On the half-half case of the Zarankiewicz problem

J.R. Griggs and C.-C. Ho
Abstract

Consider the minimum number $f(m, n)$ of zeroes in a $2m \times 2n$ $(0, 1)$-matrix M that contains no $m \times n$ submatrix of ones. This special case of the well-known Zarankiewicz problem was studied by Griggs and Ouyang, who showed, for $m \leq n$, that $2n + m + 1 \leq f(m, n) \leq 2n + 2m - \gcd(m, n) + 1$. The lower bound is sharp when m is fixed for all large n. They proposed determining $\lim_{m \to \infty} \{f(m, m + 1)/m\}$. In this paper, we show that this limit is 3. Indeed, we determine the actual value of $f(m, km + 1)$ for all k, m. For general m, n, we derive a new upper bound on $f(m, n)$. We also give the actual value of $f(m, n)$ for all $m \leq 7$ and $n \leq 20$.

Running head: The Half-Half Problem

1 Research supported in part by grant NSA/MSP MDA904–95H1024.

2 Research supported in part by grant NSF DMS–9701211.
Section 1. Introduction

The terminology and notation in this paper are the same as in the paper [4] by Griggs and Ouyang. We consider rectangular matrices M with entries that are 0 or 1. The intersection of a rows and b columns of a matrix is called an $a \times b$ submatrix. We say that a $2m \times 2n$ matrix M has Property Z if every $m \times n$ submatrix has at least one zero, i.e., M has no half-half all ones submatrix. An equivalent formulation of Property Z, that is typically more useful in our study, is to require that for every m rows of M at least $n+1$ columns contain a zero somewhere in those rows. We denote by $f(m, n)$ the minimum number of zeroes in such a matrix M with Property Z. For simplicity, we often assume that $m \leq n$, since we may switch to the transpose when $m > n$.

In general, we may ask the maximum number $Z = Z_{m,n}(k,l)$ of ones in a $k \times l$ matrix M avoiding $m \times n$ all ones submatrix. (Note that $f(m, n) = 4mn - Z_{m,n}(2m, 2n)$.) In 1951 Zarankiewicz [5] posed the problem of determining $Z_{m,m}(k,k)$ for $k \geq 4$, and the general problem concerning $Z_{m,n}(k,l)$ has also become known as the problem of Zarankiewicz.

By viewing M as the incidence matrix for a bipartite graph, we can obtain the graph-theoretic formulation of Zarankiewicz problem that asks for the maximum number of edges in a bipartite graph (K,L) with part sizes $|K| = k$, $|L| = l$ such that there is no complete bipartite subgraph $K_{m,n}$ with m vertices in K and n vertices in L.

A survey of work on the Zarankiewicz problem appears in [1, Sec. VI.2]. Some of the more recent work includes the papers [2, 3, 4].

For the half-half case of the Zarankiewicz problem, Griggs and Ouyang obtained the following results on $f(m, n)$:

Theorem 1.1. [4] Assume $m \leq n$. Then

$$f(m, n) \geq 2n + m + 1,$$

where the equality holds precisely when

1. n is a multiple of m, or
2. $k + r \geq m$, where $n = km + r$, and $0 < r < m$.

Theorem 1.2. [4] Assume $m < n$. Then

1. $f(m, n) \leq 2km + f(r, m)$, where $n = km + r$, and $0 < r \leq m$,
2. $f(m, n) \leq 2n + 2m - \gcd(m, n) + 1$, where $\gcd(m, n)$ is the greatest common divisor of m and n.

By Theorem 1.1 and Theorem 1.2(2), they observed that $3m + 4 \leq f(m, m+1) \leq 4m + 2$ and proposed determining $\lim_{m \to \infty} \{f(m, m+1)/m\}$. In this paper we show that this limit is 3. Indeed, we prove that for all k, m, $f(m, km + 1) = 2(km + 1) + m + i$, where i is the largest integer such that $\left\lfloor i^2/4 \right\rfloor + 1 < m$. For general m, n, we also derive a new upper bound on $f(m, n)$.
In Section 2 we consider \(n = km + 1 \) and construct \(2m \times 2n \) matrices \(M_t \) for \(1 \leq t \leq m \) such that each matrix \(M_t \) has Property Z. Denoting the number of zeroes in \(M_t \) by \(g(t) \), we prove \(f(m, n) = \min\{g(t) : 1 \leq t \leq m\} \) and derive the formula for \(f(m, n) \).

