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Abstract We develop a characteristic�based domain decomposition and space�time local re�nement method

for �rst�order linear hyperbolic equations� The method naturally incorporates various physical and numer�

ical interfaces and generates accurate numerical solutions even if large time steps are used� The method

fully utilizes the transient and strongly local behavior of the solutions of hyperbolic equations and provides

solutions with signi�cantly improved accuracy and e�ciency� Several numerical experiments are presented

to illustrate the performance of the method and for comparison with other domain decomposition and local

re�nement schemes�

� Introduction

First�order linear hyperbolic partial di�erential equations model the reactive transport of

solutes in groundwater and surface water� the movement of aerosols and trace gases in the

atmosphere� meteorology� displacement process in oil production� seismic� �uid dynamics�

gas dynamics� and many other important applications� It is well known that the solutions

of these equations present steep fronts and even shock discontinuities� which need to be

resolved accurately in applications and often cause severe numerical di�culties ���� �	� 
��


�� �
�� Conventional �nite di�erence or �nite element methods normally yield numerical

solutions with severe non�physical oscillation� numerical dispersion� or a combination of

both� Moreover� practical problems often have various interfaces that introduce extra

di�culties� Physical interfaces arise� for example� in the modeling of transport processes

in composite media� leading to linear hyperbolic equations with discontinuous coe�cients�

Numerical interfaces occur in the application of domain decomposition and local re�nement

techniques� An identifying feature of ground�water contaminant transport and many other

applications is the presence of large scale �uid �ows coupled with transient transport of

physical quantities such as pollutants� chemical species� radionuclides� and temperature�

which are generally smooth outside some small regions and may have sharp fronts inside

where important chemistry and physics take place� An extremely �ne global mesh in
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both space and time is not feasible due to the excessive computational cost� An alternative

approach is to apply domain decomposition and local re�nement techniques by partitioning

the global domain into a number of sub�domains and solving the problem with �ne meshes

in both space and time within the sharp front regions �sub�domains� and coarse meshes

outside �other sub�domains�� This way� both accuracy and e�ciency can be guaranteed�

but at a cost of introducing numerical interfaces between di�erent sub�domains� Another

type of numerical interfaces occur when one solves a problem de�ned on an in�nite domain

where one has to �truncate� the domain in numerical simulations�

Many domain decomposition and local re�nement techniques have been developed for

elliptic and parabolic equations ���� 
�� �	�� but it is more di�cult to develop these tech�

niques for hyperbolic equations� In this case locally generated errors at the interfaces can

be propagated into the domain so that the overall accuracy is decreased� Improper treat�

ment of the interfaces might destroy the stability of the numerical methods� Furthermore�

most methods for hyperbolic equations with interfaces are Eulerian methods� which require

extremely small time steps to maintain the accuracy and stability of the methods�

We develop a characteristic�based� non�iterative and non�overlapping domain decom�

position and space�time local re�nement method for solution of �rst�order linear hyper�

bolic equations with various physical and numerical interfaces� The method treats all the

physical and numerical interfaces e�ectively in a systematic and uniform manner without

introducing any extra scheme for the interfaces� It naturally incorporates the space�time

local re�nement capability in the scheme� It signi�cantly reduces the time truncation errors

present in the Eulerian methods and is not subject to the CFL restrictions� It generates

accurate and stable solutions without oscillations even if large time steps are taken in

the simulations� The method can be implemented in parallel and fully utilizes the physi�

cal properties of the governing equations� Finally� the method allows the use of di�erent

schemes within the framework of the Eulerian�Lagrangian localized adjoint method �EL�

LAM� ��� ��� ��� ��� ����

This paper is organized as follows� In Section � we describe a representative characteris�

tic method for �rst�order linear hyperbolic equations with continuous coe�cients� which will

serve as an underlying numerical scheme in the development of our domain decomposition

and local re�nement method� In Section 
 we develop a non�iterative and non�overlapping

domain decomposition method� In Section � we describe a space�time local re�nement

scheme� In Section �� for comparison purposes� we describe some interface schemes that

are currently in use� In Section � we conduct various numerical experiments to compare our

method with those methods and to observe the performance of our method for problems

with static or adaptive space�time local grid re�nement� and with discontinuous coe�cients�

In Section 	 we summarize our observations and results�
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� An Underlying Numerical Method

��� Model Problem

In this section we describe a characteristic method for �rst�order linear hyperbolic equations

with continuous coe�cients� which will serve as an underlying scheme in the development

of our domain decomposition and local re�nement method in the subsequent sections� As

mentioned in Section �� the transient transport behavior and the steep fronts present in

the exact solutions of the governing equations make the numerical simulation of �rst�order

hyperbolic equations a challenging task� Traditional methods typically generate numerical

solutions with severe non�physical oscillation� numerical dispersion� or a combination of

both� Recent improvements have been made in two categories� Eulerian methods and

characteristic methods�

Eulerian methods use �xed grids and incorporate some upstream weighting in their for�

mulations to stabilize the schemes� Among the class of Eulerian methods are the Petrov�

Galerkin methods which improve over the standard Galerkin methods by adding some

upwinding in the test functions ��� ��� ���� Also included in this class are the streamline

di�usion method and the continuous and discontinuous Galerkin methods ���� 
�� 
�� 

��

The streamline di�usion method is accomplished by adding numerical di�usion only in the

streamline direction of the governing equation� The continuous and discontinuous Galerkin

methods� starting from an initial condition and a given in�ow boundary condition� solve a

local system over each element of a quasi�uniform space�time triangulation in an order con�

sistent with the space�time domain considered� The class of Eulerian methods also includes

many other methods such as the high resolution methods from computational �uid dynam�

ics� in particular� the Godunov methods and the essentially non�oscillatory methods �ENO�

���� �	� 
�� ���� All of these Eulerian methods are characterized by ease of formulation and

implementation� However� time truncation errors dominate their solutions� In addition�

these methods are subject to the CFL stability conditions� which put a restriction on the

size of the time step taken in numerical simulations� This may be a strong disadvantage in

certain applications �e�g� atmospheric�� where considerable time must be spent in comput�

ing coe�cients �turbulence terms� from coupled equations or through model formulation

����

Characteristic methods� on the other hand� make use of the transport nature of the

governing equations� They combine the �xed Eulerian grids with a particle tracking along

the characteristic curves of the governing equations� Among the characteristic methods are

the Eulerian�Lagrangian method� the modi�ed method of characteristics� and the operator

splitting method ��� ��� ��� �
� ��� ��� ��� ���� The Lagrangian treatment in these methods

greatly reduces the time truncation errors in the Eulerian methods� In addition� these
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methods alleviate the restrictions on the Courant number� thus allowing for large time

steps in the simulations� However� these methods fail to conserve mass and treat boundary

conditions in an ad hoc manner�

In this section we present a Runge�Kutta characteristic method for the initial�boundary

value problems for �rst�order linear hyperbolic equations with continuous coe�cients� which

can be viewed as a higher�order improvement of the ELLAM schemes developed previously

