}\right) & =\max \left\{w\left(B_{x}\right): x \text { is endbone in } B_{x}\right\} \\
w^{4}\left(T_{x}\right) & =\max \left\{w\left(B_{x}\right): x \text { is midbone in } B_{x}\right\} \\
w^{5}\left(T_{x}\right) & =\max \left\{w\left(B_{x}\right): x \text { is not spanned by } B_{x}\right\} .
\end{aligned}
$$

It is obvious that

$$
\begin{equation*}
W\left(T_{x}\right)=\max _{1 \leq i \leq 5} w^{i}\left(T_{x}\right), \tag{20}
\end{equation*}
$$

and therefore solving all 5 problems for T_{x} determines $W\left(T_{x}\right)$. For any leaf v set $w^{1}(v)=w^{5}(v)=0$, $W(v)=0$ and $w^{i}(v)=-\infty$ for $i=2,3,4$ as initial condition. Finally, for $u \in N_{x}, x \in V_{T}$ define,

$$
f(u)=\max \left\{w_{u x}+w^{5}\left(T_{u}\right), W\left(T_{u}\right)\right\} .
$$

It is well-known and easy to show that a graph is biplanar iff it is a collection of vertex disjoint caterpillars. This is equivalent to saying that a graph is biplanar iff it does not contain a double claw which is a star on 3 vertices with all three edges subdivided. Therefore our problem is to find a maximum weight forest of caterpillars in an edge-weighted acyclic graph. We will use these facts in the next lemma, sometimes without explicitly referring to them.

Lemma 4.1

$$
\begin{equation*}
w^{1}\left(T_{x}\right)=\max _{y \in N_{x}}\left\{\left(\sum_{y^{\prime} \in N_{x} \backslash\{y\}} W\left(T_{y^{\prime}}\right)\right)+w_{x y}+\max _{i=1,3} w^{i}\left(T_{y}\right)\right\} \tag{21}
\end{equation*}
$$

$$
\begin{align*}
w^{2}\left(T_{x}\right) & =\max _{y \in N_{x}}\left\{w_{x y}+w^{4}\left(T_{y}\right)+\sum_{y^{\prime} \in N_{x} \backslash\{y\}} W\left(T_{y^{\prime}}\right)\right\} \tag{22}\\
w^{3}\left(T_{x}\right) & =\max \left\{\max _{y \in N_{x}}\left\{w_{x y}+\max _{i=1,3} w^{i}\left(T_{y}\right)+\sum_{y^{\prime} \in N_{x} \backslash\{y\}} f\left(y^{\prime}\right)\right\}, \sum_{y \in N_{x}} f(y)\right\} \tag{23}\\
w^{4}\left(T_{x}\right) & =\max _{\substack{y_{1}, y_{2} \in x_{x}}}\left\{w_{x y_{1}}+w_{x y_{2}}+\max _{i=1,3} w^{i}\left(T_{y_{1}}\right)+\max _{i=1,3} w^{i}\left(T_{y_{2}}\right)+\sum_{y^{\prime} \in N_{x} \backslash\left\{y_{1}, y_{2}\right\}} f\left(y^{\prime}\right)\right\} \tag{24}\\
w^{5}\left(T_{x}\right) & =\sum_{y \in N_{x}} W\left(T_{y}\right) . \tag{25}
\end{align*}
$$

Proof Sketch. The basic idea for the recurrence relations is to describe how an optimal solution for T_{x} decomposes in the trees rooted in N_{x}. Indeed, (21), (22), and (25) are obvious. For (23), note that if x is an endbone in a maximum weight biplanar B_{x}, then x is an endbone in a caterpillar $C \subseteq B_{x}$. Consider the case that C is not a star. Since, x is an endbone of C, it has at least two neighbors in C, and all but one of its neighbors are leaves in C. Then exactly one neighbor y of x is an endbone or an endleaf in $C \backslash\{x\}$. This justifies the presence of the first two terms in the inner curly bracket. To justify the presence of the sum on y^{\prime}, note that, in order to maximize the total weight of B_{x}, we must attach $y^{\prime} \in N_{x} \backslash\{y\}$ to C as a leaf, only if $f\left(y^{\prime}\right)=w_{y^{\prime} x}+w^{5}\left(T_{y^{\prime}}\right)$; otherwise we must include in B_{x}, the maximum biplanar subgraph of $T_{y^{\prime}}$ which has the total weight $f\left(y^{\prime}\right)=W\left(T_{y^{\prime}}\right)$. To justify the term $\sum_{y \in N_{x}} f(y)$, consider the case that C is a star. Then we must attach any $y \in N_{x}$ to C as a leaf only if $f(y)=w_{x y}+w^{5}\left(T_{y}\right)$; otherwise we include in B_{x} the maximum biplanar subgraph of T_{y}. For (24), note that, if x is a midbone in a maximum weight B_{x}, then x is a midbone of $C \subseteq B_{x}$, and has 2 neighbors y_{1} and y_{2} in C. By deleting x from C, we obtain exactly two caterpillars C_{1} and C_{2} so that y_{i} is either an endbone or an endleaf for $C_{i}, i=1,2$. Now follow an argument similar to (23) to finish the proof of (24)

Theorem 4.1 For an edge-weighted acyclic graph $T=\left(V_{T}, E_{T}\right)$, a largest weight biplanar subgraph can be computed in $O\left(\left|V_{T}\right|\right)$ time.