In Section 3 we consider an extension of matrices \(M_t \) for general \(m, n \), and derive a new upper bound on \(f(m, n) \). In Section 4 we give the actual value of \(f(m, n) \) for small \(m, n \). Some of these values are obtained by tedious analysis of several cases. Finally, in Section 5 we summarize what we now know.

Section 2. The Actual Value of \(f(m, km + 1) \)

When \(n = km + r \) with \(0 < r < m \) and \(k + r \geq m \), Griggs and Ouyang [4] presented a matrix achieving \(f(m, n) = 2n + m + 1 \). By permuting columns and rearranging the entries in the last row of this matrix, we obtain the matrix shown in Figure 1. (All the blank entries in this figure are ones.)

![Figure 1](image-url)

This matrix inspires us to consider the following construction: Assume \(2 \leq m < n \) and \(n = km + 1 \). For \(1 \leq t \leq m \), we construct a \(2m \times 2n \) \((0, 1)\)-matrix \(M_t \) illustrated in Figure 2. In this construction, \(q, \alpha, \) and \(\beta \) are the integers satisfying \(2n = km + kt + 2 = (kt - k + 1)q + k\alpha + \beta \), i.e.,

\[
km + kt + 2 = (kt - k + 1)q + k\alpha + \beta,
\]

where \(0 < k\alpha + \beta \leq kt - k + 1 \) and \(0 < \beta \leq k \). For example, when \(m = 3 \) and \(n = 4 \), Figure 3 displays the matrices \(M_1, M_2, \) and \(M_3 \).

Denote the number of zeroes in \(M_t \) by \(g(t) \). Then we have
The Half-Half Problem

Figure 2. The matrix M_t for $n = km + 1$.

\[
M_1 = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{bmatrix},
\]

\[
M_2 = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0
\end{bmatrix},
\]

\[
M_3 = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0
\end{bmatrix}.
\]

Figure 3. The matrices M_t for $(m, n) = (3, 4)$.
Proposition 2.1. Assume $2 \leq m < n$, $n = km + 1$, and $1 \leq t \leq m$. Then

1. The matrix M_t has Property Z;
2. $g(t) = (2k + 1 + \frac{1}{kt-k+1})m + t + \frac{t+2}{kt-k+1} + \frac{\alpha-(t-1)\beta}{kt-k+1}$;
3. $g(t) = \left[(2k + 1 + \frac{1}{kt-k+1})m + t + \frac{t+2}{kt-k+1}\right]$.

Proof. (1) We consider a two-coloring on all zeroes in M_t: We assign blue to the first k zeroes in each row, and assign red to all the rest. Then in any m rows, we can find exactly km blue zeroes and at least 2 red zeroes such that all these zeroes are in different columns. Therefore, any m rows have zeroes in at least $km + 2 = n + 1$ columns, and Property Z holds for the matrix M_t.

(2) Note that the number of zeroes in M_t is $k(m - t) + (k + 1)((t - 1)q + \alpha) + (k + 2)\frac{q + \beta - 2}{k}$. Since $km + kt + 2 = (kt - k + 1)q + k\alpha + \beta$, we can write q in terms of other variables and obtain the formula for $g(t)$.

(3) From the conditions $0 < k\alpha + \beta \leq kt - k + 1$ and $0 < \beta \leq k$, we have $0 \leq \alpha \leq t - 1$. Thus $0 \leq \frac{-\alpha+(t-1)\beta}{kt-k+1} < 1$ and the formula for $g(t)$ is verified. □

Lemma 2.2. Assume $2 \leq m < n$ and $n = km + 1$. Then

$$f(m, n) = \min\{g(t) : 1 \leq t \leq m\}.$$

Proof. Let $M = [M_{i,j}]$ be a $2m \times 2n$ $(0, 1)$-matrix with Property Z. By Proposition 2.1(1), it suffices to show that the number of zeroes in M is not less than $g(t)$ for some t, $1 \leq t \leq m$.