��� ��� ��� ��� ���� We consider the following model problem

Lu �� ut � �V �x� t� u�x �K�x� t� u � f�x� t�� x � �a� b�� t � ��� T ��

u�a� t� � g�t�� t � ��� T ��

u�x� �� � uo�x�� x � �a� b��

�����

Here V �x� t� is a velocity �eld� K�x� t� is a �rst�order reaction coe�cient� f�x� t� is a given

source term� g�t� is a prescribed in�ow boundary condition� uo�x� is a given initial condi�

tions� ux ��
�u
�x
� and ut ��

�u
�t
� For simplicity of exposition� we assume V �x� t� positive� so

that x � a and x � b are the in�ow and out�ow boundaries� respectively�

��� Variational Formulation and Characteristic Curves

We partition the space�time domain � �� �a� b�� ��� T � of problem ����� as follows

a �� x� � x� � � � � � xI �� b�

� �� t� � t� � � � � � tN �� T�
�����

for positive integers I and N � The scheme uses a time marching algorithm� so we only need

to focus on the time interval �tn��� tn�� Moreover� it could accommodate a varying spatial

grid on di�erent time intervals� We will expose its �exibility when domain decomposition

and local re�nement techniques are developed�

Multiplying equation ����� by a continuous and piecewise smooth space�time test func�

tion that vanishes outside �n �� �a� b� � �tn��� tn�� and integrating over the domain �� we

obtain a space�time variational formulationZ b

a
u�x� tn� w�x� tn� dx�

Z tn

tn��

u�b� t� w�b� t� V �b� t� dt

�
Z tn

tn��

Z b

a
u �wt � V wx �Kw� dxdt

�
Z b

a
u�x� tn��� w�x� t

�
n��� dx�

Z tn

tn��

Z b

a
fw dxdt

�
Z tn

tn��

g�t� w�a� t� V �a� t� dt�

���
�
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where we use the notation w�x� t�n��� �� limt�t�
n��

w�x� t� due to the discontinuity of w�x� t�

at time tn���

The principle of ELLAM ���� ��� suggests selecting the test functions from the solution

space of the homogeneous adjoint equation

L�w �� �wt�x� t� � V �x� t� wx�x� t� �K�x� t� w�x� t� � �� �����

so that the last term on the left hand side of equation ���
� is eliminated� In considering

these test functions� we �rst discuss the characteristic curves of equation ����� given by

the solution to the initial value problem of the ordinary di�erential equation dy�d� �

V �y� ��� In our formulation we approximate the characteristic by a second�order Runge�

Kutta quadrature known as the Heun�s method� We de�ne the approximate characteristic

curve emanating from a point ��x� �t�� with �t � �tn��� tn�� by

X��� �x� �t� �� �x�
��t� ��

�
�V ��x� �t� � V ��x� ��t � ��V ��x� �t�� ��� � �����

where � is the time position parameter along the approximate characteristic�

Furthermore� we de�ne �x at time tn by x � X�tn��� �x� tn� and x� at time tn�� by

x� � X�tn���x� tn�� The foot of a characteristic with head on the out�ow boundary is

denoted by b��t� with b��t� � X�tn��� b� t� for t � �tn��� tn�� We also let t
��x� denote

the time when the characteristic X���x� tn� backtracks to the in�ow boundary �

I�
n �i�e�

X�t��x��x� tn� � a� and t��x� � tn�� otherwise� Similarly we let �t�x� denote the time when

the characteristic X��� b� �t�x�� which originates at the out�ow boundary �
O�n � backtracks

to the point x at time tn�� �i�e� x � X�tn��� b� �t�x��� and �t�x� � tn otherwise� The time

increments over the domain �n can be written as

 t
I��x� �� tn � t��x�� x � �a� b��

 t
O��x� �� �t�x�� tn��� x � �a� b��

 t �� tn � tn���

�����

In the numerical formulation we also introduce a local time re�nement at both the

in�ow boundary �
I�n �� f�a� s� js � �tn��� tn�g and the out�ow boundary �

O�
n �� f�b� s� js �

�tn��� tn�g of �n by

t

I�
n�i �� tn � i

 t

CIn
� i � �� � � � � CIn�

t

O�
n�i �� tn � i

 t

COn

� i � �� � � � � COn�
���	�
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respectively� where we have the �exibility of selecting the two positive integers CIn and

COn which determine these partitions� In practice� these parameters should be selected to

be on the order of the Courant number to guarantee stable boundary treatment because

the discretization on the two boundaries is in time not along the characteristics�

��� Numerical scheme

To derive the numerical scheme we approximate the second term on the right�hand side of

equation ���
� along the characteristics� For clarity of presentation� we use the variables y

and � to represent the spatial and temporal coordinates� respectively� of points in �n� and

reserve x and t for points on the space�time boundary of �n� representing heads or feet

of characteristics� We note that y � �a�X��� b� tn�� can be written as y � X���x� tn� for a

unique x � �a� b� and that y � �X��� b� tn�� b� can be written as y � X��� b� t� for a unique

t � ��� tn�� The source term of equation ���
� can then be approximated by being split into

three parts� with each inner integral being approximated by the trapezoidal rule as follows

��
�

Z tn

tn��

Z b

a
f�y� �� w�y� �� dyd�

�
Z tn

tn��

Z X
���a�tn�

a
f�y� �� w�y� �� dyd� �

Z tn

tn��

Z X
��b�tn�

X
���a�tn�
f�y� �� w�y� �� dyd�

�
Z tn

tn��

Z b

X
��b�tn�
f�y� �� w�y� �� dyd�

�
Z b

�a

 t

�
f�x� tn� w�x� tn�dx�

Z b�

a

 t

�
f�x� tn���w�x� t

�
n��� dx

�
Z �a

a

 t
I��x�

�
f�x� tn� w�x� tn�dx�

Z tn

tn��

�tn � t�

�
f�a� t� w�a� t� V �a� t� dt

�
Z tn

tn��

�t � tn���

�
f�b� t� w�b� t� V �b� t� dt

�
Z b

b�

 t
O��x�

�
f�x� tn��� w�x� t

�
n��� dx�R�f� w��

���
�

where R�f� w� represents the error term due to the trapezoidal approximation of the inte�

grals� Incorporating equation ���
� into the variational formulation ���
�� yields a reference

equation satis�ed by the exact solution�

The numerical scheme is based on approximating the exact solution u�x� t� of equation

����� by a piecewise�linear trial function at time tn and at the out�ow boundary �

O�
n �

Therefore� we set up test functions at time tn and at the out�ow boundary as follows� At
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time tn we de�ne the test functions wi�x� tn� �i � �� � � � � I � �� to be the hat function

wi�x� tn� ��

���������
��������

x� xi��
 xi

� x � �xi��� xi��

xi�� � x

 xi��
� x � �xi� xi����

�� otherwise�

�����

where  xi �� xi � xi��� At the out�ow boundary the test functions wI�i�b� t� �i �

�� � � � � COn � �� are given by

wI�i�b� t� ��

�����������
����������

t

O�
n�i�� � t

 tf
� t � �t


O�
n�i � t


O�
n�i����

t � t

O�
n�i��

 tf
� t � �t
O�n�i��� t


O�
n�i ��

�� otherwise�

������

where  tf �� �t
COn
� The test function w��x� tn� is de�ned only on �x�� x�� by ����� and

similarly wI�COn
is only de�ned on �tn��� t


O�
n�COn��

� by ������� while wI is so that wI�x� tn� is

de�ned by ����� for the interval �xI��� xI �� and wI�b� t� is de�ned by ������ on the interval

�t

O�
n�� � tn�� For the interior of the domain we extend these test functions by

wi�X��� �x� �t�� �� �� wi��x� �t�e
�

��t���
� �K
�x��t��K
X
���x��t������ ������

where for test functions wi�x� tn� �i � �� � � � � I�� ��x� �t� � �x� tn� with x � �a� b� and � �

�t��x�� tn� and for test functions wi�b� t� �i � I� � � � � I�COn�� ��x� �t� � �b� t� with t � �tn��� tn�

and � � �tn��� t��

The trial function U � which approximates the exact solution u� has the form

U�x� tn� ��
IX
i��

U�xi� tn�wi�x� tn�� x � �a� b��

U�b� t� ��
COnX
i��

U�b� ti�wI�i�b� t�� t � �tn��� tn��

������

for n � �� � � � � N � Thus we replace the exact solution u and the test functions w in the

reference equation by the trial function U and test functions wi �i � �� � � � � I�COn�� Since