Proof Sketch. With no loss of generality assume that T is connected, otherwise we apply our arguments to the components of T. We select a root r for T, and then perform a post order traversal and show that we can compute $w^{i}\left(T_{x}\right), 1 \leq i \leq 5$, and $W\left(T_{x}\right)$ in $O\left(\left|N_{x}\right|\right)$ time, if all these quantities are already known for the children of x. This is obvious for (20) and (25). For (21) and (22) the expressions in curly braces are easy to evaluate in linear time, if a maximizing y is known. So the issue is to find a maximizing y in linear time. It is easy to see that for (21) we look for $y \in N_{x}$ which maximizes $w_{x y}+\max _{i=1,3} w^{i}\left(T_{y}\right)-W\left(T_{y}\right)$, and for (22) we look for $y \in N_{x}$ which maximizes $w_{x y}+w^{4}\left(T_{y}\right)-W\left(T_{y}\right)$; all these can be computed in $O\left(\left|N_{x}\right|\right)$ time.
For (23), it suffices to show that a $y \in N_{x}$ can be found in $O\left(\left|N_{x}\right|\right)$ time which maximizes $g(y)=$ $w_{x y}+\max _{i=1,3} w^{i}\left(T_{y}\right)+\sum_{y^{\prime} \in N_{x} \backslash\{y\}} f\left(y^{\prime}\right)=w_{x y}+\max _{i=1,3} w^{i}(x)-f(y)+\sum_{y^{\prime} \in N_{x}} f\left(y^{\prime}\right)$. To do so find $y^{*} \in N_{x}$ which maximizes $w_{x y}+\max _{i=1,3} w^{i}\left(T_{y}\right)-f(y)$. For (24), note that

$$
w^{4}\left(T_{x}\right)=\left(\sum_{y \in N_{x}} f(y)\right)+\max _{y_{1} \neq y_{2} \in N_{x}}\left\{w_{x y_{1}}+\max _{i=1,3} w^{i}\left(T_{y_{1}}\right)-f\left(y_{1}\right)+w_{x y_{2}}+\max _{i=1,3} w^{i}\left(T_{y_{2}}\right)-f\left(y_{2}\right)\right\} .
$$

Thus, to maximize $w^{4}\left(T_{x}\right)$, we should find $y_{1}, y_{2} \in N_{x}, y_{1} \neq y_{2}$ which give the largest two values for $w_{x y}+\max _{i=1,3} w^{i}\left(T_{y}\right)-f(y)$.
It is easy to maintain for every x not just the values $w^{i}\left(T_{x}\right), W\left(T_{x}\right)$, but also the edge-set of B_{x} which realizes this value, therefore, we can store the edge set of a largest biplanar subgraph as well.
Acknowledgment. The research of the second and fourth author was done while they were visiting Department of Mathematics and Informatics of University in Passau. They thank Prof. F.-J. Brandenburg for perfect work conditions and hospitality. A preliminary version of this paper was published
at WADS'97 [26]. That version contained slight inaccuracies like missing error terms which are fixed in the current version.