Let $R_0 = \emptyset$. For $i = 1, \ldots, 2m$, let $R_i = \{j : M_{i,j} = 0\}$ and $r_i = |R_i|$. Without loss of generality, we may assume $0 \leq r_1 \leq r_2 \leq \cdots \leq r_{2m}$. Choose the integer t as small as possible such that $1 \leq t \leq m$ and $|R_0 \cup R_1 \cup \cdots \cup R_{m-t}| \leq k(m - t)$. We consider three cases:

Case (1) $t = 1$: Since M has Property Z, we have $|R_1 \cup \cdots \cup R_m| \geq km + 2$. Then the condition “$t = 1$” forces $r_m \geq k + 2$. Thus the number of zeroes in $M \geq (km + 2) + m(k + 2) = g(1)$.

Case (2) $2 \leq t \leq m - 1$ and $|R_0 \cup R_1 \cup \cdots \cup R_{m-t}| < k(m - t)$: Note that $g(t) \leq (2k + 2)m + t$, since we have Proposition 2.1(3) and $t \geq 2$. Let $|R_1 \cup \cdots \cup R_{m-t}| = p$. Then the choice of t implies $r_{m-t+1} \geq k(m - t + 1) - p + 1$, and hence the number of zeroes in $M \geq p + (k(m - t + 1) - p + 1)(m + t)$. Replacing p with $k(m - t) - 1$, we obtain that the number of zeroes in $M \geq (2k + 2)m + 2t - 1 > (2k + 2)m + t \geq g(t)$.

Case (3) $2 \leq t \leq m$ and $|R_0 \cup R_1 \cup \cdots \cup R_{m-t}| = k(m - t)$: For $i = m - t + 1, m - t + 2, \ldots, 2m$, let $R'_i = R_i \setminus (R_0 \cup R_1 \cup \cdots \cup R_{m-t})$ and $r'_i = |R'_i|$. Then the choice of t implies $r'_{m-t+1} \geq k + 1$. Write $km + kt + 2 = (kt - k + 1)q + k\alpha + \beta$, where $0 < k\alpha + \beta \leq kt - k + 1$ and $0 < \beta \leq k$. Comparing M with M_t, we note that it is enough to show $r'_{m-t+(t-1)q+\alpha+1} \geq k + 2$.

Assume the contrary. Then $r'_{m-t+1} = \cdots = r'_{m-t+(t-1)q+\alpha+1} = k + 1$. Divide the index set $I = \{m - t + 1, \ldots, m - t + (t - 1)q + \alpha + 1\}$ into as many disjoint subsets.
We note that this inequality is equivalent to (1).

By Lemma 2.2, it suffices to show that \(\min_{t \in I} R'_t \) gives \(g \) and the proof is complete.

Proof. We have \(\sum_{i=1}^{P} (k|I_i| + 1) = k \sum_{i=1}^{P} |I_i| + p \geq k|I| + \lceil |I|/(t-1) \rfloor \geq k|I| + q + 1 \); on the other hand, we note that \(\min_{t \in I} R'_t \leq k((t-1)q + \alpha) + q + \beta \leq k(|I| - 1) + q + k \leq k|I| + q \), a contradiction. \(\blacksquare \)

Lemma 2.2 will facilitate our search for \(f(m, km + 1) \). It allows us to confine our analysis to the values of \(g(t) \) only. Using some fundamental Calculus, we obtain the minimum of \(g(t) \):

Theorem 2.3. Assume \(2 \leq m < n \) and \(n = km + 1 \). Let \(t_0 = \frac{k^{-1} + \sqrt{km + k + 1}}{k} \). Then

\[
 f(m, n) = \min\{g([t_0]), g([t_0])\}.
\]

Proof. It is easy to verify that \(1 < t_0 \leq m \). So \(g([t_0]) \) and \(g([t_0]) \) are well-defined. By Lemma 2.2, it suffices to show that \(\min\{g(t) : 1 \leq t \leq m \} = \min\{g([t_0]), g([t_0])\} \). Consider a continuous function \(h(x) = (2k + 1 + \frac{1}{k^x-k-1})m + x + \frac{-x^2}{k^x-k-1} \), where \(x \in (1 - \frac{1}{k}, m + 1) \). Then \(h(t) = g(t) \) for \(t = 1, \ldots, m \), since we have Proposition 2.1(3). By taking the first and second derivatives for \(h(x) \), we verify that \(h(t_0) \) is a minimum and the proof is complete. \(\blacksquare \)

We provide in next theorem an alternative formula for \(f(m, km + 1) \).