U�a� tn� � g�t� is known from the prescribed in�ow boundary condition and U�b� tn��� is

known from the solution at the previous time level tn��� our scheme will be stipulated only

for nodes xi �i � �� � � � � I� and t

O�
n�i �i � �� � � � � COn� ��� However� to conserve mass all the

nodal test functions should sum to one �when no reaction is present� ����� Taking this into

�



consideration� the formulation of our scheme becomes

Z b

a
U�x� tn� !wi�x� tn� dx�

Z tn

tn��

U�b� t� !wi�b� t� V �b� t� dt

�
Z b

a
U�x� tn��� !wi�x� t

�
n��� dx�

Z tn

tn��

g�t� !wi�a� t� V �a� t� dt

�
Z b

a

 t
I��x�

�
f�x� tn� !wi�x� tn� dx�

Z b

a

 t
O��x�

�
f�x� tn��� !wi�x� t

�
n��� dx

�
Z tn

tn��

�t � tn���

�
f�b� t� !wi�b� t� V �b� t� dt

�
Z tn

tn��

�tn � t�

�
f�a� t� !wi�a� t� V �a� t� dt

����
�

where !w� �� w� � w�� !wi �� wi for i � �� � � � � I � COn � �� and !wI�COn�� �� wI�COn�� �

wI�COn
� In ����
� we dropped the error term due to the trapezoidal approximation�

The numerical scheme ����
� is known as the forward Runge�Kutta characteristic method

�FRKC� ��
�� The FRKC scheme generates tridiagonal �regularly structured in higher di�

mensions�� well�conditioned� symmetric� and positive de�nite coe�cient matrices� which

can be solved e�ciently even for multi�dimensional problems� It allows for large time steps

in the simulation without loss of accuracy� Moreover� it conserves mass and treats boundary

conditions in a systematic way without requiring any arti�cial out�ow boundary condition�

This boundary treatment provides a natural way of developing domain decomposition and

local re�nement techniques using this method� The reader is referred to ��
� for imple�

mentational details of the FRKC scheme and its numerical experiments� which show that

the FRKC scheme outperforms many widely used methods� including the Galerkin and

Petrov�Galerkin �nite element methods ��� ��� ���� streamline di�usion method �
�� 

��

continuous and discontinuous Galerkin methods ���� 
��� the monotonic upstream�centered

scheme for conservation laws �MUSCL�� and the essentially non�oscillatory �ENO� scheme

���� �	� 
�� ����

In the following sections we use the FRKC scheme to develop a domain decomposition

method with space�time local re�nement capability for solution of problem ����� with in�

terfaces� The domain decomposition method is general in that any other scheme within the

ELLAM framework� such as the backward Euler ELLAM scheme or the backward Runge�

Kutta characteristic method developed previously ��� ��� ��� ��� ��� �
�� can be used instead

of the FRKC scheme�
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� Domain Decomposition

��� Various Types of Interfaces

In addition to the di�culties encountered in solving �rst�order hyperbolic equations men�

tioned in Section ���� practical problems often have various physical and numerical inter�

faces which introduce further complexities� When the physical domain �a� b� in equation

����� is composed of di�erent sub�domains �dl��� dl� that consists of di�erent media for

l � �� �� � � � � L where d� �� a and dL �� b� the velocity �eld V �x� t� in equation ����� will

have jump discontinuities at points dl � �a� b� for �l � �� �� � � � � L � �� and is continuous

elsewhere� This leads to hyperbolic equations with discontinuous coe�cients V �x� t�� In

this case equation ����� still holds on each sub�domain �dl��� dl� for l � �� �� � � � � L but not

on the physical interfaces dl �l � �� �� � � � � L� ��� Instead� the mass conservation principle

insures the continuity of the �ux across the interfaces

V �d�l � t�u�d
�
l � t� � V �d�l � t�u�d

�
l � t�� t � ��� T �� l � �� �� � � � � L� �� �
���

where u�d�l � t� �� limx�dl � x�dl u�x� t� and u�d�l � t� �� limx�dl � x�dl u�x� t��

Equation �
��� is used to enclose the initial�boundary value problem ����� across the

physical interfaces� Note that equation �
��� implies that the jump discontinuities in the

coe�cient V �x� t� yields similar discontinuities in the exact solution u�x� t�� One has to

approximate the solution u�d�l � t� and u�d�l � t� �l � �� �� � � � � L � �� very carefully at the

interfaces so that the numerical solutions obtained are accurate� stable� and physically

reasonable without any accompanying overshoot or excessive arti�cial di�usion as well as

arti�cially re�ected waves ���� �
��

Numerical interfaces arise in the application of domain decomposition techniques� which

has been applied widely in decomposing problems imposed over complicated geometric

domains into a set of subproblems on much simpler sub�domains� in solving large size

problems in parallel� and in solving problems in an e�cient way� In all these cases� one

divides the physical domain into several overlapping or non�overlapping sub�domains and

solves the problem on these sub�domains instead� This generates interfaces among di�erent

sub�domains ���� 
�� �	� ����

Numerical interfaces also occur when one solves problems imposed over unbounded phys�

ical domains� Since no computer can handle in�nitely many data� one has to �truncate�

the physical domains in numerical simulations� This truncation introduces an arti�cial

open boundary� which requires special care� Otherwise� arti�cial waves may be generated

and re�ected back from the arti�cial out�ow boundary� which is another type of numerical

interfaces� Consequently� the accuracy or the stability of numerical methods will be de�

stroyed and non�physical numerical solutions are obtained� A lot of work has been done in

�



designing reasonable arti�cial out�ow boundary conditions in the development of numerical

schemes for hyperbolic equations �
	� ����

In this section we develop a domain decomposition method for solution of problem �����

possibly coupled with various physical and numerical interfaces described above� Although

it is derived for physical interfaces� equation �
��� still holds at numerical interfaces due to

the mass conservation principle� Therefore� in this paper we always utilize equation �
���

to treat both physical and numerical interfaces in a uniform manner� In the remaining

part of this section we �rst describe possible ways of passing information between di�erent

sub�domains sharing an interface� then we present a global algorithm to solve problem �����

and �
��� by incorporating the interface treatment with the FRKC scheme ����
� applied

on each sub�domain�

��� Spatial Interfaces

For simplicity of exposition we consider problem ����� with one interface in space at the

point d � �a� b�� The global space�time domain � �� �a� b� � ��� T � is divided into two

sub�domains �� �� �a� d� � ��� T � and �� �� �d� b� � ��� T � which share the interface I
d ��

f�d� s� j s � ��� T �g� When V �x� t� is assumed positive� Id is the out�ow boundary for ��

and the in�ow boundary for ��� The algorithm developed here applies to other velocity

distributions too�

Applying the FRKC scheme ����
� on �
��n� �� �a� d� � �tn��� tn� yields a numerical

solution on �a� d� at time tn and at the out�ow boundary I
d
n �� f�d� s� j s � �tn��� tn�g of

�
��n�� which allows a uniform partition P

O�

��n� of COn intervals on I

d
n from the left� With

Idn as the in�ow boundary of �
��n� �� �d� b� � �tn��� tn�� which has a uniform partition

P

I�

��n� of CIn intervals from the right� one can obtain the numerical solution on �
��n� by

using the FRKC scheme ����
�� These two partitions on Idn� accumulated over all the time

steps �tn��� tn� of the simulation� de�ne the following two partitions on Id� �i� partition

P

O�
� �� �Nn��P


O�

��n� determined by the grid points t


O�
n�i for i � �� �� � � � � COn� � �as in ���	��

and n � �� �� � � � � N from the left of Id� and �ii� the partition P

I�
� �� �Nn��P


I�

��n� given by

the grid points t

I�
n�i for i � �� � � � � CIn � � �as in ���	�� and n � �� � � � � N from the right of

