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the function h satis�es the following functional inequality�
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where c is an absolute postive constant� Iterations of this relation provide another
 more elementary

proof of the known global boundedness result

kh� L��E��k �� ess sup jh�t� x�j ���

The above functional inequality is derived from a general duality relation
 of thetafunction type

for solutions of the Cauchy initial value problem for Schr�odinger equation of a free particle�

Variation and complexity of solutions of Schr�odinger equation are discussed�

� Schr�odinger equation� functional relations and L
��result

Consider the Cauchy initial value problem for time�dependent Schr�odinger equation of a free particle
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��f � t� x� � f � ��t� ���x� �
Z
E
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This representation implies a reciprocity type relation between ��f� and �� f�� where f denotes the
Fourier transform of f 	
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Starting from ��� and using some very basic properties of continued fractions� cf� ���� below� we derive
a simpli�ed proof� cf� ����� ��
� of the following statement concerning discrete Hilbert transforms of
imaginary exponentials with real algebraic polynomial of second degree in the exponent�
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Then h is essentially bounded on the real plane E��

kh� L�k 	� ess sup
n
jh�t� x�j 	 �t� x� � E�
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First we deduce from ��� a functional inequality of theta type for the function h� see ��
�� Then we
derive ��� from this inequality� using simple properties of continued fractions�

However� our main goal is not just another proof of ���� Rather� our intention is to demonstrate
some deep relations which exist between objects of analytic number theory and partial di�erential
equations of Schr�odinger type with periodic initial data�

In section � we provide some comments� Section � contains a discussion of complexity of solutions
of the problem ����

Proof� Assume that the initial data function f�x� in the problem ��� is smooth and rapidly
decreasing as jxj � �� say� f�x� belongs to the Schwartz� space S of test functions� Via Fourier
method of separation of variables� the solution ��f � t� x� is given by
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If we take the initial data f�x� to be Dirac�s delta�function ��x�� so that ��y� � �� we obtain the
Green�s function ��t� x� of the problem ���	
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and ��� follows from ��� by inspection�
Let us introduce the generalized ��function	
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If t is a �xed rational number� then the sequence of exponentials en 	� e�in
�t� n � Z is periodic in

n� and the series is summable to a linear combination of shifted ��functions� say� by �C� ���means� cf�
also ���� below� On the other hand� as it was observed by G�H� Hardy and J�E� Littlewood ��
�� for
irrational values of t the series is not summable by regular methods�

We understand ��t� x� as a family of linear functionals� parametrized by t � E� over the Schwartz
space S of test functions ��x�� x � E� By de�nition for � � S we have
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The role of � is clear� If the initial data function f�x� in the problem ��� is periodic� i� e� f�x��� �
f�x�� then
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The solution � is represented by convolution of f with � on the period	
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In the other words� � is the Green�s function of the problem ��� with periodic initial data� In the
sense of linear functionals over S� � coincides with the periodization of � in x	
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In particular� h�t� x� represents the generalized solution of the problem ��� with f�x� � �
� � fxg�

where fxg denotes the fractional part of x � E	

�h

�t
�

�

��i

��h

�x�
� h�t� x� jt�� � �

�
� fxg � p�v�

X
n�Znf�g

e��inx

��in
�

The following relation is a corollary of ���� It is a variant of the well known functional equation
for the Jacobi theta�function 	�t� x�� cf� ��
�� ����� and can be considered as a limiting case of the
latter for 	 t� 
� in the sence of linear functionals over S�
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�Here and below� z� denotes the conjugate of a complex number z��
Indeed� let us take the initial data f�x� in the problem ��� to be the periodized ��function ��x� 	�P

n�Z ��x� n�� Then ��x� � ��x� �Poisson summation formula� and ��� follows from ����

Lemma � � The function h satis�es the following functional equation�
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Furthermore� for each �xed t 
 
 the remainder term R�t� x� is a Lipschitz� function of x in the
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�� and the following estimates hold
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where c is an absolute postive constant� In particular�
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By term�wise di�erentiation of the series de�ning the function h�t� x� we see that
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Of course� here we keep the convention that the derivatives are understood as linear functionals on S�
Keeping this in mind� we can rewrite ��� in the following form	
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Let us integrate both sides of ���� in the variable x and apply integration by parts to the righthand
side� Since h�t� x� satis�es the initial condition h�t� x�jx�� � 
� we see that
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whence ��� follows�
In ���� the function g�t� x� is represented by the Fresnel integral Frl	

g�t� x� �
p
i

Z xp
t

�
e��iy

�
dy �

p
iFrl�

�
xp
t

�
� where Frl�x� 	�

Z x

�
e�iy

�
dy � ����

�



Let us estimate the remainder term R�t� x�� By ��� and the de�nition of h we have
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These estimates imply
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Further� ��
� is a corollary of ���� ���a� and ����� because Frl�x� is a bounded function on E� �
Now we can �nish the proof of ����
Given a real x� denote �x�� fxg respectively� the integral and fractional parts of x� Let hxi stand

for the distance from x to the nearest integer taken with its� sign� i�e� hxi 	� f�xg � fxg� It is easy
to see that

e�i�tn
���nx� � e�i��n

����n�� where � 	� ftg� � 	�


�t�

�
� x

�
� t� x � E� n � Z� ����

In particular� it is su�cient to prove that h is essentially bounded in the basic rectangle D 	�n
�t� x� 	 
 � t � �� jxj 
 �

�

o
�

Let us iterate ��
��using ���� and the following mapping M of D onto itself 	

M 	 �t� x� ��M�t� x� 	�

��
�

t


�



�

�

�
�

t

�
�

x

t

��
�

�



This map is directly related with the continued fraction of t � �
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where the positive integers qj � qj�t� are partial quotients of t�
Let us iterate ��
�� using the following properties of M � which follow from ����	
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Now� assume that t is a �xed rational number� Then iterations of ���� terminate when we reach
the bottom of the corresponding �nite continued fraction �����

Namely� one has t� � ��q�� q�� � � � � qm��� � � � � tm � ��qm�� �
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see from ���� and ���� that for each �xed rational t� h�t� x� is bounded for all x � E by an absolute
constant c�

By routine density arguing� this implies ���� Indeed� for a natural N denote N �t� x� the �C� ���
means of the trigonometric series de�ning h	
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The means N �t� x� are uniformly bounded in N � all real x and all rational t� Simply by continuity
of N�t� x� in t one has supN supt�x�E jN�t� x�j � �� i�e� the means  are uniformly bounded on E�
and ��� follows�
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� Comments

Remark �� An essentially more general assertion than ��� is also true� It was proved in ���� and
independently by E�M� Stein and S� Wainger ���� that the �nite discrete Hilbert transforms

HN�x� � HN�xr� � � � � x�� x�� 	�
X

��jnj�N
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r�����x�n��x�n�

n

are uniformly bounded in all natural N � �� �� � � � and all real vectors x � �xr� � � � � x�� � Er	
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sup
N

jHN�x�j � �r ��� ����

The pointwise limit H�x� 	� limN��HN �x� exists everywhere in the space Er� cf� ����
However� the proof of ���� and the pointwise convergence required complicated techniques even

in the case of r � �� The main tool was a variant of I�M� Vinogradov�s method� cf� ���� and ���� of
estimates and asymptotic formulas for H� Weyl�s exponential sums� More general series of the type

V �f � x� 	�
X
n�Z

f�n� e��i�xrn
r�����x�n��x�n�� f�n� 	�

Z �

�
f�x� e���inx dx� n � Z�

were also considered� They were called by the author Vinogradov series� or V �series� V �continuations
of f of r�th degree� It turned out subsequently that V �continuations have certain noteworthy appli�
cations to investigation of local and global properties of solutions of time�dependent Schr�odinger type
equations� In these investigations� Vinogradov�s method played a decisive role� cf� ���� ���� � ��
��

This justi�ed the interest in an alternative� more elementary proof of ���� with possibly minimal
references to methods of Analytic Number Theory� As mentioned above� the present proof of ��� is

based on the duality relation ���� or simply the representation ��t� x� �
q

i
t
e�

�ix�

t for the Green�s

function of the problem ����
Remark �� The global boundedness result
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X
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������ ���

can be deduced from L� Carleson�s theorem ��� on almost everywhere convergence of trigonometric
Fourier series of the class L�� The following strong type ��� ���estimate for the operator of maximal
discrete Hilbert transform is su�cient	

X
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janj��

The latter estimate was derived from Carleson�s theorem by E� Makai ����� The author learned about
this way of estimating of hN from E�M� Stein in ���
 �personal communication��
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Remark �� ��� is a re�ection of the duality relation for the solution operator u�f � t� x� of the
Cauchy initial value problem for the heat transfer equation	
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The following classical functional equation for the elliptic Jacobi 	�function of real and positive argu�
ment t� cf� e�g� ����� Chapter �	
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is a particular case of ����� Indeed� take as above f�x� � ��x� to be the periodized Dirac�s ��function�
Then� on one hand� the corresponding solution 	�t� x� 	� u��� t� x� is given by
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X
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Thus� we obtain the well�known Fourier expansion of the Green�s function 	�t� x� of the problem ����
with periodic initial data f�x� �� � f�x�	
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� follows from ����� if we take x � 
� Relations ��
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to complex t� with 	 t 
 
� and ��
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functional equation for Riemann�s zeta�function� cf� ����� Chapter ��

Remark �� For �xed rational values of t� both functionals ��t� x� and ��
�
�
t
� x
t

�
are represented

by linear combinations of shifted Dirac�s ��functions� Let us verify that for rational t represented by
reduced fractions t � p
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 �mod ��� the relation ��� is equivalent to the known reciprocity
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In particular the boundedness result ��� can be considered as a corollary of ���
Since �p� q� � �� pq � 
 �mod ��� the sequence of exponentials en 	� e�in

�t� n � Z� is periodic
in n� with the period � q� i�e� en�q � en� The series de�ning ��t� x� can be summed� say� by
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Let us use the following properties of delta�functions ��x� and ��x� �q � a �xed positive number�
f�x� � a �xed continuous and bounded function on E� � � a �xed real number�	
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Consequently� the righthand side of ��� can be rewritten as follows	s
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is the usual �complete� shifted Gauss� sum with odd denominator q	
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Let us compare the coe�cients by �
�
x� n

q

�
on the right of ���� and ����� To establish the equivalence

of ��� and ���� we need to prove that the following relations for shifted Gauss� sums �
�
t� n

q

�
are valid	
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The shifted Gauss� sums �
�
t� n

q

�
can be expressed in terms of non�shifted ones� i�e� ��t� 
�� Indeed�

assume as above that t � p
q
is a reduced fraction� and denote T � T �t� one of the Farey neighbors to

t� that is a rational number T � P
Q

satisfying

jt� T j �
����pq � P

Q

���� � �

qQ
� i�e� pQ� qP �  h� where  h � ���

Then

�pQ�� � �qP �� � � �mod �pq�� pm� � �mn � p�m� � � hQmn� �mod �q�� m� n � Z�

Consequently�
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and further
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it follows from ���� that ���� indeed reduces to �����
Remark �� To �nd a Farey neighbor T �t� to t � p

q
� t � �
� ��� consider the representation

t � ��q�� q�� � � � � qm�� by ����� One can select T �t� to be the last but one in the corresponding sequence
of convergents� i� e� T �t� � T��t� � ��q�� q�� � � � � qm����� or an arbitrary following fraction of the form
T �t� � T��t� � ��q�� q�� � � � � qm� qm����� where qm�� is a natural number� For more details� see e�g�
��
��

Remark �� G�H�Hardy and J�E�Littlewood �see ��
�� pp� ������� and pp� ���� ���� established the
following approximate functional equation for �nite partial sums of the series de�ning ��t� 
�	uniformly
in t � �
� �� and N 
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The relations ���� represent a remarkable class of cases when the remainder term O��� equals 
� i�e�
the approximate equation is exact�

Further� in ��
�� pp� ��� � ��� and ��� the iterations of the same kind as in ���� were used in
estimates of incomplete Gauss� sums�

Remark �� It is not hard to see that

sup
t
ft�t� � � � tjg � �

Fj
� j � �� �� � � � �

where Fj denotes the j�th Fibonacci�s number� i�e� F� 	� �� F� 	� �� Fj 	� Fj�� � Fj��� j  �� It
can also be shown that the maximal value of the in�nite sum

max
t������

f� �p
t� �

p
t�t� � � � �g

is attained for the golden mean t� �
p
	��
� � i� e� maxt������f� � �g � �

��pt� � For this remark the author

is indebted to B� Popov�
Remark �� As a disadvantage of the above proof of ���� it should be noted that it does not

provide the existence of h for all �t� x�� The case of concrete irrational t has not been treated by the
new aproach simply because pointwise convergence remained obscure� and a priori the series might be
divergent on a certain set of points of zero Lebesgue measure�

The appoach based on Vinogradov�s method provides more detailed information concerning local
and global properties of h� For instance� if t is irrational� then the series de�ning h converges uniformly
in x� so that for such t� h�t� x� is contionuous in x� Also� the traces of h�t� x� are continuous on every
line on the plane E� not parallel to the x�axis� in particular� for each �xed x� h�t� x� as a function of
t � E is everywhere continuous�

For more details concerning local and global properties of V �continuations of higher degree and
implications to the Cauchy initial value problem for Schr�odinger type equations� see ����� This includes�
in particular� the degenerate �linearized� Korteweg � deVries equation

�u

�t
� a

��u

�x�
� u�t� x�jt�� � f�x��

� On variation and complexity features� Curlicues

The function h�t� x� is related with a wide class of solutions of ��� with periodic f�x� of bounded
variation on the period �
� ��� The solution operator for such initial data can be represented by
Stieltjes convolution

��f � t� x� �
X
n�Z

f�n� e�i�n
�t��nx� � f �
� �

Z
T
h�t� x� �� df��� ����

�here and below� T indicates that the functions are periodic� of period equal �� and that the integral
is taken over the period��

��



As mentined above �cf� ������ for �xed irrational t� h�t� x� is continuous in x and the integral is
Riemann � Stieltjes� If t is a rational number� then x� h�t� x� is piecewise constant� with equidistant
jumps on T� and for a general f�x� of bounded variation� the integral can be understood as Lebesgue
� Stieltjes�

Denote Var��T� the space of functions f�x�� f�x � �� � f�x� of bounded variation var��f � T� on

T� We assume that f�x� � f�x���f�x��
� for all x� and denote kf�Var��T�k 	� kf� L��T�k� var��f � T�

the norm in V T
� �

Theorem � implies that
k� 	 Var��T� �� L��E��k ��� ����

i�e� the solution operator � is bounded from Var��T� into L
��E���

This statement can be strengthened� see Theorem � below� Namely� the functional equation
��� with size� and smoothness estimates ��� of the remainder term R�t� x� can be used to analyze
variational features of h�t� x�� and consequently those of ��f � t� x� with f � Var��T�� In particular�
one can provide an alternative proof� cf� ��
�� of the fact that for each �xed t� h�t� x� as a function of x
is of bounded weak quadratic variation on the period �
� ��� and that the latter property holds uniformly
in t � E 	

sup
t

war��h�t� x� 	 x � �
� ��� ��� ����

Let us recall the corresponding de�nitions of generalized strong and weak ��variation� where �  ��
The strong ��variation var	�f � I� of a bounded function f�x� on an interval I � E is de�ned by