Theorem 2.4. Assume \(2 \leq m < n \), \(n = km + 1 \), and \(i \) is the largest integer such that \(\lfloor i^2/4 \rfloor k + i - 1 < m \). Then

\[
 f(m, n) = g(\lfloor (i+3)/2 \rfloor) = 2n + m + i.
\]

Proof. We assume that \(i \) is an odd number and let \(i = 2\ell - 1 \) for some integer \(\ell \). (The proof of the other case “\(i \) is even” is similar.)

First, we prove \(g(\lfloor (i+3)/2 \rfloor) = 2n + m + i \), i.e., \(g(\ell+1) = 2n + m + 2\ell - 1 \). By the choice of \(i \), we have \((\ell^2-\ell)k+2\ell-2 < m \leq \ell^2k+2\ell-1 \). Then \((k\ell+1)(\ell+2) < km + k(\ell+1)+2 \leq (k\ell+1)(\ell+2) \). So we can write \(km+k(\ell+1)+2 = (k\ell+1)q + k\alpha + \beta \), where \(0 < k\alpha + \beta \leq k\ell + 1 \), \(0 < \beta \leq k \), and \(k\ell - k + 2 \leq q \leq k\ell + 1 \). Therefore, \(\frac{q+\beta-2}{k} = \ell \) and \(g(\ell+1) = k(m-\ell-1)+(k+2)\frac{q+\beta-2}{k} + (k+1)(2m-(m-\ell-1) - \frac{q+\beta-2}{k}) = 2n + m + 2\ell - 1 \).

By Lemma 2.2, it remains to prove that for \(1 \leq t \leq m \), \(g(t) \geq 2n + m + i \). Indeed, by Proposition 2.1(3), we only need to show \(t + \frac{m-t+2}{k\ell-k+1} > 2\ell \). Since the choice of \(i \) gives \(m > (\ell^2-\ell)k+2\ell-2 \), it is enough to show that \(k\ell^2 - (2\ell k + k)t + \ell^2 k + \ell k \geq 0 \). We note that this inequality is equivalent to \((t-\ell)(t-(\ell+1)) \geq 0 \), which is verified for all integers \(t \) and \(\ell \). \(\blacksquare \)

For general \(m, n \) with \(n = km + 1 \), Theorem 1.2(2) gives \(f(m, n) \leq 2n + 2m \). Now we can improve this upper bound.
Corollary 2.5. Assume $2 \leq m < n$ and $n = km + 1$. Then

$$2n + m + 1 \leq f(m, n) \leq 2n + m + 2 \left\lfloor \sqrt{m} \right\rfloor.$$

Proof. Let $i = 2 \left\lfloor \sqrt{m} \right\rfloor$. By Theorem 2.4, it suffices to show that $m \leq \left\lfloor (i + 1)^2 / 4 \right\rfloor k + i$. Let $\ell = \left\lfloor \sqrt{m} \right\rfloor$. Then $\left\lfloor (i + 1)^2 / 4 \right\rfloor k + i = (\ell^2 + \ell)k + 2\ell \geq (\ell + 1)^2 > (\sqrt{m})^2 = m$.

Section 3. An Upper Bound on $f(m, n)$ for General m, n

When n is a multiple of m, Theorem 1.1 gives $f(m, n) = 2n + m + 1$. So we assume in this section that n is not a multiple of m.

We have constructed the matrix M_t for the case $n = km + 1$ in Section 2. Now we consider the following extension for general m, n: Let $2 \leq m < n$ and $n = km + r$, where $0 < r < m$. For any integer t with $1 \leq t \leq m$ and $t = r\ell + 1$ for some integer ℓ, we construct a $2m \times 2n$ $(0, 1)$-matrix M_t illustrated in Figure 4. In this construction, $q, \alpha,$ and β are the integers satisfying

$$km + kt + 2r = (k\ell + 1)q + k\alpha + \beta,$$

where $0 < k\alpha + \beta \leq k\ell + 1$ and $0 < \beta \leq k$. For example, when $m = 4$ and $n = 6$, Figure 5 displays the matrices M_1 and M_3.

In particular, when $k + r \geq m$, M_{r+1} is the same matrix as shown in Figure 1 that achieves $f(m, n) = 2n + m + 1$.

Denote the number of zeroes in M_t by $g(t)$. Similar to Proposition 2.1 and Theorem 2.4, we can prove the following results:

Proposition 3.1. Assume $2 \leq m < n$ and $n = km + r$, where $0 < r < m$. Let t be an integer such that $1 \leq t \leq m$ and $t = r\ell + 1$. Then

1. The matrix M_t has Property Z;
2. $g(t) = (2k + 1 + \frac{r}{kt+1})m + r\ell + 1 + \frac{r^2\ell + r}{kt+1} + \frac{-r\alpha + r\ell\beta}{kt+1}$.