Id� To complete the domain decomposition method we only need to give an algorithm on

how to pass the information across the interface Id� In the subsequent subsections we will

discuss di�erent ways of passing information between the two sub�domains �� and �� so

that it is consistent with the case when no interface is present�

To avoid multiple indices for the elements in either partition� we assume that they

are ordered in an increasing order by a single index ranging from � to the size of the

partition considered� The treatment of the interface Id between �� and �� can be carried

�	



out by a projection or an interpolation of the piecewise linear solution U�d�� t� to get

U�d�� t�� However� implementing this projection varies depending on the relation that can

be assumed between the two partitions considered�

����� Non�Conforming Interfacial Matching

The FRKC scheme ����
� allows the use of both non�uniform and uniform time steps in

the simulation over each sub�domain� Thus when di�erent time steps are used on the two

sub�domains �� and ��� the partitions P

O�
� and P


I�
� are not compatible in general and

lead to a non�conforming matching on the interface Id� In this case an L��projection can

be used to pass the information from P

O�
� to P


I�
�Z T

�
V �d�� t� U�d�� t� wi�d

�� t� dt �
Z T

�
V �d�� t� U�d�� t� wi�d

�� t� dt� �
���

for i � �� �� � � � �
PN

n��CIn�

We now brie�y discuss some implementational issues regarding equation �
���� The left�

hand side of equation �
��� resides on the partition P

I�
� and is standard in �nite element

methods� However� the evaluation of the right�hand side requires extra care� Notice that

the trial function U�d�� t� and the test function wi�d
�� t� reside on the partitions P


O�
�

and P

I�
� � respectively� which are not compatible in general� and that the right�hand side

of equation �
��� is assembled based on the index of the test function� When one uses a

quadrature to evaluate the right�hand side of equation �
��� on the intervals �t

I�
i��� t


I�
i � and

�t

I�
i � t


I�
i��� �i�e�� the support of wi� of the partition P


I�
� � one may integrate the product of

a linear function wi�d
�� t� with a piecewise�linear function U�d�� t� on each of these two

intervals� Hence� a blind numerical integration of this term may result in loss of mass and

oscillations in the numerical solutions ���� ���� To overcome these di�culties we further

subdivide the intervals �t

I�
i��� t


I�
i � and �t


I�
i � t


I�
i��� into a number of subintervals such that

U�b�� t� is linear on each of these subintervals� Then� we apply a numerical quadrature on

each of these subintervals to evaluate the right�hand side of equation �
���� While the non�

conforming interfacial matching works for general non�uniform partitions P

O�
� and P


I�
� �

the process of determining how many subintervals �t

O�
j��� t


O�
j � of P


O�
� are contained in the

intervals �t

I�
i��� t


I�
i � and �t


I�
i � t


I�
i��� of P


I�
� may not be very e�cient in general� To enhance

the e�ciency we consider a conforming matching in the next subsection�

Finally� we notice that when the partitions P

O�
� and P


I�
� on Id are identical and V �x� t�

is continuous across Id� equation �
��� implies that U�d�� t� � U�d�� t�� Thus� the non�

conforming matching of the interfaces is consistent with the scheme when no interface is

present�

��



����� Conforming Interfacial Matching

The partition P

O�
� on the interface Id �as the out�ow boundary of ��� and P


I�
� on Id �as

the in�ow boundary of ��� are conforming if one of them is a subset of the other and each

coarse global time step �tcn��� t
c
n� is an integer multiple of a uniform �ne global time step

�tfm��� t
f
m�� The number of �ne time intervals in each coarse time interval is allowed to vary

with n� In this case� equation �
��� is con�ned to the coarse time step �tcn��� t
c
n� instead of

��� T � Z tcn

tc
n��

V �d�� t� U�d�� t� wi�d
�� t� dt �

Z tcn

tc
n��

V �d�� t� U�d�� t� wi�d
�� t� dt� �
�
�

A conforming matching is fairly �exible in that it allows a non�uniform coarse time

stepping procedure in numerical simulations� Meanwhile� since each coarse global time step

is uniformly partitioned into a number of �ner global time steps� no search algorithm is

needed in evaluating the right�hand side as in the case of a non�conforming matching� This

leads to ease of implementation and improvement of the CPU time involved in evaluating

the right�hand side of equation �
�
��

When the velocity �eld is continuous across the interface Id and when one projects

from a coarse grid to a �ner one� then U�d�� t� is exactly the same as U�d�� t�� In other

words� equation �
�
� is equivalent to a piecewise linear interpolation� which makes passing

information very simple and e�cient�

��� Temporal Interfaces

The procedure developed in the last subsection can also be applied to treat temporal

interfaces� We solve equation ����� by a domain decomposition technique in time� Again�

we assume that the global space�time domain � �� �a� b� � ��� T � is divided into two sub�

domains �� �� �a� b� � ��� T�� and �� �� �a� b� � �T�� T � with � � T� � T � In this case� the

temporal interface IT� is given by IT� �� f�x� T�� jx � �a� b�g� Once the solution is computed

on the sub�domain �� up to the temporal interface I
T� � we need to pass the solution to the

other side of the interface IT� where it is used as the initial condition for the simulation on

the sub�domain ��� As in the case of a spatial interface� if the partition on �� is not the

same as that on ��� the following projection is used to pass the numerical solution across

the interface IT� Z b

a
U�x� T�

� � wi�x� T
�
� � dx �

Z b

a
U�x� T�� � wi�x� T

�
� � dx� �
���

for i � �� �� � � � � I� where I is the number of the test functions used on the spatial part of ���

The piecewise linear test functions wi�x� T
�
� � are given by equation ����� with T� replacing

tn� The detailed treatment is similar to that for the spatial interfaces and is omitted here�

��



��� A Domain Decomposition Method on a General Space�Time Partition

To fully describe the method� we consider a general space�time partition of the domain

� �� �a� b�� ��� T � into sub�domains given by

a �� d

m�
� � d


m�
� � � � � � d


m�
Lm

�� b� m � �� �� � � � �M�

� �� T� � T� � � � � � TM �� T�
�
���

These sub�domains are labeled as

�
l�m� �� �d

m�
l��� d


m�
l �� �Tm��� Tm�� for l � �� � � � � Lm� and m � �� � � � �M� �
���

In porous medium �uid �ows and seismics the physical interfaces arise when the medium

properties change abruptly� which are typically time independent� In this case the spatial

partition should normally be time independent too� i�e� d

m�
l � dl�l � �� � � � � Lm�� On the

other hand� the steep fronts presented in the numerical solutions are often dynamic� so

a practical domain decomposition and local re�nement method often needs to catch up

the moving steep fronts� In this case the spatial partition should be time�dependent� The

partition �
��� and the method presented in this subsection covers both cases� A general

domain decomposition method for solving equation ����� over domain � goes as follows�

Step �� Using the given initial and in�ow boundary conditions in ������ one applies the FRKC

scheme ����
� over the space�time sub�domain �
����� The solution over this domain

de�nes the solution U�d�� � t� for t � ��� T�� and U�x� T
�
� � for x � �a� d���

Step �� Using the procedures developed in Section 
��� one can pass the solution U�d�� � t� across

the interface between �
���� and �
����� and obtains U�d
�
� � t� for t � ��� T��� Then� one

can apply the FRKC scheme ����
� on �
���� to obtain the numerical solution on this

sub�domain� Continuing this process one can obtain the numerical solutions on �
l���

for l � �� �� � � � � L�� Namely� one can obtain the solution on �a� b� for t � ��� T���

Step �� In parallel to Step �� one can apply the scheme ����
� to solve equation ����� on the

sub�domain �
���� unless the sub�domain �
���� has a larger spatial interval �d

��
� � d


��
� �

than the interval �d

��
� � d


��
� � the sub�domain �
���� has� In this case Step � needs to be

carried out before this step to �nd the solution over the sub�domain �
���� or even more

sub�domains on time interval ��� T�� until the solution U�x� T
�
� � is known on enough

spatial intervals to cover the spatial domain of the sub�domain �
�����

Step �� Repeat Steps � and 
 for sub�domains that are adjacent to sub�domains �
���� and