References

[1] Bernhart, F., Kainen, B., The book thickness of a graph, J. Combin. Theory B27 (1979), 320-331.
[2] Bhatt, S., Leighton L., A framework for solving VLSI layout problems, J. Comput. System Sci 28 (1984) 300-331.
[3] Catarci, T., The assignment heuristics for crossing reduction, IEEE Transactions on Systems, Man and Cybernetics 25 (1995), 515-521.
[4] Chung, F. R. K., On optimal linear arrangements of trees, Computers and Mathematics with Applications 10, (1984), 43-60.
[5] Díaz, J., Graph layout problems, in: Proc. International Symposium on Mathematical Foundations of Computer Sciences, Lecture Notes in Computer Science 629, Springer Verlag, Berlin, 1992, 14-21.
[6] Di Battista, J., Eades, P., Tamassia, R., Tollis, I. G., Algorithms for drawing graphs: an annotated bibliography, Computational Geometry 4 (1994), 235-282.
[7] Eades, P., Wormald, N., Edge crossings in drawings of bipartite graphs, Algorithmica 11 (1994), 379-403.
[8] Eades, P., Whitesides, S., Drawing graphs in 2 layers, Theoretical Computer Science 131 (1994), 361-374.
[9] Even, G., Naor, J. S., Rao, S., Scieber, B., Divide-and-Conquer approximation algorithms via spreading matrices, in Proc. 36th Annual IEEE Symposium on Foundation of Computer Science, IEEE Computer Society Press, 1995, 62-71.
[10] Even, G., Naor, J. S., Rao, S., Scieber, B., Fast Approximate Graph Partition Algorithms, 8th Annual ACM-SIAM Symposium on Disc. Algo., 1997, 639-648.
[11] Garey, M. R., Johnson, D. S., Crossing number is NP-complete, SIAM J. Algebraic and Discrete Methods 4 (1983), 312-316.
[12] Hansen, M., Approximate algorithms for geometric embeddings in the plane with applications to parallel processing problems, 30th FOCS, 1989, 604-609.
[13] Harary, F., Schwenk, A., A new crossing number for bipartite graphs, Utilitas Mathematica 1 (1972), 203-209.
[14] Jünger, M., Mutzel, P., Exact and heuristic algorithm for 2-layer straight line crossing number, in: Proc. Graph Drawing'95, Lecture Notes in Computer Science 1027, Springer Verlag, Berlin, 1996, 337-348.
[15] Juvan, M., Mohar, B., Optimal linear labelings and eigenvalues of graphs, Discrete Applied Mathematics 36 (1992), 153-168.
[16] Leighton, F. T., Complexity issues in VLSI, MIT Press, 1983.
[17] Leighton F. T., Rao, S., An approximate max flow min cut theorem for multicommodity flow problem with applications to approximation algorithm, 29th Foundation of Computer Science, IEEE Computer Society Press, 1988, 422-431.
[18] Lengauer, T., Combinatorial algorithms for integrated circuit layouts, Wiley and Sons, Chichester, UK, 1990.
[19] May, M., Szkatula, K., On the bipartite crossing number, Control and Cybernetics 17 (1988), 85-98.
[20] Mutzel, P., An alternative method to crossing minimization on hierarchical graphs, Proceeding of Graph Drawing 96, Lecture Notes in Computer Science, Springer Verlag, Berin, 1997.
[21] Nash-Williams, C. S. J. A., Edge disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961), 445-450.
[22] Pach, J., Agarwal, K., Combinatorial Geometry, John Wiley \& Sons Inc., New York, N. Y., 1995.
[23] Purchase, H., Which aesthetic has the greatest effect on human understanding?, in Proc. Symposium on Graph Drawing, GD'97, Lecture Notes in Computer Science, Springer Verlag, Berlin (to appear).
[24] Sarrafzadeh, M., An introduction to VLSI physical design, McGraw hill, New York 1996.
[25] Seidvasser, M. A., The optimal numbering of the vertices of a tree, Diskretnii Analiz 19 (1970), 56-74.
[26] Shahrokhi, F., Sýkora, O., Székely, L. A., Vrťo, On bipartite crossings, largest biplanar subgraphs, and the linear arrangement problem, Workshop on Algorithms and Data Structures (WADS'97), August 6-8, 1997 Halifax, Nova Scotia, Canada, Lecture Notes in Computer Science Vol. 1272, Springer-Verlag, 55-68.
[27] Shahrokhi, F., Sýkora, O., Székely, L. A., Vrťo, A new Lower bound for the bipartite crossing number with algorithmic applications, submitted for publication.
[28] Shiloach, Y., A minimum linear arrangement algorithm for undirected trees, SIAM J. Computing 8 (1979), 15-32.
[29] Spinrad, J., Brandstädt, A., Stewart, L., Bipartite permutation graphs, Discrete Applied Mathematics 19 (1987), 279-292.
[30] Sugiyama, K., Tagawa, S., Toda, M., Methods for visual understanding of hierarchical systems structures, IEEE Transactions on Systems, Man and Cybernetics 11 (1981), 109-125.
[31] Warfield, J., Crossing theory and hierarchy mapping, IEEE Transactions on Systems, Man and Cybernetics 7 (1977), 502-523.
[32] White, A. T., and Beineke, L. W., Topological graph theory, in: L. W. Beineke and R. J. Wilson, eds., Selected Topics in Graph Theory, (Academic Press, 1978), 15-50.

[^0]: *The research of the first author was supported by NSF grant CCR-9528228. The research of the second and fourth authors was supported in part by the Alexander von Humboldt Foundation and by the Slovak Scientific Grant Agency grant No. 95/5305/277. Research of the third author was supported in part by the Hungarian NSF contracts T 016358 and T 019 367, and by the NSF contract DMS 970 1211. A preliminary version of this paper was published at WADS'97.

[^1]: ${ }^{1}$ Technically speaking, the NP-hardness of the problem was proved for multigraphs, but it is widely assumed that it is also NP-hard for simple graphs.