Theorem 3.2. Assume $2 \leq m < n$ and $n = km + r$, where $0 < r < m$. Let i be the largest integer such that $\left\lfloor \frac{i^2}{4} \right\rfloor k + \left\lfloor \frac{i}{2} \right\rfloor r + \left\lfloor \frac{i-1}{2} \right\rfloor < m$.

1. If $1 \leq i \leq 2 \left\lfloor \frac{m-1}{r} \right\rfloor$, then

$$f(m, n) \leq g \left(\left\lfloor \frac{i+1}{2} \right\rfloor r + 1 \right) \leq 2n + m + 1 + (i - 1)r;$$

2. If $i > 2 \left\lfloor \frac{m-1}{r} \right\rfloor$, i.e., $g \left(\left\lfloor \frac{i+1}{2} \right\rfloor r + 1 \right)$ is not defined, let $\ell = \left\lfloor \frac{m-1}{r} \right\rfloor$, then

$$f(m, n) \leq g(r\ell + 1) \leq 2n + m + 1 + \left(\ell - 1 + \left\lfloor \frac{kr + k - 1}{k\ell + 1} \right\rfloor / k \right) r.$$
Figure 4. The matrix M_t for $n = km + r$, $r \neq 0$.

$$M_1 = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \ \end{bmatrix}$$

$$M_3 = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \ \end{bmatrix}$$

Figure 5. The matrices M_1 and M_3 for $(m, n) = (4, 6)$.
The Half-Half Problem

Proof. The proof of (1) is similar to that of Theorem 2.4. To prove (2), we note that
\[km + k(r\ell + 1) + 2r \leq (k\ell + 1)(2r) + kr + k, \] since \(m \leq r(\ell + 1). \) So we can write
\[km + k(r\ell + 1) + 2r = (k\ell + 1)q + k\alpha + \beta, \] where \(0 < k\alpha + \beta \leq k\ell + 1, 0 < \beta \leq k, \) and \(q \leq 2r + \left\lceil \frac{kr + k - 1}{k\ell + 1} \right\rceil. \) Therefore, \(g(r\ell + 1) = k(m - r\ell - 1) + (k + r + 1)\frac{q + \beta - 2r}{k} + (k + 1)(2m - (m - r\ell - 1) - \frac{q + \beta - 2r}{k}) \leq 2n + m + 1 + \left(\ell - 1 + \left\lceil \frac{kr + k - 1}{k\ell + 1} \right\rceil/k \right) r. \]

Note that each of Theorem 1.2 and Theorem 3.2 does not always provide a sharp bound for given \(m, n. \) For example, when \(m = 4 \) and \(n = 6, \) both theorems give \(f(4, 6) \leq 19; \) however, the matrix in Figure 6 shows \(f(4, 6) \leq 18. \) (Then it follows from Theorem 1.1 that \(f(4, 6) = 18.) \) We will check the performance of these two theorems for some small \(m, n \) in next section.

![Figure 6. A matrix giving \(f(4, 6) \leq 18. \)](image)

By Theorem 1.1 and Theorem 1.2(2), Griggs and Ouyang [4] observed that \(3m + 4 \leq f(m, m + 1) \leq 4m + 2 \) and proposed determining \(\lim_{m \to \infty} \{ f(m, m + 1)/m \}. \) From Corollary 2.5, we can show that this limit is 3. In general, we have the following extension:

Theorem 3.3. For fixed positive integers \(k \) and \(r, \)

\[\lim_{m \to \infty} \frac{f(m, km + r)}{m} = 2k + 1. \]

Proof. Note that if \(m \geq r^2 + 2, \) then \(i = 2 \left\lfloor \sqrt{m} \right\rfloor \leq 2 \left\lfloor (m - 1)/r \right\rfloor \) in Theorem 3.2(1) gives the upper bound \(f(m, km + r) \leq (2k + 1)m + 2r \left\lfloor \sqrt{m} \right\rfloor + r + 1. \) On the other hand, Theorem 1.1 gives the lower bound \(f(m, km + r) \geq (2k + 1)m + 2r + 1. \) Thus \(f(m, km + r)/m \to 2k + 1 \) as \(m \to \infty. \]