�
���� �and possibly others� until one �nally covers all the sub�domains de�ned in

�
����

��



In terms of parallel implementation of this algorithm� it is evident that once the solution

is computed on a domain �
l�m�� the part of the solution generated at the out�ow boundary

of that sub�domain can be projected to �
l���m�� and similarly the solution at the last time

step can be projected to domain �
l�m��� �with some possible contribution from domains

adjacent to �
l�m� when the spatial domain of �
l�m��� is di�erent from that of �
l�m��� Then

Steps � and 
 can be implemented concurrently to solve problem ����� over the two sub�

domains �
l���m� and �
l�m���� The global concurrency is more evident in the case when

the spatial partition of the domains given in �
��� is independent of time� whence one starts

solving problem ����� over �
����� Next� Steps � and 
 can be implemented concurrently to

solve the problem over sub�domains �
���� and �
����� These procedures can be continued

until all the sub�domains are covered�

� Space�Time Local Re�nement

In many applications modeled by equation ����� the solutions are relatively smooth outside

some very small sharp front regions� These sharp fronts of the solutions need to be resolved

accurately in practice ���� �	� 
��� Because of the extremely large size of these problems

an extremely �ne global mesh in both space and time is not feasible due to its excessive

computational cost� Therefore� one has to use locally re�ned space�time grids within these

small regions to resolve the sharp fronts of the solutions accurately and uses coarse space�

time grids to obtain a satisfactory approximation outside the sharp front regions with a

signi�cantly reduced overall computational cost� The use of local re�nement introduces

numerical interfaces between the coarse and �ne grids� which needs special care especially

for hyperbolic equations �
� 

��

Because it solves problem ����� accurately and treats boundary conditions systematically

in a mass conservative manner� the FRKC scheme ����
� can naturally be combined with a

space�time local re�nement algorithm� The local re�nement algorithm falls in the general

framework of the domain decomposition method developed in the previous section� but can

be carried out in a more e�cient way by selecting the partitions on the interface between

two adjacent domains in an appropriate way� We begin by describing ways to improve the

treatment of the interfaces resulting from space�time local re�nement over that described

in the previous section�

��� Interpolation�Projection�Free Space�Time Local Re�nement

We consider solving problem ����� over the global domain � �� �a� b����� T � which is divided

into three sub�domains �� �� �a� d������ T �� �� �� �d�� d������ T �� and �
 �� �d�� b����� T ��

We assume that the exact solution u�x� t� of the problem has steep fronts within the sub�

domain �� in the middle and are smooth in the other two sub�domains� Therefore� we will

��



use re�ned spatial and temporal grids on �� and coarse meshes outside� We now describe

how to pass a solution across the interface from a sub�domain with a coarse space�time

mesh to a sub�domain with a �ne mesh and vise versa� The algorithm actually applies no

matter how many sub�domains are used in the local re�nement�

Let Id� �� f�d�� s� js � ��� T �g be the interface shared by the two sub�domains �� and

��� With I
d� being the out�ow boundary of �� and the in�ow boundary of ��� the FRKC

scheme ����
� has a �exibility in selecting the partition parameters CO
�� and CI
�� �where

the superscript indicates the domain� on Id� � While for any choice of these parameters

the algorithm in Section 
�� can pass the solution U�d�� � t� across the interface I
d� to yield

U�d�� � t�� a more e�cient alternative can be obtained by matching the partition CO

�� on Id�

�as the out�ow boundary of ��� with the partition CI

�� on Id� �as the in�ow boundary of

���� With this particular choice of the partition CO

��� the FRKC scheme ����
� applied to

the sub�domain �� naturally generates the numerical solutions at the nodes on the interface

Id� and U�d��� t� � U�d��� t� for t � ��� T �� Namely� the numerical solution given on the

out�ow boundary of �� directly de�nes the in�ow boundary condition for problem ����� on

sub�domain �� without any interpolation or projection involved�

The treatment of the interface Id� �� f�d�� s� js � ��� T �g between the sub�domains

�� and �
 is carried out in a similar manner� In this case the solution moves out of the

sub�domain �� with a �ne space�time partition and into the sub�domain �
 with a coarse

space�time mesh� In this case we choose the partition CI

� on Id� �as the in�ow boundary

of �
� to match the partition CO
�� on Id� �as the out�ow boundary of ���� Then we

naturally have U�d�� � t� � U�d�� � t� for t � ��� T �� i�e�� we pass the numerical solution across

the interface Id� in a natural manner� without using any interpolation or projection�

��� Adaptive Local Re�nement�Nonlinear Approximation

Due to the transient property of the exact solutions of problem ������ the regions which

contain the sharp fronts of the solutions normally move with time� Hence� one has to

use dynamic space�time local re�nement to solve problem ����� in an e�cient and accu�

rate manner� To carry out adaptive local re�nement e�ectively� one has to locate sharp

front regions accurately and apply local re�nement only where it is needed� In numerical

simulations one can use a posterior error indicators"estimators to locate the front regions�

Extensive research has been conducted in developing various a posterior error indica�

tors"estimators for elliptic and parabolic equations ��� 
� �� ��� ���� In the context of

hyperbolic equations one also needs to take into account the transient behavior of the

solutions� Algorithmically� the adaptive local re�nement algorithm can be described as

follows�

��



Step �� Apply an error indicator or estimator �e�g� those mentioned above� on the current

solution �or initial condition if current time is initial time� of problem ����� to locate

its steep front regions� which are identi�ed by their spatial boundaries�

Step �� For each time step in the simulation� track these regions forward along the characteris�

tics to predict where the steep front regions will locate at the next time step� This will

provide locally re�ned grids needed to resolve the steep fronts of the solutions� The

contribution from the reaction term� the source term� and the boundary conditions�

which could lead to the formation of new steep front regions� can also be identi�ed in

this manner�

Step �� Apply the FRKC scheme ����
� and the procedure described in Section ��� on each

space�time sub�domain �including those with coarse space�time grids and those with

locally re�ned grids� at the current time interval� Go to Step � until one reaches the

last time step�

As one can see� the above adaptive space�time local re�nement algorithm is accomplished

based on a through understanding of all terms in the governing equation� and their in�uence

on the solutions as time evolves� Thus� one expects that the algorithm should perform well�

In Section � we perform experiments to observe its numerical performance�

To conclude this subsection we describe the numerical methods with or without adaptive

local grid re�nement from the viewpoint of approximation theory� The numerical methods

without local grid re�nement corresponds to linearmethods in approximation theory� where

the numerical solutions are chosen from a �xed linear space �e�g� piecewise linear functions

on a �xed partition�� usually using a linear projection operator� The partition of domains

is independent of the solutions being approximated� Linear methods are relatively simple

to study and implement� but they may not be very e�cient when the exact solutions being

approximated have strongly local behavior �e�g� steep fronts�� Furthermore� linear methods

require higher regularity of the exact solutions being approximated�

Let SI�r�a� b� be the space of all continuous functions which are piecewise polynomials

of degree r � � on the spatial partition given by ������ Set EI�f� SI�r� to be the best

approximation error given by

EI�f�SI�r� �� inf
g�SI�r
a�b�

kf � gkLp
a�b�� �����

Here Lp�a� b� is the space of p
th power� Lebesgue integrable functions on �a� b� with norm

�quasi�norms if � � p � ��

kfkLp
a�b� �

�Z b

a
jf�x�jpdx

���p

� �����

��



It has been proven ��
� �
� that for a linear method to approximate a function f from

the space of piecewise polynomials SI�r�a� b� with a convergence rate of O�I
��� in the