var	�f � I� 	� sup
fIjg�I

��
�
X
j

osc	�f � Ij�

��
�

�
�

�

where osc�f � I� 	� sup fjf�x�� f�y�j 	 x� y � Ig� and I denotes the class of all partitions fIjg of
the basic interval I into unions of pairwise disjoint subintervals Ij � The notion of strong ��variation
was introduced by N� Wiener� and usefulness of ��variation in Fourier analysis has been thoroughly
studied� cf����� Ch� ��

The notion of weak ��variation war	�f � I� is a modi�cation of var	�f � I� in the general key of
weak type estimates� Namely�

war	�f � I� 	� sup
���

sup
fIjg�I

��card fj 	 osc�f � Ij� 
 �g� �� �

where card denotes the number of elements in a ��nite� set� Weak variations are more handy in
applications� than strong ones� and they are easier to compute �see below� ��
� and ������

Denote Var	�I�� �War	�I�� the corresponding classes of all functions f�x�� x � I with f�x� �
f�x���f�x��

� such that var	�f � I� �� or� respectively� war	�f � I� ��� Then Var	�I� � Var
�I��
War	�I� � War
�I� for � 
 �� i�e� the classes are expanding along with the growing �� Further� by
Chebyshev�s inequality� war	�f � I� 
 var	�f � I�� and the imbedding Var	�I� � War	�I� is obvious�
One has �cf� ���� Ch� ��� Theorem ���� Var��I� � War��I�� while for � 
 � the class War	�I� is

��



essentially wider than Var	�I�� Also� if � � � � �� then War	�I� � Var
�I�� i�e� if a function f�x� is
of bounded weak ��variation� then it is also of bounded strong ��variation for every � 
 ��

There are two alternative equivalent de�nitions of the class War	�I�	 a� in terms of the rates
of non�linear approximation by piecewise constant functions �splines with free nodes�� and b� via
interpolation � in terms of J� Peetre�s functionals�

Namely� for a given natural n denote Pn the class of all piecewise constant functions P �x� on I �
such that I can be represented as a union I �

Sm
� Ij of m 
 n pairwise disjoint subintervals Ij and

P �x� is constant on each Ij � Further� denote

En�f � I� 	� inf fkf � g� L��I�k 	 g � Png

the n�th best uniform piecewise constant approximation of f�x� on I � Then

f �War	�I� �� En�f � I� � O
�
n�

�
�

�
� n��� ��
�

In interpolatory terms� the de�nition of the class War	�I� is given by

f �War	�I� �� inf fkg� V��I�k 	 kf � g� L��I�k 
 �g � O���	�� �� 
� ����

In the other words� f�x� belongs to the class War	�I� if and only if for all �small� � 
 
 it can be
uniformly approximated with the accuracy � by a function g�x� � g��x� whose ordinary total variation
var��g� I� is of order O���	��

The next simple lemma is useful in applications to ����

Lemma � � Assume that f�x� � Var��T� and h�x� �War	�T�� where �  �� and let

��x� 	� �h � df��x� �
Z
T
h�x� �� df����

Then ��x� �War	�T��

For the proof� let us represent h�x�� in accordance with ����� as h � g� � r�� where g� � Var��T�� and
kg�� V��I�k 
 const���	� kr�� L��I�k 
 �� Then it is easy to see that the function ���x� 	� �h��df��x�
is in Var��T�� and

k� � ��� L
��T�k � O���� var����� T� � O���	�� �� 
�

Thus� the next statement follows from ��
� and ����� ����� It is a re�nement of �����

Theorem � � The following property holds uniformly in t � E for the solution operator � of the
problem �
��

� 	 Var��T� ��War��T�� ����

and in particular� for all � 
 �

� 	 Var��T� �� Var	�T�� � 
 �� ����

��



For possible generalizations to a wider class of problems of type ��� involving su�ciently smooth
potentials p�t� x� �periodic in x�� i�e�

��

�t
� i

�
���

�x�
� p�t� x��

�
� ��t� x�jt�� � f�x��

the reader may be referred to ���� and �����
Remark 	� In the limiting case � � �� the statement ���� of Theorem � is not true� There exist

such values of t that h�t� x� is not of bounded strong ��variation in x� see ��
��
The above variational results provide the �rst insight into complexity features of the solutions of

the problem ���� As noted above� for each �xed irrational value of t� the function h�t� x� is everywhere
continuous� however� it is nowhere di�erentiable in x� For irrational t� uniform smoothness of h�t� x�
in the variable x is !best possible" if the sequence of partial quotients fqjg in the continued fraction

���� is bounded� In such cases� h�t� �� � Lip �
� � i�e� jh�t� x�� h�t� y�j 
 c�t�jx� yj �� for all x� y � E � A

wide set of such values of t is provided by quadratic surds �irrationalities�� e�g� t �
p
�� t �

p
	��
� � etc�

These results indicate on a complicated character of the corresponding trajectories� which resemble
those of Brownian particles on the plane�

Let us establish some preliminary facts concerning these objects� and their relationship with the
so�called curlicues� For a �xed t � E consider the following set of points on the complex plane C	

Ht 	� fz � C 	 z � x� h�t� x�� x � Tg � ����

One can understand ���� as parametric equation of the set Ht on the real plane E�	

Ht 	� fx � hx�� x�i � E� 	 x� � x� 	 h�t� x�� x� � � h�t� x�� x � Tg�

If t is a rational number� the function x � h�t� x� is piecewise constant� so that Ht is a discrete set�
The values of h at rational points on E� are computable as �nite discrete Hilbert transforms� cf� ��
��
����	

h

�
�a

q
�
b

q

�
�

�

�qi

q��X
n��

e
��ian

��bn
q

tan �n
q

�

where a� b � Z� �a� q� � �� On the other hand� if t is irrational� then x � h�t� x� is continuous and
nondi�eretiable� and Ht is a continuous and nonrecti�able curve�

Curlicues were studied by M�V� Berry and J� Goldberg in ���� They represent a peculiar class
of curves on C resulting from computation and plotting of the values of incomplete Gauss� sums�
Such computations and analysis were seemingly initiated by D�H� Lehmer ����� and later continued
by several authors� cf� e�g� ���� ����� with emphasis on possible applications as models in Optics and
Thermodynamics� A curlicue is de�ned for a �xed real parameter � as the broken line on C resulting
from computations of quadratic exponential sums

zn��� 	�
nX

m��

e�im
�� � n � 
� �� � � � � ����

��



and joining each pair of consecutive points by line segments �zn� zn���� For !complicated" rational � �
i� e� when the the number of !levels" m in the continued fraction ���� is large� the corresponding
curlicue represents a rather spectacular combination of several hierarchies of coiling and uncoiling
Cornu spirals� In a curlicue of such kind� features of selfsimilarity are present�

The Cornu spiral is parametrically represented by the incomplete Fresnel integral� cf� ����	

F 	�

�
z �

p
iFrl��x� �

p
i

Z x

�
e��iy

�
dy� x � E


�

Geometrically� such a spiral uncoils counterclockwise from the point z � ��
� � passes through the origin

and then coils clockwise towards z � �
� �

The function x � h�t� x� is a generating function of all curlicues with rational parameters of the
form � � p

q
� �p� q� � �� where p is even� say� p � �a� a � Z and q odd� In this case� the corresponding

numbers zn are of the form

zn � zn

�
�a

q

�
�

nX
m��

e
��iam�

q �

i�e� they are incomplete Gauss� sums with odd denominators� Indeed� introduce the following sum�
function of continuous argument x	

Z��� x� � Z

�
�a

q
� x

�
	�

X
��m�qx

e
��iam�

q �

where the �rst term and� in case of integral value of qx� also the last one have to be taken with the
factor �

� � The relation between curlicues and the function x � h�t� x� can be seen from the following
identity	

Z��� x� � G�t��x� h���t� x��� where t � t��� 	�
��a���

q
�

�q � ���a��

�q
� ����

For the proof� see ��
�� In ����� a�� denotes the unique modulo q solution of the congruence aa�� � �
�mod q�� and we keep the assumptions q � � �mod ��� �a� q� � �� Further� G�t� denotes the complete
Gauss� sum	

G

�
a

q

�
	�

qX
n��

e
��ian�

q �

The values of G
�
a
q

�
are given by classical relations due to K�F� Gauss	

����G
�
a

q

����� � p
q� and if q is a prime� G

�
a

q

�
�

�
a

q

�
p
q

�
�� if q � � �mod ���
i� if q � � �mod ���

Here

�
a

q

�
denotes the Legendre symbol modulo prime the number q	

�
a

q

�
	�

�
�� if a is a quadratic residue �mod q��

� � in the opposite case�

��



Thus� it follows from ���� that complete Gauss� sums G�t� � G��� play the role of scaling factors in the
curlicue parametrized by x� h���t���� x�� Moreover� the truncated Cornu spirals and the hierarchical
nature of curlicues re�ect the functional equation ����

Remark �
� The Cornu spiral F is a nontrivial set from the point of view of the theory of
comlexity� Let us conclude the paper by proving that entF � 


� � where entF denotes the metric
entropy of F �

Recall the notion of Kolmogorov � Schnirelman entropy introduced in ����� ����� and studied later
along with Hausdor� dimension dimH in the literature on fractal sets� see e�g� ���� ���� �����

Given a set F in a metric space E �in our case� F is the Cornu spiral� E 	� C� and a number � 
 
�
denote NF ��� the smallest number of balls of radius 
 � in D which are needed to cover F � Then

entF 	� lim sup
���

lnNF���
ln �

�

�

The proof of the relation entF � 

� consists of two parts	 the estimate of NF��� from above� and the

estimate of this number from below� As common in theory of coplexity� the estimate from above is
easier� because any reasonable covering works� In our case� let 
 � X � �

�
� and represent F as a union

F � F��X�
SF��X� where

F��X� 	� fz � C 	 z �
p
iFrl��x�� jxj 
 Xg� F��X� 	� fz � C 	 z �

p
iFrl��x�� jxj 
 Xg�

The part F��X� is a curve on C of length �X � This set be covered by 
 cX
�
discs of radius �� The

part F��X� is contained in two discs with the centers at z � ��
� and radii 
 c

X
� The latter follows

from the estimate Z �

X
e�iy

�
dy � O

�
�

X

�

of the tails of the Fresnel integral for large X � Thus� F��X� can be covered by 
 c �
�X��� discs of radius

�� and we have

NF��� 
 c

�
X

�
�

�

X���

�
�

To minimize the expression on the right in X � we choose X � ��
�
� � This implies the estimate

NF��� 
 c��
�
� � and consequently entF 
 


� �

To prove the estimate from below NF���  c��
� �

� � one applies the asymptotic formulaZ �

X

e�iy
�
dy �

Z �

X

e�iy
�
���iy�

��iy
dy � �e�iX

�

��iX
� O

�
�

X�

�
� X ���

We omit the details�
The author hopes to return to complexity problems of solutions of Schr�odinger equation of a free

particle� such as estimates of Hausdor� dimensions of trajectories� Although the problem ��� with
periodic f�x� is linear� the above considerations show that the solutions may be chaotic even in the
case of simple initial data� i�e� possess features rather typical for non�linear problems in PDE� The
author believes that a combination of Vinogradov�s method and the functional equations of the type
��� may be useful in this direction� It seems likely� that the Hausdor� dimension of curves Ht is
non�trivial e� g� when t is a quadratic irrationality�
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