Section 4. The Actual Value of \(f(m, n) \) for Small \(m, n \)

By Theorems 1.1, 1.2, 2.4, 3.2, and tedious analysis of several cases, we have obtained in Figure 7 the actual value of \(f(m, n) \) for \(m \leq 7 \) and \(n \leq 20. \) In this figure, \(B \) denotes the general lower bound \(2n + m + 1. \)
The Half-Half Problem

| $n=1$ | $n=2$ | $n=3$ | $n=4$ | $n=5$ | $n=6$ | $n=7$ | $n=8$ | $n=9$ | $n=10$ | $n=11$ | $n=12$ | $n=13$ | $n=14$ | $n=15$ | $n=16$ | $n=17$ | $n=18$ | $n=19$ | $n=20$ |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $m=1$ | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 |
| $m=2$ | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 |
| $m=3$ | B_{+0} | B_{+1} | 10 | 13 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 | 42 | 44 |
| $m=4$ | B_{+0} | B_{+1} | 13 | 16 | 18 | 19 | 21 | 24 | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 |
| $m=5$ | B_{+0} | B_{+1} | B_{+2} | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 |
| $m=6$ | B_{+0} | B_{+1} | B_{+2} | B_{+3} | 23 | 25 | 27 | 29 | 31 | 33 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 |
| $m=7$ | B_{+0} | B_{+1} | B_{+2} | B_{+3} | B_{+4} | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 |

Figure 7. The actual value of $f(m, n)$ for $m \leq 7$ and $n \leq 20$.

Note that $f(5, 6) > f(6, 6)$ and $f(7, 18) > f(7, 19)$. Thus increasing m or n may actually decrease f.

When $n = km + r$ with $r \neq 0$, $r \neq 1$, and $k + r < m$, we may use Theorem 1.2 or Theorem 3.2 to find an upper bound for $f(m, n)$. For small m, n, the performance of these two theorems is displayed in Figure 8.

<table>
<thead>
<tr>
<th>$m=4$</th>
<th>$m=5$</th>
<th>$m=6$</th>
<th>$m=7$</th>
<th>$m=8$</th>
<th>$m=9$</th>
<th>$m=10$</th>
<th>$m=11$</th>
<th>$m=12$</th>
<th>$m=13$</th>
<th>$m=14$</th>
<th>$m=15$</th>
<th>$m=16$</th>
<th>$m=17$</th>
<th>$m=18$</th>
<th>$m=19$</th>
<th>$m=20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{+0}</td>
<td>B_{+1}</td>
<td>B_{+2}</td>
<td>B_{+3}</td>
<td>B_{+4}</td>
<td>B_{+5}</td>
<td>B_{+6}</td>
<td>B_{+7}</td>
<td>B_{+8}</td>
<td>B_{+9}</td>
<td>B_{+10}</td>
<td>B_{+11}</td>
<td>B_{+12}</td>
<td>B_{+13}</td>
<td>B_{+14}</td>
<td>B_{+15}</td>
<td>B_{+16}</td>
</tr>
</tbody>
</table>

Figure 8. The performance of two upper bound theorems.

Section 5. Conclusion

We summarize the results concerning the value of $f(m, n)$ here: Assume $m \leq n$ and write $n = km + r$, where $0 \leq r < m$.

Case (1) If $r = 0$ or $k + r \geq m$, then $f(m, n) = 2n + m + 1$;
Case (2) If $r = 1$, $f(m, n)$ can be evaluated by Theorem 2.4 (or Theorem 2.3);
Case (3) If $m \leq 7$ and $n \leq 20$, the value of $f(m, n)$ is given in Figure 7 in Section 4.
The Half-Half Problem

If (m, n) is not in any of these three cases, then $2n + m + 2 \leq f(m, n) \leq u$, where u is an upper bound obtained from Theorem 1.2 or 3.2. So the value of $f(m, n)$ for general m, n is still undetermined.

For Case (1), Griggs and Ouyang described in [4] all extremal matrices, i.e., the matrices attaining $f(m, n)$. In this study we obtain the actual value of $f(m, n)$ for Case (2). So the extremal matrices for Case (2) deserve further investigation.

As we mentioned in Section 1, the problem of determining $f(m, n)$ is a special case of the famous problem of Zarankiewicz [5]. See [4] for more related open problems.

References