Lp�a� b� norm is equivalent to f having � order of smoothness �or � order of derivatives�

if � is an integer� in Lp�a� b� �i�e� f is in the Sobolev space W
��Lp�a� b�� �� Therefore� a

higher convergence rate requires higher regularity of the function f being approximated�

In particular� there is no linear method for one�dimensional nonlinear hyperbolic equations

�conservation laws� that have higher than �rst�order convergence rate in the L��a� b� norm�

Otherwise� the above result concludes that the exact solution should be in W�
� �a� b�� which

implies that the exact solution should be absolutely continuous on �a� b� by the Sobolev

embedding theorem� However� it is well known that the exact solutions of conservation laws

can develop shock discontinuities in �nite time no matter how smooth the initial condition

may be� This is the theoretical justi�cation that there are no higher�order linear methods

for nonlinear hyperbolic equations�

On the other hand� in a nonlinear method the spatial partition in ����� is allowed to

depend on the function being approximated� Let XI�r�a� b� be the space of all continuous

functions which are piecewise polynomials �of degree r � �� with I pieces on �a� b�� Since

di�erent functions in XI�r�a� b� may have di�erent break points� the sum of two functions

in XI�r�a� b� may not necessarily belong to XI�r�a� b� �but does belong to X� I�r�a� b��� The

space�time local grid re�nement algorithm in this section can be viewed as a practical

implementation of a nonlinear method� Let FI�f�XI�r� be the best approximation error

from the nonlinear manifold XI�r�a� b�

FI�f�XI�r� �� inf
g�XI�r
a�b�

kf � gkLp
a�b�� ���
�

In comparing the rigorous treatments of linear and nonlinear approximation� DeVore ��
�

and Petrushev ��
� go further and prove that a nonlinear method has a convergence rate

of O�I��� in the Lp�a� b� norm if and only if f has � order of smoothness �or � order

derivatives� if � is an integer� in L� �a� b� with � � p��� � �p�� more precisely� f belongs

to the Besov space B�
q �L� �a� b��� where the parameter q �� � q � �� is a �ner scaling

of smoothness than Sobolev spaces provide �see �	� ��� for details�� Since � � � � � is

signi�cantly smaller than p �as long as one allows non�locally convex spaces L� �a� b��� the

regularity requirement of f for a nonlinear method is much weaker than that for a linear

method� Furthermore� DeVore and Lucier ���� ��� have proven that the Besov spaces are

regularity spaces for one�dimensional conservation laws� Namely� if the initial condition

u� is in a Besov space �which is true for almost all the realistic applications� the solution

will remain in the same space for all later time� The importance of this result is that is

shows that solutions to conservation laws retain high orders of regularity when measured

in the correct way� The combination of this result with that for nonlinear approximation

mentioned above predicts that higher�order nonlinear methods to conservation laws can
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be developed with O�I��� accuracy in the Lp�a� b� norm for any � � � �with r � � in

XI�r�a� b��� These observations theoretically justify the use of adaptive local gird re�nement

because it can signi�cantly increase e�ciency and reduce the regularity requirement on the

exact solutions for hyperbolic equations since they typically have strongly local behaviors�

Numerical experiments are presented in Section � to demonstrate the strong potential of

the adaptive local re�nement method developed in this paper�

��� Local Re�nement with Patches�Nested Grids

In the previous subsection we presented an adaptive space�time local grid re�nement algo�

rithm and justi�ed it from a theoretical viewpoint� We now discuss some implementational

issues for adaptive local grid re�nement� A blind application of the local re�nement algo�

rithm can signi�cantly enhance the e�ciency of the numerical simulation to problem ������

but it could introduce some non�conforming grids at spatial or temporal interfaces� In that

case one has to use an L� projection to pass information across interfaces as described in

Section 
����� This could also require a complex coarse��ne grid� leading to complicated

data structures�

To address these potential di�culties we use nested grids and patches in the local grid

re�nement and modify the algorithm in Section ��� as follows� We �rst de�ne an underlying

coarse space�time partition given by ����� on the global domain � �� �a� b� � ��� T �� with

the spatial partition being independent of time� At each time step� we de�ne a patch to

be the cluster of macro elements that have a non�empty overlap with a steep front region�

We then use a re�ned space�time grid in each of the macro element in the patch� This way�

we obtain a space�time partition with nested space�time grids� Although this implemen�

tation enlarges the re�ned region slightly �up to the size of two macro elements in each

spatial coordinate direction� than the algorithm presented in Section ���� it uses a static

coarse space�time partition and dynamic local re�nement within certain patches� There�

fore� globally and locally one solves problems with the same partition and data structure�

so it greatly simpli�es the implementation of the adaptive local grid re�nement algorithm

especially for multi�dimensional problems�

Finally� the above adaptive local grid re�nement algorithm with patches"nested grids is

a two level �coarse��ne grid� method� This algorithm can be applied repeatedly� yielding

multi�level local re�nement with nested grids�

� Description of Some Grid Re�nement Schemes

In this section we describe some existing �nite di�erence local re�nement schemes for

problem ������ which are widely used in applications ���� In the next section these schemes
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are compared with the local re�nement method developed in this paper to observe their

numerical performance� For simplicity we present these schemes for problem ����� with a

constant velocity �eld but with no reaction or source terms involved�

These schemes typically use a conventional �nite di�erence scheme �e�g� Lax�Wendro�

or leapfrog� to solve problem ����� on a uniform coarse grid on the global domain � ��

�a� b�� ��� T ��

xi �� a� i  xc�  xc ��
b� a

I
�

tn �� n  tc�  tc ��
T

N
�

�����

For de�niteness we take the leapfrog scheme as an example� Applying the leapfrog scheme

to advance the solution from the previous time steps tn�� and tn to tn�� as follows

U�xi� tn��� � U�xi� tn���� �
h
U�xi��� tn�� U�xi��� tn�

i
� �����

where � � V tc� xc is the Courant number�

Then one uses a locally re�ned space�time grid that is nested in the coarse grid ������

We de�ne the re�ned grid size and time step to be

 xf ��
 xc

Mx

�  tf ��
 tc

Mt

� ���
�

where the positive integersMx andMt are the space and time re�nement ratio� respectively�

Notice that the �rst node xf� in the �ne mesh is also a coarse grid node x�i for some �i

�since the grids are nested�� which could be either a cell center or a grid point depending on

the type of scheme used� To apply the leapfrog scheme ����� on the re�ned grid� one has to

provide the values of the solution at xf� for all the �ne time steps� which is an interface due

to the use of locally re�ned spatial grids and temporal steps� Di�erent interface schemes

were developed previously to treat these interfaces� including the Clark�Farley scheme� a

characteristic interface scheme� and two integration schemes� a node integration and a

cell�centered integration scheme� Let

xf�k �� xf� � k xc� k � �� �� �� � � � �

xfk �� xf� � k xf � k � �� �� �� � � � �

tn�m �� n tc �m tf m � �� �� � � � �Mt

�����

be the re�ned spatial grids and time steps� These interface schemes may require the values

of U at xf�k for di�erent �ne time steps tn�m� With the values of U at the coarse space�time

��



grid being known� the values of U at �ne time steps are approximated by a second�order

Taylor polynomial in time� with the time derivatives being replaced by centered di�erences

as follows

U�xf�k� tn�m� �� U�xf�k� tn� �

h
U�xf�k� tn���� U�xf�k� tn���

i
� tc

�m tf �

�

h
U�xf�k� tn���� �U�x

f
�k� tn� � U�xf�k� tn���

i
�� tc��

�m tf ���

�����

The solution procedure goes as follows� First one applies the leapfrog scheme ����� on

the coarse grid to advance the solution from the previous time levels tn�� and tn to tn���

Second� with the values of U�xf��� tn�m� and U�xf��� tn�m� evaluated by ������ the solution

U�xf� � tn�m� at the interface x
f
� at �ne time steps can be obtained by the interface schemes

described below� The treatment at the other end of the �ne grid is similar� Then these

values are used as the arti�cial boundary conditions for the leapfrog scheme ����� applied

on the re�ned grid for all the �ne time steps within the coarse time level� Below we present

the di�erent interface schemes

Clark�Farley Scheme�

The Clark�Farley scheme solves a least square �t with quadratic collocation to generate

the solution at the interface xf� for �ne time steps as follows ��
�

U�xf� � tn�m��� ��

�
��

�




�
�

M�
t

� �

��
U�xf��� tn�m�

�
�	
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�
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�

�

�Mt



� ��
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�
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�

�
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�
�

�

�Mt



� �

�
U�xf� � tn�m��

�����

where the value � �
h

�
M�

t

� �
i
��� is chosen to insure local mass conservation ��
�� In the

event that � is chosen to be zero� equation ����� is reduced to the Lagrange interpolation�

Characteristic Interface Scheme�

In the characteristic interface scheme �

� the values of U at the interface xf� is obtained

by backtracking the characteristic a distance of jV j tf and then using a linear interpolation

in space as follows

U�xf� � tn�m��� ��

�����
����

���

Mt � �
U�xf��� tn�m� �

Mt � � � ��

Mt � �
U�xf� � tn�m�� if V � �

�� � �� U�xf� � tn�m�� � U�xf� � tn�m� if V � �

���	�

�	



A Node�Based Interface Integration Scheme�

The node integration scheme is obtained by integrating equation ����� over the element

�xf� �
�xc

�
� xf� �

�xf

�
� as follows ���

U�xf� � tn�m��� �� U�xf� � tn�m���� V
� tf

 xc � xf

h
U�xf� � tn�m�� U�xf��� tn�m�

i
� ���
�

A Cell�Centered Interface Integration Scheme�

The cell�centered integration scheme is obtained by integrating equation ����� over the

element �xf��� x
f
� � as follows ���

U�xf� � tn�m��� �� U�xf� � tn�m���� V
� tf

 xc � xf

h
U�xf� � tn�m�� U�xf��� tn�m�

i
� �����

In this case xf� is a cell center�

� Numerical Experiments

In this section we carry out various numerical experiments to test the performance of the

domain decomposition and space�time local re�nement method developed in this paper�

Three types of experiments are included� ���� a comparison of the method with the local

re�nement methods reviewed in the previous section� ���� a comparison of the domain

decomposition method for problem ����� with discontinuous coe�cients with the results

reported in �
��� and �nally �
�� a comparison of the adaptive local re�nement method

with a globally re�ned grid�

��� Space�time Local Re�nement on a Static Domain Decomposition

The numerical experiments for the Eulerian �nite di�erence local re�nement method de�

scribed in the previous section �including the Clark�Farley interface scheme� a characteristic

interface scheme� and two integration interface schemes� were reported in ���� In this sec�

tion we test the same example to compare the performance of the local re�nement method

developed in this paper with it�

In this example the velocity �eld is V �x� t� � �� and no reaction or source term is

involved �i�e�� K�x� t� � � and f�x� t� � ��� The initial condition is a Gaussian distribution

given by

u��x� �� exp

�
�
�x� xc�

�

�	�

�
� �����

��



where xc and 	 are the centered and standard deviations of the pulse� The corresponding

analytic solution of equation ����� is given by

u�x� t� � exp

�
�
�x� t� xc�

�

�	�

�
� �����

The data for this simulation are as follows ���� The global spatial domain is �a� b� �

��� ���� with a uniform coarse grid of  xc � ���� The re�ned region is �d�� d�� � �	�� ����

with a spatial re�nement ratio of Mx � �� in ���
� �so  x
f � ����� To insure the CFL�

stability of the �nite di�erence local re�nement methods� a coarse time step of  tc � ���

was chosen ���� The global time interval is ��� T � � ��� ���
�� which is the time after �	

time steps� In the re�ned region �	�� ����� a �ne time step of  tf � ���� was used� In the

simulation a homogeneous Dirichlet boundary condition is imposed at the in�ow boundary

of the global domain� Initially� the Gaussian pulse is centered at xc � �� with a standard

deviation of 	 � �� These values insure that the Gaussian pulse is initially contained

in the re�ned region� The numerical experiments were reported in ��� for di�erent time

steps� In �a���d� of Figures � and 
 we cite their results at t � �
�� ��� time steps�� which

corresponds to the time when the solution moved out of the re�ned region� and the �nal

time t � ���
 ��	 time steps��

In these experiments we are able to use a much larger time step with our method to

generate accurate solutions� but otherwise retain the same data parameters as the other

methods� The �rst of the experiment run is to compare with their solutions at time t � �
��

��� time steps�� which is the time when the solution has moved out of the �ne region� Any

e�ects due to the interface treatment will be apparent� We use two time steps which gives a

coarse time step of  tcFRKC � ����� In the re�ned region �	�� ���� we still use a re�nement

of ratioMt � �� as in ���� to observe the performance of the method across an interface with

a considerable mesh di�erence� This yields a �ne time step of  tfFRKC � ������ instead

of  tf � ���� for the �nite di�erence local re�nement method� The numerical solution is

plotted against the analytical one in Figure ��e�� The second run is to compare with their

solutions at the �nal time t � ���
 ��	 time steps�� We use four time steps� yielding a

coarse time step of  tcFRKC � ���
��� On the re�ned region �	�� ���� the re�nement ratio

Mt is still chosen to be �� as in ���� so the �ne time step  t
f
FRKC � ���
��� The numerical

solution is plotted against the analytical one in Figure 
�e��

These numerical comparisons show that the solutions with the method in this paper pass

an interface smoothly without any numerical artifacts� even though a much larger time step

has been used� In contrast� the �nite di�erence local re�nement method has started to de�

velop trailing disturbances in the form of oscillations� The Clark�Farley solution has the

greatest such re�ections among the four interface schemes� while the solution with the char�

acteristic interface scheme has the least� As the time of the simulation evolves� the trailing

��



disturbances in the Clark�Farley and the two integration schemes are re�ected toward the

�ne region� Figure 
 is a plot of the solutions of the �ve methods at time t � ���
� At this

time the trailing oscillations in the solutions of the Clark�Farley and the two integration

schemes have reached the �ne region boundary where they are ampli�ed� The solution

with the characteristic interface method continues to have large trailing oscillations� The

solution with the method developed in this paper is very accurate without any numerical

artifacts�

��� Domain Decomposition for Problem 	���
 with Discontinuous Coe�cients

In this experiment we use the domain decomposition method developed in Section 
�� to

solve problem ����� with discontinuous coe�cients� We choose the same test problem used

in �
��� a space domain �a� b� � ���� ��� � � t � ����� and a velocity �eld V �x� t� de�ned

by

V �x� t� �

���
��
�� if x � ���� ���

�� if x � ��� ���
���
�

Homogeneous reaction and source terms are used �i�e� K�x� t� � f�x� t� � ��� Also a

homogeneous in�ow Dirichlet boundary condition is speci�ed at x � ��� The initial

condition is set to

uo�x� �

����
���
exp

�
��

������x� ��
���x� �����

�
� if x � ����
�������

�� otherwise�

�����

Since V �x� t� has a jump discontinuity at x � �� the interface condition �
��� is reduced to

the following condition

u���� t� � �u���� t�� t � ��� T �� �����

which leads to the analytical solution

u�x� t� �

���
��

uo�x� t�� if x � ���� ���
�

�
uo

	
x� �t

�



� if x � ��� ���

�����

A natural domain decomposition is given by the physical interface at x � �� i�e�� �� ��

���� �� � ��� T � and �� �� ��� �� � ��� T �� This problem was simulated using some �nite

di�erence interface schemes �
�� with a spatial grid size of  x
�� � ����� for �� and with

 x
�� � ����� for ��� Time steps of  t � ����� and  t � ����� were chosen for the

simulation with numerical solutions plotted at times t � ���� ��
�� and �����

In our numerical simulation we use a uniform space grid of  x � ����� and have chosen

a time step of  t � ����� which is the largest time step that can be used as a common

��



divisor of t � ���� t � ��
�� and t � ���� for the bases of comparison to the results in �
���

The corresponding numerical solutions are plotted against the analytical one in Figure �

for t � ���� ��
�� and ����� The time t � ��� corresponds to the time when the solution

moves across the interface� The right half of the pulse has only half of the height of the

left half� due to the e�ect of the interface condition ������ At the same time the right half

of the solution has twice the width of the solution on the left half� because of the change of

the velocity �eld and mass conservation� The solutions at time t � ��
� and t � ���� move

completely into ���

Even though we use a much larger time step � t � ����� and spatial grid � x � ������

with our method than those in �
�� � x
�� � ����� on ���  x

�� � ����� on ��� and

 t � ����� or ������� our method generates comparable solutions�

��� Adaptive Space�Time Local Grid Re�nement

In our previous work ��
� we developed the FRKC scheme for problem ����� with contin�

uous coe�cients and conducted extensive numerical experiments to compare the FRKC

scheme with many well received and widely used methods� The compared schemes in�

clude the Galerkin and Petrov�Galerkin �nite element method ��� ��� ���� the streamline

di�usion method �
�� 

�� the continuous and discontinuous Galerkin method ���� 
��� the

monotonic upstream�centered scheme for conservation laws �MUSCL�� and the essentially

non�oscillatory �ENO� scheme ���� �	� 
�� ���� The results show that the FRKC method

outperforms these methods in terms of both accuracy and e�ciency in solving problem

������

In this subsection we show that the adaptive local grid re�nement method� which is

developed in this paper based on the FRKC scheme� can further improve the e�ciency

of the numerical simulation by fully utilizing the transient and strongly local behavior of

the solution� In this experiment a variable velocity �eld V �x� t� �� V� � V�x is used� and

a negative reaction K�x� t� �� ���	� V� is imposed to prevent the exact solution from

decaying too rapidly� We again choose a homogeneous source term� If the initial condition

uo�x� is the Gaussian distribution given by ������ the analytic solution is given by

u�x� t� � exp

�
�
�

�	�

�	
x�

V�
V�



exp

�
�V�t



�
V�
V�
� xc

�� �
exp

�
�����V�t



� ���	�

The global spatial domain and time interval are �a� b� � ��� ���� and ��� T � � ��� ����

respectively� In the expression of V �x� t� and K�x� t� V� � � and V� � ���� are chosen�

yielding a velocity �eld of V �x� t� � � � ����x and K�x� t� � ����
	�� In the initial

con�guration ����� the standard deviation 	 � ��
� and the centered deviation xc � �� are

��



chosen� A homogeneous Dirichlet boundary condition is speci�ed at the in�ow boundary

x � ��

The �rst test run applies the FRKC scheme ����
� using a uniform coarse grid of  xc �

��� and a coarse time step of  tc � �� The Courant number of this simulation is ��� Figure

��a� is a plot of the numerical and analytic solutions at the �nal time T � ��� Table �

contains the L� and the L� norms of the truncation error of the solution as well as the CPU

time used� which is measured on a SUN Sparc LX workstation� Figure ��a� shows that

the numerical solution has some slight wiggles around the bottom of the solution and some

error near the top� Because the standard deviation 	 � ��
�� the coarse grid  xc � ��� is

not �ne enough to resolve the steep front of the solution accurately� This introduces the

numerical artifacts� which in turn shows the need for a re�nement�

The second test run uses a uniformly re�ned spatial grid of  xf � ���� and time

step of  tf � ��
� i�e� with space and time re�nement ratios of Mx � � and Mt � 
�

Figure ��b� shows the plot of the numerical solution at the �nal time verses the analytic

one� while the error information and the CPU time used are presented in Table �� The

accuracy of the numerical solution is signi�cantly improved over the coarse grid solution

�e�g� the L� error is reduced from ���
�� ��
�� to ��
��� ���
�� However� the CPU time

used increased from ��� seconds to 
��� seconds� approximately �� time increase� This is

understandable since the size of the problem has been increased �
 times� Although this

CPU time might at �rst seem high� we have shown in ��
� that signi�cantly higher �one

to two orders of magnitude� CPU times must be consumed for many other well�regarded

methods to generate comparably accurate solutions�


x 
t L� Error L� Error CPU �seconds�


xc 
 ��� 
tc 
 � ��	������ �	�� ��	������ �	�� ���


xf 
 ���� 
tf 
 ��� �����	�	� �	�� ��������� �	�� ����


xc 
 ���� 
xf 
 ���� 
tc 
 �� 
tf 
 ��� ��������� �	�� ��	������ �	�� ����

Table �� Comparison of the L� and L� norms of the error and the CPU time used�

To improve the e�ciency of the numerical simulation while maintaining its accuracy�

the third test run uses the adaptive local grid re�nement method developed in Section ����

To begin� we use a uniformly coarse grid of  xc � ��� and time step of  tc � � as in the

�rst test run� The same re�ned grid size of  xf � ���� and time step of  tf � ��
 as in

the second test run is used locally in the steep front region� In the numerical simulation we

used the second�order Runge�Kutta quadrature ����� to track the spatial boundaries of the

steep front regions forward from the current coarse time step tcn�� to the next coarse time

��



step tcn to predict the future location of the steep front region� Next we use a nested locally

re�ned grid of  xf � ���� and time step of  tf � ��
 to re�ne the space�time sub�domain

that contains the steep front of the solution during the time period �tcn��� t
c
n�� Figure

� contains the space�time partition information used in this simulation� The numerical

solution obtained with the adaptive local grid re�nement is plotted in Figure ��c�� The

error and CPU time information appears in Table �� Observe that the adaptive local

re�nement method generates a numerical solution with the same accuracy as the uniformly

�ne grid solution� but only uses a CPU time of ���� seconds� This is about �
# of the CPU

time used by the uniform grid re�nement and shows the strong potential of the adaptive

local grid re�nement method developed in this paper�

� Summary

In this paper we develop a characteristic�based domain decomposition and space�time local

re�nement method for �rst�order linear hyperbolic equations �possibly including various

physical and numerical interfaces� based on a forward Runge�Kutta characteristic �FRKC�

scheme we have developed previously ��
�� In the context of �rst�order linear hyperbolic

equations with continuous coe�cients it was shown ��
� that the FRKC scheme outperforms

many well received and widely used methods� including the Galerkin and Petrov�Galerkin

�nite element methods ��� ��� ���� the streamline di�usion method �
�� 

�� the continuous

and discontinuous Galerkin methods ���� 
��� the monotonic upstream�centered scheme for

conservation laws �MUSCL�� and the essentially non�oscillatory �ENO� scheme ���� �	� 
��

���� The domain decomposition and local re�nement method developed in this paper is

naturally implemented in the FRKC framework and has the following advantages�

�� It retains the numerical advantages of the FRKC scheme and generates accurate nu�

merical solutions even if large time steps are used�

�� The method fully utilizes the transient and strongly local behavior of the solutions to

further improve the e�ciency of the FRKC scheme while maintaining its accuracy�


� It treats the physical interfaces and various numerical interfaces with a universal

scheme� In contrast� many previous �nite di�erence local re�nement methods require

additional interface schemes to treat the interfaces between di�erent sub�domains or

coarse��ne sub�domains� but still do not provide a comparable accuracy�

��
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